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Abstract: This paper presents the application of a data-driven optimization scheme using
transient measurements to a gas-lift optimization problem. Optimal operation of a gas-lifted
field involves controlling the marginal gas-oil ratio (mGOR), which is the steady-state gradient
of the oil rate from the gas lift injection rate. In this paper we apply a dynamic extremum
seeking scheme to estimate the marginal GOR online using transient measurements, which is
based on identifying a local linear dynamic model around the current operating point instead of
a local linear static model. By doing so, we can use the transient measurements and effectively
remove the time-scale separation between the plant dynamics and the perturbation signal, that
is typically required in the classical extremum seeking scheme. This results in significantly faster
convergence to the optimum compared to classical extremum seeking scheme. The effectiveness
of the proposed method is demonstrated using simulation results for a single gas lifted well, as
well as a network of gas lifted wells.
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1. INTRODUCTION

In oil production wells, when the reservoir pressure is
sufficiently high, then the fluids from the reservoir flows
naturally to the surface. Over time, the reservoir pressure
drops and may no longer be sufficient to lift the fluids
economically to the surface. In such cases, artificial lift
methods are used to boost the production from the wells.
One such commonly used artificial lift method is the gas-
lift method, where compressed gases are injected into the
well tubing via the well annulus. This reduces the fluid
mixture density, hence reducing the hydrostatic pressure
drop across the well tubing, leading to an increased oil
production. However, injecting too much gas increases
the frictional pressure drop, which has a detrimental
effect on the oil production. The oil production rate
starts to decrease if the effect of the frictional pressure
drop becomes dominant over the effect of the hydrostatic
pressure drop. Each gas-lifted well then has an optimal
gas lift injection rate that maximizes the oil production.
In addition, the amount of gas available for gas lift may be
limited. The production optimization problem then deals
with the problem of finding the optimal gas lift allocation
for the gas lifted wells, in order to maximize the total oil
production.

Daily production optimization is an important task for
maximizing the daily operating revenue from a production
network. Traditionally, production engineers use so-called
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gas-lift performance curves for daily production optimiza-
tion, which maps the static relationship between the oil
production and the gas lift injection rate for each well
(Rashid, 2010). The gas lift performance curves are typ-
ically obtained using commercially available steady-state
multiphase flow simulators. Steady-state nonlinear opti-
mization tools may then be used to compute the optimal
gas lift allocation among the different wells. Production en-
gineers may also often use the gas-lift performance curves
directly for production optimization by using a quantity
known as marginal gas-oil ratio (mGOR). Marginal gas-oil
ratio or simply marginal GOR, is a quantity that describes
the increase in oil rate per unit change in the gas-lift
injection rate. In other words, marginal GOR is given
by the gradient of the gas-lift performance curves (Bieker
et al., 2007).

The optimal allocation of the gas lift among the different
wells is achieved when the marginal GOR is the same
for all the wells (Urbanczyk et al., 1994). The principle
of equal marginal cost has been proven to be the op-
timal solution for any parallel unit, e.g. by Downs and
Skogestad (2011). Therefore, optimal operation of a gas
lifted well network can be achieved by simply controlling
the marginal GOR to be equal for all the wells. This is
schematically represented for two wells in Fig.1.

The use of centralized dynamic optimization tools such
as economic NMPC for production optimization has re-
cently been gaining popularity. Codas et al. (2016) and
Krishnamoorthy et al. (2016a) used economic MPC for-
mulations to optimize production from a gas lifted well
network. However, solving a numerical optimization prob-
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Fig. 1. Schematic representation of gas lift performance
curves and the marginal GOR ν.

lem may be computationally intensive and can potentially
lead to computational delays. Campos et al. (2009) point
that many numerical issues need to be addressed before
dynamic optimization can be used in practice for offshore
oil and gas applications.

On the other hand there have been developments in op-
timization approaches that do not require solving numer-
ical optimization problems. Instead, optimal operation is
achieved via feedback control. Self-optimizing control is
one such method (Skogestad, 2000), where the objective
is to find the right controlled variable, which when kept
constant, leads to near optimal operation (i.e. minimum
loss). The use of self-optimizing control using nullspace
method for gas lift optimization was demonstrated by
Alstad (2005). Since self-optimizing control is based on
local linearization around a nominal optimal point, it
may lead to steady-state losses if the disturbances moves
the operation of the process far away from this nominal
operating point. The ideal self-optimizing variable for the
gas-lift problem would indeed be the marginal GOR, which
is the slope of the gas-lift performance curve, see Fig.1.
However, the major challenge is that the marginal GOR
is not a readily available measurement for control.

The optimization approaches mentioned above rely on
the use of complex physical models either online or of-
fline. However, models are often uncertain due to lack of
knowledge or simplification, which can affect the optimal
operation point computed by these methods. To address
the issues related to model uncertainty, purely data-driven
optimization tools become an attractive alternative to
optimize the process under plant-model mismatch. To this
end, we will focus on data-driven