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This paper proposes a new incremental sampling method for the generation of surrogate models based on 

the application of partial least squares regression (PLSR) as a termination criterion. Compared to existing 

incremental and adaptive methods, the proposed method allows the sampling algorithm to stop without 

needing to fit a surrogate model at each iteration step. The proposed procedure was applied to a motivat- 

ing pipe model and two case studies; the reaction and the separation section of an ammonia synthesis 

loop. In all cases, the new sampling method allows a small number of sampling points, corresponding to 

a regular grid with less than two points in each independent variable. The two surrogate models of the 

ammonia loop are combined for overall optimization. The optimum for the combined surrogate models 

is close to the optimum obtained with the original model. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Surrogate models, frequently called response surfaces or

educed-order models, are emerging as an engineering tool with

any applications ( Forrester et al., 2008 ). They are simplified

athematical representations of complex models. Their applica-

ion reduces the computational cost. Queipo et al. (2005) pro-

ide an extensive review of surrogate-based analysis and optimiza-

ion, with a focus on aerospace systems. The even more com-

lex models used in process systems engineering have sparked

he interest for the application of surrogate models also in this

eld. Bhosekar and Ierapetritou (2018) give a detailed overview of

he application of surrogate models in process systems engineer-

ng. One application is multi-scale modeling ( Biegler et al., 2014;

arolius et al., 2016 ). Surrogate models are in this approach, for

xample, used to include computational fluid dynamics. A second

merging field for surrogate models is process optimization us-

ng black-box models ( Caballero and Grossmann, 2008; Eason and

iegler, 2016; Forrester and Keane, 2009; Grimstad et al., 2016;

uirante and Caballero, 2016 ). Commercial process simulators gen-

rally do not provide derivative information. This reduces their ap-

licability in optimization. However, the fitting of surrogate mod-
� J.S. gratefully acknowledges the financial support from YARA International ASA. 
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ls allows for the use in derivative-based optimization algorithms.

oukouvala et al. (2016) extensively discuss the application of sur-

ogate models in constrained derivative-free optimization (CDFO)

nd draw a connection between CDFO and mixed integer nonlin-

ar programming (MINLP). 

In the field of optimization, surrogate models can be directly

ntegrated into the optimization routine. The SO-MI framework

eveloped by Müller et al. (2013) is used for solving expensive

INLP problems. Similarly, the ARGONAUT algorithm developed

y Boukouvala and Floudas (2017) incorporates grey-box surro-

ate modelling and couples it with global optimization for non-

inear problems. It was further improved through introduction of

arallel computing for sampling and applied to both optimiza-

ion of energy systems ( Beykal et al., 2018a ) and oil-field opera-

ion ( Beykal et al., 2018b ). Kieslich et al. (2018) utilized Smolyak

sparse) grids and combined them with Chebyshev polynomials for

he optimization of black-box functions. Their approach combines

urrogate model generation and optimization and utilizes bound

efinement for improved accuracy. 

The performance of surrogate models is influenced by two fac-

ors. First, the chosen basis functions for the surrogate model af-

ect the achievable accuracy of the surrogate model to represent

he nonlinear response surface. Common basis functions include

-splines ( Grimstad et al., 2015 ), Kriging models ( Caballero and

rossmann, 2008; Eason and Biegler, 2016; Krige, 1951; Quirante

nd Caballero, 2016 ), individual chosen basis function in the
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Abbreviations 

PLSR Partial least squares regression 

RMSE Root-mean-squared error 

Variables 

�W 

k 
s Change of significant weights between interations k- 

1 and k. 

n add Number of additional sampling points 

n ini Number of initial sampling points 

n f Number of sampling steps for averaging 

n p Number of sampling points 

n s Number of significant latent variables 

n u Number of independent variables 

n y Number of dependent variables 

U Sample set 

U 

′ Sample set in latent variables 

s Sample standard deviation 

W Weights from PLSR 

W s Significant weights from PLSR 

w i Weight of latent variable i from PLSR 

Y Response set 

Greek variables 

β Threshold for significant latent variables, see (8) 

γ Threshold for termination of sampling, see (10) 

ε Model fit error with surrogate model, see (15) 

Superscripts 

k Iteration in the sampling algorithm 

Subscripts 

i Index of latent variable i 

j Index of dependent variable j 

m Index of the validation space 

ALAMO approach ( Cozad et al., 2014, 2015; Wilson and Sahinidis,

2017 ), and artificial neural networks ( Eason and Cremaschi, 2014 ).

Davis et al. (2017) provide an overview of the different methods

and compare their performance on 47 challenge functions. 

The sampling method is the second major influence on the per-

formance of the surrogate model. In addition to the fitting of the

surrogate model, the sampling of points from the detailed model

is the main computational cost. Hence, the aim of sampling is to

sample as few points as possible while achieving satisfactory accu-

racy of the surrogate model. The overall concept is called design of

computer experiments . Garud et al. (2017b) provide an extensive re-

view of the different sam pling approaches. They can be differenti-

ated between 1. predefined (static) 2. incremental, and 3. adaptive

sampling. In the first sampling methods, the sampling points are

generated and sampled in one iteration. In the second sampling

methods, points are added incrementally and surrogate models are

usually fitted in each iteration step until satisfactory performance

is achieved. The third sampling methods use the surrogate model

fit to also decide on placement of the new sampling points. 

Predefined (static) sampling is the simplest approach. Monte

Carlo sampling ( Metropolis and Ulam, 1949 ) is an early method

based on pseudo-random numbers. The key idea of Monte Carlo

sampling is that the randomness in sampling will result in space

filling. This is however not guaranteed and may require a large

number of sampling points n p . 

Hence, space-filling methods are frequently considered instead.

The simplest space-filling method is regular grid sampling. It is ap-

plied for surrogate modeling ( Grimstad et al., 2016 ), but it has an

t

xponential increase in sampling points, 

 p = n 

n u 
g (1)

here n g is the number of points per dimension in the regular

rid. Therefore it is only useful for a small number of independent

ariables n u . 

Several other methods have been developed to over-

ome this curse of dimensionality . Latin hypercube sampling

LHS) ( McKay et al., 1979 ) is probably the most popular method

oday. It is applied by e.g. Ochoa-Estopier et al. (2014) for a heat-

ntegrated crude oil distillation system for n u = 10 and n p = 30 0 0

hich corresponds to n g = 2 . 3 in a regular grid. LHS may, however,

ot explore the whole space as shown for a simple 2-dimensional

ase study by Garud et al. (2017b) . 

Independent of the chosen sampling method, static approaches

ave in addition the inherent problem of selecting how many

oints to sample. Another approach for overcoming the curse

f dimensionality are sparse grids. Sparse grids, as applied by

ieslich et al. (2018) for surrogate-based optimization, reduce the

he number of sampling points to n g log 
(
n g 

)n u −1 
. Bungartz and

riebel (2004) give an extensive review of sparse grids whereas

flüger et al. (2010) extend the concepts to high dimensional data.

s it is not known a priori how many sample points are needed for

 desired surrogate model accuracy, both under- and oversampling

an occur. Especially oversampling can result in increased compu-

ational cost due to the sampling of unnecessary points. 

The problem with oversampling can be alleviated by incremen-

al sampling. Nuchitprasittichai and Cremaschi (2013) use such an

ncremental approach based on LHS. Surrogate models are fitted

fter each additional sampling step and the procedure is stopped

pon reaching a termination criterion based on boots trapping.

uirante and Caballero (2016) use the maxmin approach in which

he points are placed so that the minimum distance between

ampling points is maximized. Depending on the performance of

he surrogate model, more points are sampled, again using the

axmin approach. 

Adaptive sampling methods were developed as an improvement

o incremental approaches. They are generally based on two con-

epts, exploration and exploitation ( Garud et al., 2017b ). The for-

er tries to achieve point placement in regions which are poorly

epresented in the sampling space. This is similar to the incremen-

al approaches. However, adaptive approaches utilize the surrogate

t for identifying highly nonlinear regions. Correspondingly, new

oints are placed in these nonlinear regions. The smart sampling

lgorithm developed by Garud and co-workers is one of the adap-

ive sampling methods ( Garud et al., 2017a, 2018 ). Through the ap-

lication of two metrics, one for exploitation and one for explo-

ation, they identify new optimal points. Cozad et al. (2014) devel-

ped a combined surrogate model fitting and sampling algorithm

hich aims at sampling points which have a maximum error with

he surrogate model. The resulting surrogate models have a sim-

le structure allowing an easy calculation of derivatives. Eason and

remaschi (2014) combined space filling through incremental LHS

ith exploitation through jackknifing. 

The need for repeated fitting of a surrogate model in both in-

remental and adaptive approaches can be computationally expen-

ive. The development of a termination criterion for incremental

ampling without the need of fitting a surrogate model is attrac-

ive, and is the focus of this paper. One possible approach is to

pply partial least squares regression (PLSR), which has a very low

omputational cost, and use this as a termination criterion. 

PLSR is a method from chemometrics, developed for the analy-

is of high-dimensional data. It was previously applied in the cal-

ulation of surrogate models ( Straus and Skogestad, 2017a,b ) to re-

uce the number of independent variables n u in the fitting through

he introduction of latent variables. The new latent variables u 

′ 
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ere calculated using the weights W given by PLSR. In this pa-

er, we use this information instead as a termination criterion for

ampling, without the need to fit a surrogate model. 

This paper is structured as follows; Section 2 first explains

he main properties of partial least squares regression (PLSR).

ection 3 describes the procedure for sampling for surrogate model

eneration without the necessity of fitting a surrogate model in

ach iteration. Section 4 illustrates the steps in the procedure us-

ng a simple pipe model as motivating example. Section 5 applies

his method to two case studies, the reaction and the separation

ections of a simplified ammonia synthesis loop. These two sub-

odels are then combined with the original synthesis gas makeup

ection for the respective submodels and evaluated in comparison

o the original model. Section 6 then discusses the properties of

he proposed method. 

. Background - partial least squares regression 

Partial least squares regression (PLSR) is a linear regression

ool widely used in chemometrics ( e.g. Wold et al. (2001) ). It

lso has many other application, for example in the analysis of

igh-dimensional genomic data ( Boulesteix and Strimmer, 2007 ).

n many applications, the number of independent variables n u , e.g.

pectroscopy frequencies and genes, exceed the number of samples

 p , which results in problems with classical multivariate regression

odels. Furthermore, problems may arise in the multivariate re-

ression if independent variables are noisy or strongly correlated.

 detailed review of PLSR can be found in Boulesteix and Strim-

er (2007) and Wold et al. (2001) . The former explains various

lgorithms for the calculation of the latent variables. 

The aim of PLSR is a variable reduction in the independent vari-

bles resulting in new latent variables. PLS may also mean projec-

ion to latent structures ( Wold et al., 2001 ). PLSR is similar to prin-

ipal component regression (PCR) ( e.g. Martens (2001) ). However,

n contrast to PCR, it considers in the calculation of the latent vari-

bles their impact on the dependent variables. The variable reduc-

ion is given through the transformation of the original indepen-

ent variable space U ∈ R 

n p ×n u into a space of n c latent variables

 

′ ∈ R 

n p ×n c . 

 

′ = UW (2) 

here W ∈ R 

n u ×n c . In PLSR, W is calculated to maximize the co-

ariance between U 

′ and the dependent variable space Y 

′ ∈ R 

n p ×n c .

Several algorithms exist for computing W . An overview is

iven by Boulesteix and Strimmer (2007) . In this paper, we

se the Statistically Inspired Modification of PLS algorithm (SIM-

LS) ( de Jong, 1993 ), which obtains the weights for each compo-

ent i = 1 , . . . , n c sequentially according to 

 i = arg max 
w 

w 

T U 

T YY 

T U w (3)

ith the following constraints 

w 

T 
i w i = 1 

 

T 
i U 

T U w j = 0 ∀ j = 1 , . . . , i − 1 (4) 

 i denotes the columns of the weight matrix W . It gives the coeffi-

ients of the original variables in the calculation of the new latent

ariables. The first constraint normalizes the weights, whereas the

econd constraint results in orthogonality of the latent variables. 

Depending on the implemented algorithm ( e.g. plsregress in

ATLAB and simpls in R ( Boulesteix and Strimmer, 2007 )), u 

′ 
i 

cor-

esponding to a column of U 

′ may have a length of 1, i.e. 

 

′ 
i 

T 
u 

′ 
i = 1 (5) 

his is contrary to the constraints (4) . The proposed method how-

ver utilizes weights w i with unit length. Hence, it requires the

ransformation of the weights w to have unit length. 
i 
PLSR is sensitive to scaling ( Wold et al., 1983 ). The standard

core gives equal variance for each independent variable and is

iven by 

 scaled = ( U − μU ) ◦ σ−1 
U (6) 

he operator ◦ corresponds to the Schur product which is element-

ise multiplication. μU is the mean value and σU the standard de-

iation in the matrix U with respect to each of the independent

ariables u . This scaling was found to improve the performance

hen PLSR is used for independent variable reduction ( Straus and

kogestad, 2017b ) and will be applied in the sampling procedure

s well. 

. Proposed sampling procedure utilizing PLSR 

The idea is to compute the weight matrix W after each sam-

ling, or after a block of n add samplings, and consider the conver-

ence of W 

k . This may be done by monitoring the change in the

eight 

W 

k = W 

k − W 

k −1 (7) 

s a function of the iteration k . The norm, 
∥∥�W 

k 
∥∥, can then be

tilized as termination criterion for the sampling procedure. How-

ver, W 

k should only include the weights corresponding to the sig-

ificant latent variables 

 

k 
s = 

[
w 

k 
1 · · · w 

k 
n s 

]
(8) 

here n s is the number of significant weights as defined by the

hreshold β . The first omitted weight vector w 

k 
n s +1 

explains less

han β % of the variance of the dependent variable y . 

The initialization of the procedure consists of sampling n ini 

oints. The sampling of the initial points can be performed us-

ng any method, e.g. Latin hypercube sampling ( McKay et al., 1979 )

r Sobol sampling ( Sobol, 1967 ). PLSR is then applied to calculate

he initial weights W 

1 
s . In the subsequent iterative procedure, n add 

oints are sampled at each iteration step k . This corresponds to a

o-called arithmetic sampling , as defined by Provost et al. (1999) ,

nd can be written as 

 p (k ) = n ini + k · n add (9)

imilar to the initially sampled points, any sampling method can

e used for the additional sampling points for the incremental

ampling. The additional points n add should however be sampled

sing the same sampling method as the initial sampling points n ini .

hen using Latin hypercube sampling, it is possible to either aug-

ent the existing Latin hypercube, that is considering the previous

oints so that the new sampling set is in itself a Latin hypercube,

r sample n add new additional sampling points which form a Latin

ypercube. If the original Latin hypercube is not augmented, then

he resulting set is not necessarily a Latin hypercube. 

We use the Frobenius norm, and monitor 
∥∥�W 

k 
s 

∥∥
F 

as the in-

remental sampling progresses. The reason behind choosing the

robenius norm is discussed in the discussion in Section 6 . Al-

hough we found that the norm eventually converges to a fixed

alue, it can temporarily increase and decrease. This noise may ter-

inate the procedure before reaching a satisfactory accuracy. To

void a preemptive termination, we propose to average the norm

f the last n f steps resulting in the calculation of the averaged

orm 

�W 

k 
s 

∥∥a v 
F 

= 

∑ k 
l= k −n f +1 

∥∥�W 

l 
s 

∥∥
F 

n f 

(10) 

he averaged norm is compared to a threshold γ and, if it is be-

ow γ , the iterative procedure is stopped and a surrogate model is

tted to the sampling space U . 
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Table 1 

Parameters for the pipe example. 

Parameter L / D A f 

[ −] [m 

2 ] [ −] 

Value 8.8 × 10 4 0.2 0.003 

Table 2 

Upper and lower bounds and the nominal value of the 

independent variables ( u ) (pipe example). 

Variable Unit Nominal Lower Upper 

Value Bound Bound 

p in [bar] 23 27 31 

T [ °C] 0 10 20 

˙ n H 2 ,in [mol/s] 700 1400 2100 

˙ n N 2 ,in [mol/s] 230 460 690 

˙ n NH 3 ,in [mol/s] 50 100 150 

˙ n Ar ,in [mol/s] 10 20 30 

˙ n CH 4 ,in [mol/s] 10 20 30 

Table 3 

Tuning parameters of the proposed sampling procedure 

(all examples and case studies). 

Parameter n ini n add n f β γ

Value 25 5 5 2 % n add × 10 −2 

T  
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(  
It is important to mention that the surrogate models are not

fitted to the set of latent variables U 

′ obtained via PLSR but to the

set of original independent variables U . Hence, the variable trans-

formation is only used in the sampling itself for the calculation of

the termination criterion and not in the surrogate model fitting or

the application of the surrogate models. The advantage of using the

independent variable transformation is then given by the calcula-

tion of a termination criterion without the necessity of fitting a

nonlinear surrogate model. Furthermore, the number of significant

weights does not influence the used sampling points for fitting of

the surrogate model. All sampled points are used for the fitting of

the surrogate model. 

Algorithm 1 summarizes the procedure. In the case of multi-

ple dependent variables y , it is either possible to perform PLS re-

gression for all dependent variables independently or simultane-

ously. The former is computationally more expensive, albeit only

marginally. If the latent variables are used to fit the surrogate

model, we found earlier that it is best to perform PLS regression

independently ( Straus and Skogestad, 2017b ). However, here we

are looking at the changes and do not use the latent variables for

the fit of the surrogate model. We therefore use the simultane-

ous approach. This will be further discussed in the case studies in

Section 5 . 

Algorithm 1 Sampling procedure. 

1: For a given subprocess g with independent variables u ∈
R 

n u and dependent variables y ∈ R 

n y , define upper and lower

bounds for the independent variables. 

2: Sample n ini initial points. 

3: Select the threshold β and calculate W 

1 
s according to Eq. (8). 

4: Initialize with k = 1 . 

5: while 
∥∥�W 

k 
s 

∥∥a v 
F 

> γ do 

6: Sample n add additional points. 

7: Scale the sampled space using the standard score (6). 

8: Perform PLS regression. 

9: Obtain the number of significant weights n s using the se- 

lected β and calculate �W 

k 
s according to Eqs. (7) and (8). 

10: Calculate the averaged norm 

∥∥�W 

k 
s 

∥∥a v 
F 

in Eq. (10). 

11: Set the iteration number k = k + 1 . 

12: end while 

13: Fit the surrogate models. 

4. Description of the sampling procedure 

4.1. Motivating example - pipe model 

The sampling procedure is now explained in detail using the

pressure drop over a an isothermal pipe as a motivating example.

The independent variables u are the inlet pressure p in , the temper-

ature T , and the molar flows ˙ n i . The dependent variable y is the

pressure drop. The model is 

0 = 

(
p 2 in − p 2 out 

)
− 4 f 

L 

D 

RT M 

A 

2 
˙ n 

2 (11)

This model allows for changing the number of independent vari-

ables n u through changing the number of gas components n gas in

the stream. These influence the average molar mass 

M = 

∑ n gas 

i =1 
M i ̇ n i 

˙ n 

(12)

and the total flow 

˙ n = 

n gas ∑ 

i =1 

˙ n i (13)
he investigated case has 5 gas components ( i = H 2 , N 2 , NH 3 ,

r, and CH 4 ) resulting in n u = 7 . One surrogate model has to

e fitted for the pressure difference y = p in − p out ( n y = 1 ). The

oints were sampled using u = 

[
p in T ˙ n 

T 
]T 

. We found previ-

usly ( Straus and Skogestad, 2017a ) that it is beneficial to use in-

ensive variables for PLS regression. Hence, molar fractions x i are

sed as independent variables in the fitting of the surrogate model

nd calculation of the PLSR weights. The data of the pipe are given

n Table 1 . The nominal value and the bounds (lower and upper

ound) of the sampling domain can be found in Table 2 . Table 3

ives the parameters for the sampling procedure ( Algorithm 1 ), in-

luding the parameters for choosing significant weights ( β = 2 % )

nd for terminating the sampling ( γ = 0 . 05 ). 

.2. Evaluation of the norm of the weights 

We only include the significant weights w i in W s , see Eq. (8) .

o understand this better, Fig. 1 shows the convergence of all the

even weights w i for an increasing sampling space n p ( k ). Note the

og scale for the norm. For illustration purposes, we oversample

sing 50 0 0 points sampled as a Latin hypercube. The 50 0 0 sam-

le points were obtained by sampling n ini = 25 sample points and

ubsequently augmenting the Latin hypercube by n add = 5 sam-

ling points, that is, we obtain a new Latin hypercube in each it-

ration. PLSR was performed every 5 sampling points ( n add = 5 )

fter initialization with 25 sampling points. The last 5 calculated

orms were used for averaging in (10) ( n f = 5 ). The colour code

hows the three significant weights, w 1 , w 2 , and w 3 , (black) and

he four insignificant weights with an explained variance less than

= 2 % (red). As we can see, all weights are converging. However,

t is possible to see a clear difference between the significant and

nsignificant weights. w 1 and w 2 are similar in convergence and

ard to distinguish. The third significant weight w 3 converges at

 slightly slower rate and has a value in-between the significant

nd insignificant weights. The insignificant weights converge at a

uch slower rate. Especially w 5 , w 6 , and w 7 experience frequent

hanges in the norm resulting in noisy bumps, even with the ap-

lied filtering. This is especially pronounced in the close-up of the

rst 10 0 0 point in Fig. 1 b). 

It has to be noted that the number of significant weights n s 
with β ≥ 2 %) decreases with increasing n p in this case study. Ini-
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Fig. 1. Development of the norm of the change of a) all individual weights, 
∣∣∣∣�w 

k 
i 

∣∣∣∣a v 
F 

for i = 1 . . . n u (significant weights w 1 , w 2 , and w 3 in black, insignificant weights in 

red), and b) a close-up of the insignificant weights, 
∣∣∣∣�w 

k 
i 

∣∣∣∣a v 
F 

for i = n s + 1 . . . n u for the first 10 0 0 sampling points (pipe example). 

Fig. 2. Development of the averaged norm of the change in the combined signifi- 

cant weights, 
∣∣∣∣�W 

k 
s 

∣∣∣∣a v 
F 

(pipe example). 
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Fig. 3. Mean absolute error of the surrogate model | ε| as a function of the averaged 

Frobenius norm of the change in the combined significant weights (pipe example). 
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ially, w 4, k explains between 2 % and 4 % of the variance in y , so

 s = 4 . However, it settles to around 0.5 % after around 300 sam-

led points, giving n s = 3 . As a result, the number of significant

eights n s can change in the course of the sampling. 

Fig. 2 shows how the important combined averaged norm of

he change of significant weights 
∥∥�W 

k 
∥∥a v 

F 
develops for the first

0 0 0 sampling points, but here using a linear scale for the norm.

s we can see, the reduction in the norm is especially pronounced

n the first 100 to 150 sampling points and is less pronounced with

ncreasing sampling points. This threshold γ = 0 . 05 is reached af-

er 230 sampling points. The norm of the change of the combined

ignificant weights, 
∥∥�W 

k 
s 

∥∥a v 
F 

, is less susceptible to the noise in

he calculation compared to the individual weights shown in Fig. 1 .

ence, it is not necessary to use a large n f for averaging. 

.3. Error of the surrogate model 

We found in Fig. 2 that the significant weights W 

k 
s converge af-

er about 20 0-30 0 sampling points. How does this reduction cor-

espond to the accuracy of a fitted surrogate model? 

To this end, we investigate the correlation between the norm

f the change, 
∥∥�W 

k 
s 

∥∥a v 
F 

, and the accuracy of the surrogate model.

he surrogate model structure is a 2-layer cascade forward neural

etwork with 5 hidden neurons in each layer. The surrogate mod-

ls were fitted after each 5 additional points starting at initially 25
oints. After 100 sampled points, the interval is increased to every

5 points and to every 100 points after 10 0 0 sampled points. Each

ime, 10 neural networks were fitted to average the randomness in

he initial seed to the neural networks. The dependent variable of

he surrogate model fit ( y = p in − p out ) is then calculated as the av-

rage of the resulting 10 neural networks. The validation space is

iven by 10 4 randomly sampled points. Note that the neural net-

orks were not fitted to the latent variables u 

′ , but to the initial

ndependent variables u . This is different to the results reported

n Straus and Skogestad (2017a) and Straus and Skogestad (2017b) .

Fig. 3 shows the mean absolute error | ε| of the pressure differ-

nce y = p in − p out as a function of 
∥∥�W 

k 
s 

∥∥a v 
F 

. Here, ε is the differ-

nce between the exact value for y and the one obtained from the

urrogate model ( i.e. the neural network). The threshold γ = 0 . 05

sed in the previous section is also indicated. From this figure,

here we used log-scale for | ε| , we see that sampling more than

0 0 0 points does not reduce the error further. Increasing the sam-

ling space above n p ≈ 300 − 500 only marginally reduces the er-

or in the fitted neural network. This corresponds to the concept

f learning curves as described by Provost et al. (1999) , which says

hat an increase in sampling points does not improve the accu-

acy of the surrogate model. The threshold γ corresponds to the

oint in which the decrease in the averaged norm 

∥∥�W 

k 
s 

∥∥a v 
in
F 
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HEx5

HEx4HEx3

HEx2

HEx8 HEx9 HEx10

HEx7

HEx6

HEx1
Reaction

Separation/
Refrigeration

Recycle

Fig. 4. Ammonia synthesis loop with the submodels Reaction Section and Separation 

Section . 
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Fig. 2 flattens and is at 
∥∥�W 

k 
s 

∥∥a v 
F 

≈ 0 . 02 − 0 . 05 (14)

Since we want to avoid the fitting of the surrogate model (neural

networks) during the sampling, this can be used as the termination

criterion in the sampling for surrogate model generation, that is, γ
should be between 0.02 and 0.05. 

4.4. Results of the applied sampling procedure 

The above results were based on an augmented, oversampled

Latin hypercube with 50 0 0 points. The application of the method

with the tuning parameters given in Table 3 ( γ = 0 . 05 ) and the

proposed incremental Latin hypercube sampling results in a ter-

mination after 210 sampled points. This is similar to the previous

oversampling shown in Fig. 2 , where the threshold γ is crossed

after 230 sampling points. The resulting surrogate model shows

a maximum absolute error | ε| max = 0 . 045 bar and an average ab-

solute error | ε| = 5 × 10 −4 bar. The 3 significant weights explain

94.60 % of the variance in the dependent variable y = p in − p out . All

7 weights explain in total only 94.92 % of the variance in the de-

pendent variable due to the nonlinearity of the pipe model. Conse-

quently, the 4 insignificant weights explain combined only 0.32 %

of the variance in y . The relatively high maximum absolute error

is caused by neglecting the corner points of the independent vari-

ables, i.e. the points given by constructing a 2-point regular grid

using the bounds in Table 2 . Hence, the surrogate model is extrap-

olating close to the corners. With n u = 7 , it would be possible to

incorporate the corner points as they only correspond to 2 7 = 128

points. However, if n u > 10, the incorporation of the corner points

would require a large number of sampled points. In this situation,

it is best to apply the surrogate model first. If necessary, it is then

possible to add only the corner points in which the subsequent ap-

plication of the surrogate model is moving. This reduces the points

which one has to sample. 

5. Ammonia synthesis loop case studies 

So far, the method was applied to an example with n y = 1 .

Now, two additional case studies are used for testing the sampling

procedure with n y > 1 and to evaluate whether similar conclusion

can be drawn. Both case studies are part of the ammonia synthe-

sis loop shown in Fig. 4 . The first case study is the reaction sec-

tion (marked red), as previously described in Straus and Skogestad
2017a,b) . The second case study is the separation section (marked

reen) of the same synthesis loop. 

The error of the dependent variable j is given by 

j = y surr, j − y v al, j (15)

n which y val, j corresponds to the exact values from the detailed

odel and y surr, j to the value given by the surrogate model. The

aximum absolute error | εj | max and the root-mean-squared error

RMSE) 

MSE j = 

∑ n v al 

m =1 

(
y surr, j,m 

− y v al, j,m 

)2 

n v al 

(16)

re used to assess the performance of the surrogate models. In ad-

ition, the relative error is calculated using the range of the de-

endent variables of the validation space, y val , i.e. 

j,rel = 

ε j 

max y v al, j − min y v al, j 

(17)

.1. Case study 1: reaction section of an ammonia synthesis loop 

The reaction section of the ammonia synthesis loop was previ-

usly applied in the introduction of new latent variables u 

′ ( Straus

nd Skogestad, 2017a,b ). It is interconnected to the compressor

rain and the separation section through the overall mass recycle.

t consists of two consecutive reactor beds with interstage heat in-

egration (HEx3). Furthermore, the reaction heat is used for the

eneration of high pressure stream (HEx5) and heating the inlet

ow to the first bed (HEx2 and HEx4). It is shown in Fig. 4 . 

.1.1. Model description 

The model has 10 independent variables ( u ): the inlet pressure

 in , the inlet temperature T in , 5 inlet molar flows ˙ n i,in (H 2 , N 2 , NH 3 ,

r, and CH 4 ), 2 split ratios, and the outlet temperature of the steam

eneration heat exchanger 5, T HEx 5, out . There are 4 dependent vari-

bles ( y ): the pressure drop �p [mbar], the temperature change

T [mK], the extent of reaction 

˙ ξ [mol/s], and the duty of heat ex-

hanger 5, Q HEx 5 [kW]. We use a “grey-box” model by introducing

xact mass balances using ˙ ξ and the stoichometric coefficients ν i 

˙ 
 i,out = 

˙ n i,in + νi 
˙ ξ (18)

In our previous work, a two-point regular grid and 50 0 0

oints defining a Latin hypercube were used ( Straus and Skoges-

ad, 2017a,b ). This resulted in reasonable errors for the dependent

ariables �p, �T , and 

˙ ξ through the introduction of latent vari-

bles u 

′ . We want to see if we can use fewer points, even with the

eat duty of the heat exchanger ( Q HEx 5 ) as a new dependent vari-

ble. A two-point regular grid corresponds to 2 10 = 1024 sampling

oints, but we want to see if we can terminate the sampling with

ven fewer points. 

The upper and lower bounds of the parameters in the sampling

omain can be found in Table 4 . The feed mole fractions x i and

he total molar flow ˙ n in are used as independent variables in the

urrogate model generation and application of PLSR instead of the

olar flows ˙ n i,in ( Straus and Skogestad, 2017a ). This requires omit-

ing the mole fraction of hydrogen. Furthermore, the molar ratio

 2 /N 2 is used instead of the mole fraction of nitrogen as indepen-

ent variable in surrogate model fitting. 

The surrogate model structure is a two-layer cascade forward

eural network with 5 hidden neurons in each layer. The validation

pace consists of n v al = 10 4 randomly sampled points. 

.1.2. Results 

The data for the proposed sampling procedure are the same as

n the pipe case study, see Table 3 . PLSR was applied to all depen-

ent variables simultaneously. With augmented Latin hypercube
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Table 4 

Upper and lower bounds of the independent 

variables ( u ) (case study 1). 

Variable Unit Lower Upper 

bound bound 

p in [bar] −10 +10 

T [K] −20 +20 

˙ n H 2 ,in [%] −20 +20 
˙ n H 2 ,in 

˙ n N 2 ,in 
[%] −10 +10 

˙ n NH 3 ,in [%] −20 +20 

˙ n Ar ,in [%] −20 +20 

˙ n CH 4 ,in [%] −20 +20 

T HEx 5, out [K] −20 +20 

Split ratio 1 [pp] −5 +5 

Split ratio 2 [pp] −20 +20 

Fig. 5. Development of the Frobenius norm || �W 

k 
s || av 

F 
as a function of the number 

of sampling points with γ = 0 . 05 (case study 1). 

s  

n  

n  

c  

p  

W  

o  

p  

v  

i  

p

 

n  

s  

s  

p  

T  

d  

w  

o  

e  

a  

 

s  

t  

w  

c  

w  

Table 5 

Comparison of model fit errors with Latin hypercube (LHS), 

Monte Carlo (MC), and Sobol sampling (case study 1). 

y Unit ε Design | εj | max RMSE j 

�p [mbar] 

LHS 7.3 0.5 

MC 2.8 0.3 

Sobol 6.4 0.9 

�T [mK] 

LHS 12.5 0.9 

MC 16.4 1.5 

Sobol 11.8 1.1 

˙ ξ [mol/s] 

LHS 0.78 0.09 

MC 0.38 0.03 

Sobol 0.84 0.07 

Q HEx 5 [kW] 

LHS 87.8 6.5 

MC 72.8 7.8 

Sobol 182.6 14.3 
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ampling and γ = 0 . 05 , the proposed sampling procedure termi-

ated after 370 sampled points. Fig. 5 shows the evaluation of the

orm of the significant weights. Similar to the pipe section, we

an observe a steep decrease in 

∥∥�W 

k 
s 

∥∥a v 
F 

for the first 100 sample

oints. This decrease is reduced with an increasing sampling space.

e have n s = 5 weights in W which explain more than 99.06 %

f the variance in the dependent variables y after 370 sampling

oints. The first insignificant weight w 6 explains only 0.19 % of the

ariance in y . During the sampling procedure, n s changed twice

n the first 100 points but remained constant at n s = 5 from 300

oints onwards. 

Repeating the sampling procedure 20 times, results in a mean

umber of sampling points n p = 393 with a standard deviation of

 = 49 . 0 . This shows that the proposed sampling procedure is con-

istent in its termination. The variation in the number of sampling

oints is caused by the randomness in the new sampling points.

he performance measures | εj | max and RMSE j for the four depen-

ent variables ( y ) can be found in Table 5 . Again, the corner points

ere not sampled. This results in extrapolation for certain values

f the independent variables y . The maximum absolute normalized

rror | εj, rel | max is 0.08 %, 0.22 %, 0.28 %, and 0.28 % for �p, �T , ˙ ξ ,

nd Q HEx 5 respectively using augmented Latin hypercube sampling.

In addition to Latin hypercube sampling, Monte Carlo and Sobol

ampling were used. Monte Carlo sampling (MC) terminated af-

er n p = 390 , whereas Sobol sampling terminated after n p = 335

hich is similar to Latin hypercube sampling ( n p = 370 ). We also

ompared the resulting fit in the dependent variables ( Table 5 ). As

e can see, the errors have the same order of magnitude. Differ-
nces in the surrogate model fit can be caused by the randomness

n neural network generation as the initial seed for neural network

eneration was not common for all sampling schemes. 

The chosen threshold 

= n add × 10 

−2 = 0 . 05 (19)

as based on the threshold in the pipe case study. Hence, we

ant to analyze the the correlation of 
∥∥�W 

k 
s 

∥∥a v 
F 

with the surro-

ate model fit. 20 0 0 points were sampled using augmented Latin

ypercube sampling and were used in the following analysis. 10

eural networks were fitted every 5 points from 25 to 100 points,

very 25 points to 10 0 0 points and subsequently every 100 points.

he used value of the dependent variable in the calculation of the

rror is the average value of these 10 values. PLSR was applied to

ll dependent variables simultaneously. Fig. 6 shows the mean ab-

olute error for the dependent variables ˙ ξ and Q HEx 5 as a function

f 
∥∥�W 

k 
s 

∥∥a v 
F 

. The two dependent variables correspond to the vari-

bles with the highest maximum absolute relative error according

o Eq. (17) . If we compare Fig. 6 (this case study) to Fig. 3 (pipe

odel), we can directly see that the correlation between | ε| and

�W 

k 
s 

∥∥a v 
F 

is similar. In both cases, increasing the number of sam-

ling points does not improve the fit from a certain point onward

nd gives a similar threshold γ . 

.2. Case study 2: separation section of an ammonia synthesis loop 

The task of the separation section of the ammonia synthe-

is loop is to separate ammonia from the synthesis gas. This is

chieved by several sequential and parallel heat exchangers fol-

owed by a separator. A heat exchanger using water as coolant

HEx6) cools the gas stream leaving the reaction section before it

s split into two parallel heat exchanger trains. The first cooling

rain uses the gas stream leaving the separator for heat integration

HEx7) whereas the second cooling train uses liquid ammonia as

efrigerant in two separate heat exchangers (HEx8 and HEx9). The

wo streams are subsequently mixed and cooled (HEx10) with liq-

id ammonia. Ammonia is then separated in a separator in which

he liquid stream is considered as product stream and the gas

tream is heat-integrated with the first parallel heat exchanger

HEx7). 

.2.1. Model description 

HEx6 and HEx7 are modelled using the Number of Transfer

nits Method. HEx8, HEx9, and HEx10 are heat exchangers with

xed outlet temperatures T HEx 8, out , T HEx 9, out , and T HEx 10, out . The du-

ies of the heat exchangers are calculated using the mass enthalpy

f the gas streams as a function of the temperature, pressure,
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Fig. 6. Mean absolute error for y 3 and y 4 of the surrogate model | ε| as function of 

the averaged Frobenius norm of the significant weights W 

k 
s (case study 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Upper and lower bounds of the indepen- 

dent variables ( u ) (case study 2). 

Variable Unit Lower Upper 

bound bound 

p in [bar] −10 +10 

T in [K] −25 +25 

˙ n H 2 ,in [%] −15 +15 
˙ n H 2 ,in 

˙ n N 2 ,in 
[%] −10 +10 

˙ n NH 3 ,in [%] −20 +20 

˙ n Ar ,in [%] −20 +20 

˙ n CH 4 ,in [%] −20 +20 

˙ n H 2 O ,in [%] −20 +20 

T H 2 O ,in [K] −5 +5 

T HEx 8, out [K] −4 +4 

T HEx 9, out [K] −4 +4 

T HEx 10, out [K] −8 +8 

Split ratio [pp] −5 +5 
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and composition. The mass enthalpy was calculated using a sur-

rogate model based on cubic B-splines using the SPLINTER library

( Grimstad et al., 2015 ). This surrogate model was fitted to points

sampled in the commercial flowsheet simulator Aspen HYSYS. This

is a simplified approach, but rather accurate. The separator is cal-

culating the vapour-liquid equilibrium using Raoult’s law for NH 3 

and Henry’s law for the other gas components ( Alesandrini et al.,

1972 ). It has to be noted that heat exchangers 8 and 9 are redun-

dant in this model structure as heat exchanger 10 is cooling the

stream to a fixed outlet temperature. However, in a real plant, the

cooling in heat exchangers 8,9, and 10 is achieved using an am-

monia refrigeration loop. The different heat exchangers correspond

then to a liquid ammonia refrigerant at different pressure levels. 

The separation section has 13 independent variables ( u ). These

are the inlet pressure p in , the inlet temperature T in , 5 molar flows

˙ n i,in (H 2 , N 2 , NH 3 , Ar, and CH 4 ), the inlet flow rate ˙ n H 2 O ,in and tem-

perature T H 2 O ,in of the cooling water in HEx6, 1 split ratio, and the

outlet temperatures of the heat exchangers T HEx 8, out , T HEx 9, out , and

T HEx 10, out . The 12 dependent variables ( y ) are the stream variables

of the two streams leaving the section ( �p, �T , and ˙ n i ) corre-

sponding to the product (subscript P ) and the recycle (subscript

R ) stream, the temperature change of the water stream in heat ex-

changer 6, �T H 2 O , and the heat duties in the heat exchangers 8, 9,

and 10 ( Q HEx 8 , Q HEx 9 , and Q HEx 10 ). Note, that the temperature dif-

ference between the liquid outlet stream and the feed stream as

dependent variable can be calculated using the two independent

variables T in and T HEx 10, out as 

�T P = T in − T HEx 10 ,out (20)
We proposed to use a “grey-box” modelling approach where ex-

ct component mass balances are introduced to avoid the creation

r destruction of mass through the introduction of surrogate mod-

ls ( Straus and Skogestad, 2017b ). This can be achieved through

efining a separation factor αi for each chemical component i : 

˙ 
 i,R = αi ̇ n i,in (21)

˙ 
 i,P = ( 1 − αi ) ̇ n i,in (22)

onsequently, 12 surrogate models have to be fitted. The upper and

ower bounds of the independent variables are given in Table 6 . 

The parameters used are the same as in the reaction section

nd for the pipe model ( Table 3 ). The surrogate model structure is

 2-layer cascade forward neural network with 5 hidden neurons

n each layer. The validation space consists of n v al = 10 4 randomly

ampled points. 

.2.2. Results 

We apply PLSR to all dependent variables y simultaneously be-

ause with n y = 12 it is computationally more expensive to per-

orm PLSR independently. With the selected threshold γ = 0 . 05

nd augmented Latin hypercube sampling, the method terminated

fter n p = 625 . With the selected value β = 2 % , we find that

 s = 5 significant weights explain 90.81 % of the variance in the

ependent variables y . The first neglected insignificant weight w 6 

xplains 1.59 % whereas w 7 explains 1.30 % which is only slightly

elow β . Fig. 7 shows the evaluation of the averaged norm for the

imultaneous approach. 

The model fit measures, | εj | max and RMSE j , are given in Table 7 .

s the splitting factors for H 2 , N 2 , Ar, and CH 4 are all around 99 %,

t is not useful to calculate the error directly. Hence, their errors

re calculated as the error in the recycle stream ˙ n i,R . The relative

rror according to Eq. (17) results in a maximum absolute relative

rror of around 0.1 % for the first 9 dependent variables in Table 7 .

he last three variables (heat exchanger duties) have however a

elative error of around 1 %. This can be explained by the phase

hange occurring in the heat exchangers through the condensation

f ammonia. This phase change is not captured perfectly using the

urrogate model approach. Applying the method 20 times gives an

verage number of sampling points of n p = 639 and a standard de-

iation s = 59 . 6 . Similar to the reaction section case study, Sobol

nd Monte Carlo sampling were also tested. Monte Carlo sam-

ling terminated after n p = 660 whereas Sobol sampling required

 p = 585 which is similar to the value n p = 630 with Latin hyper-

ube sampling. We also compared the resulting model fit in the

ependent variables ( Table 7 ). Again, the errors are of the same
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Fig. 7. Development of the Frobenius norm || �W 

k 
s || av 

F 
as a function of the number 

of sampling points with γ = 0 . 05 (case study 2). 

Table 7 

Comparison of model fit errors with Latin hypercube (LHS), Monte 

Carlo (MC), and Sobol sampling (case study 2). 

y Unit ε Design | εj | max RMSE j 

�p R [mbar] LHS 2.23 0.21 

MC 7.5 0.9 

Sobol 30.3 0.33 

�T R [K] LHS 0.17 0.02 

MC 0.08 0.01 

Sobol 0.12 0.01 

�p P [mbar] LHS 6.9 0.7 

MC 1.13 0.12 

Sobol 1.6 0.09 

�T H 2 O ,out [mK] LHS 5.7 0.3 

MC 4.32 0.3 

Sobol 1.6 0.15 

αH 2 [mmol/s] LHS 1.14 0.15 

MC 2.60 0.32 

Sobol 22.0 2.0 

αN 2 [mmol/s] LHS 0.43 0.06 

MC 0.07 0.01 

Sobol 0.42 0.04 

αNH 3 [mmol/s] LHS 115.4 13.5 

MC 783.8 34.4 

Sobol 409.0 38.1 

αAr [mmol/s] LHS 2.0 0.19 

MC 0.21 0.02 

Sobol 0.7 0.07 

αCH 4 [mmol/s] LHS 0.62 0.06 

MC 1.81 0.17 

Sobol 0.45 0.05 

Q HEx 8 [kW] LHS 188 23.3 

MC 284 36.6 

Sobol 323 29.8 

Q HEx 9 [kW] LHS 71 8.1 

MC 56 5.3 

Sobol 99 7.1 

Q HEx 10 [kW] LHS 84 11.2 

MC 122 13.8 

Sobol 177 11.9 
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rder of magnitude. The differences depends mainly on the seed

f the neural network fitting. 

.3. Combination of surrogate models for optimization 

So far, we fitted individual surrogate models to the reaction and

eparation section in two separate case studies. The resulting vali-

ation errors of the resulting surrogate models are small. However,

n the real process the two models are combined using a recycle
 Fig. 4 ), but good individual fits do not guarantee that the com-

ined model converges to the correct optimum. To study this, the

eaction and separation sections are combined with the models of

he purge split and the compressor train to form the flowsheet in

ig. 4 which has 9 operational degree of freedom. The surrogate

odels for the dependent variables y are explicit. The introduction

f a grey-box model structure through the separation factors α and

he rate of extent of reaction 

˙ ξ guarantees mass consistency in the

ecycle system. The overall flowsheet is then given by a nonlinear

ystem of equations with fewer states than the original model. 

The economic cost function to minimize is 

 = −p P ˙ n P − p purge ̇ n Purge − p S Q HEx 5 + p f eed ˙ n f eed 

+ p C 
(
Q Comp1 + Q Comp2 + Q Comp3 

)
+ p HEx ( Q HEx 8 + Q HEx 9 + Q HEx 10

(23

he prices for the feed, product, and purge stream as well

s the compressor duties are adopted from Arajo and Skoges-

ad (2008) with p f eed = 0 . 704 $/kmol, p P = 3 . 4 $/kmol, p purge =
 . 0112 $/kmol, and p C = 0 . 072 $/kWh. The heat duty in heat ex-

hanger 5 has a cost term of p S = 0 . 036 $/kWh whereas the cool-

ng in heat exchangers 8, 9, and 10 has a cost term of p HEx =
 . 027 $/kWh. The cooling water flow and temperature to heat ex-

hangers 1 and 6 are considered to be at a fixed value. 

The operational constraints are given by the bounds in the de-

ision variables for surrogate model generation. In addition, there

re bounds on the purge split ratio and the compressor speed. The

uties of heat exchanger 8 and 9 may be different between the

urrogate model and the original model. This is caused by the re-

undancy of both heat exchangers. 

Both the original model and the surrogate-based model are sub-

equently optimized for a given feed. The results are very similar.

 degrees of freedom are at constrained operation. The compressor

peed is unconstrained and the error with respect to the original

odel is 0.07 %. The resulting relative error in the cost function is

.3 %. Changing the initial values of the operational degrees of free-

om does not change the results. 

The application of a different initial sampling design does not

ave a large influence on the results of the optimization. Using

he surrogate models obtained via Sobol sampling and Monte Carlo

ampling gave a similar small error in the optimization results

ompared to the surrogate models obtained via Latin hypercube

ampling. All active constraints are identified whereas the error in

he compressor speed with respect to the original model is given

y 0.09 % and 0.07 % for Sobol and Monte Carlo sampling respec-

ively. 

. Discussion 

.1. Comparison with other methods 

The proposed incremental sampling procedure does not require

he fitting of a surrogate model. In this respect, it differs from the

LAMO approach ( Cozad et al., 2014 ), the smart sampling algo-

ithm ( Garud et al., 2017a ), and the adaptive sampling approach

f Eason and Cremaschi (2014) . One advantage with our approach

s that the decision about the surrogate model basis function is

eparated from the sampling. This allows to choose the best ba-

is function based on the sampled space and does not require that

oth steps are done by the same person/group. Depending on the

etailed model, the number of independent variables n u , the num-

er of dependent variables n y , and the computational expense of

tting a surrogate model, it can be furthermore advantageous to

void fitting a surrogate model at each iteration step. However, it is

ot possible to draw a general conclusion as the applications vary. 
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Table 8 

Simultaneous vs. individual application of PLSR. 

Case Study Approach n p s 

1. Reaction Individual 406 38.6 

Simultaneous 393 49.0 

2. Separation Individual 646 91 

Simultaneous 639 59.6 

T  

s  

p

 

s  

i  

s  

a  

s  

m  

t

6
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w  

i  

e  

c  

2

6

 

o  
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O  

s  

p  

s

7

 

p  

s  

p  

q  

i  

t  

l  

p  

i  

i  

f  

i  

a  

F  

e  
Although the developed procedure results only in n g = 1 . 8 and

n g = 1 . 6 points (see (1) ) in a regular grid for the reaction and sep-

aration section case studies respectively, it can result in a larger

number of sampling points compared to existing adaptive proce-

dures as it does not fit a surrogate model, and hence, exploit its

fit. The question remaining is how expensive it is to fit surrogate

models compared to sample additional points. If the number of in-

dependent variables n y is large and solving the detailed model is

not very expensive, then it may be advantageous to avoid the fit-

ting of n y surrogate models at each sampling step. Contrary, if n y 
is small and the computational expense of sampling one point is

large, then other adaptive procedures could be preferable. 

6.2. Choice of tuning parameters 

Several tuning parameters have to be chosen. The most im-

portant tuning parameter is the threshold γ for termination. It

is possible to continue the procedure by lowering the threshold

γ if one is not satisfied with the performance of the surrogate

model. Hence, it may be good to start with a high threshold to

avoid oversampling. The results of the three case studies indicate

that a threshold of approximately γ = 0 . 05 works for several cases,

where PLSR is performed after every fifth sampled point. 

A second important tuning parameter is the threshold β used

to select the significant weights in W 

k 
s . Depending on the defini-

tion of the independent variables, this threshold may exclude the

majority of the weights ( Straus and Skogestad, 2017a ). For example,

if molar flows are used as independent variables in the pipe case

study, then only 1 weight is significant. On the other hand, using

mole fraction as independent variables results in the presented 3

significant weights. Furthermore, using a hard bound β may re-

sult in frequent switching of n s . This results in large changes in

the norm as illustrated for �W 

k 
s in Fig. 7 . This was less significant

in the presented case studies by using the minimum value of n s of

the last two steps. As an alternative, it is possible to choose n s di-

rectly after sampling a certain number of points instead of choos-

ing the threshold β . In all case studies, n s did not change after a

certain number of sampled points, with 

∥∥�W 

k 
s 

∥∥a v 
F 

still much larger

than the threshold γ . 

Other tuning parameters are the number of sampled points

in each iteration, n add , and the past horizon n f for averaging the

norm. It is advisable to have a small value for n add to avoid prob-

lems in the calculation of the weight changes �W 

k 
s . However, if

n add is chosen too small, it can be that the sampling space is not

properly filled if the original Latin hypercube is not augmented.

Provost et al. (1999) proposed an alternative to the arithmetic sam-

pling approach. In this geometric approach, the number of sam-

pled points increases with increasing step number. They showed

that the computational load is reduced as the termination crite-

rion does not have to be evaluated as frequently. Applying this

approach for the PLSR-based termination criterion can however

be problematic as the procedure is relying on the changes in the

weights. As the calculation of the weights is not computationally

expensive, at least if applied simultaneously, the arithmetic ap-

proach used in this paper seems reasonable. 

The past horizon n f is important to remove problems with os-

cillatory behaviour of the norm. Oversampling can be the result if

it is chosen too high. The value n f = 5 used in the case studies

seems to be reasonable. It avoids oversampling while preventing

preemptive termination of the sampling. 

6.3. Simultaneous and individual application of PLSR 

If n y > 1, one has to decide whether PLSR is applied individually

to each dependent variable y i or simultaneously to all dependent

variables. We used the simultaneous approach in both case studies.
he advantage of applying PLSR individually is that it is possible to

ee which of the dependent variables requires the most sampling

oints. 

Both of the ammonia case studies were repeated 20 times to

ee if there is a difference if PLSR is applied simultaneously or

ndividually. The resulting average number of sample points and

tandard deviations can be found in Table 8 . The difference in the

verage number of sampling points is not significant in either case

tudy. Hence, we conclude that is advantageous to apply PLSR si-

ultaneously to all dependent variables as it reduces the compu-

ational load in calculating the weights. 

.4. Choice of norm 

The choice of the norm for 
∣∣∣∣�W 

k 
s 

∣∣∣∣ is in general not very im-

ortant. It only has an influence on the defined threshold. The 1-

orm will correspond to the the 1-norm of the weight w 

k 
n s 

as the

hange is usually largest in the last significant weight. The contri-

ution from the other weights w 

k 
i 

with i < n s are then neglected.

s a result, the termination threshold has to be higher than in the

ase of other norms. The infinity-norm on the other hand calcu-

ates the maximum absolute row sum. As the individual weights

 

k 
i 

are the columns of the matrix W 

k 
s , this approach seems counter

ntuitive. The 2-norm and the Frobenius norm both incorporate all

ntries in the change � W 

k 
s . The Frobenius norm was eventually

hosen due to the similarity of the Frobenius norm to the vector

-norm and its performance in the application. 

.5. Design of experiment 

The termination criterion was applied to three different design

f experiment methods; Latin hypercube, Monte Carlo, and Sobol

ampling. It is interesting to note that the differences are small.

ne would expect that Sobol and Latin hypercube sampling are

uperior to Monte Carlo sampling because of better space-filling

roperties ( Garud et al., 2017b ), but somewhat surprisingly our re-

ults do not show this. 

. Conclusion 

A new termination criterion for incremental sampling based on

artial least squares regression was introduced. It predicts when

ufficient points are sampled. This termination criterion is inde-

endent of the surrogate model basis functions and does not re-

uire the fitting of a surrogate model at each sampling step. This

s advantageous if the fitting of the surrogate model is computa-

ionally expensive and/or the number of dependent variables, n y , is

arge. Furthermore, it allows for the separation between the sam-

ling and surrogate model generation tasks. It can however result

n an increased number of sample points compared to the exist-

ng adaptive sampling methods, as it does not utilize exploitation

or the identification of new sampling points. The two case stud-

es showed that the application of the termination criterion allows

 reduction in sampling points compared to predefined sampling.

or the ammonia process, the combination of the surrogate mod-

ls with the compressor train and the mass recycle stream of the
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riginal model resulted in very good results in the subsequent op-

imization when compared to using the original detailed model. 
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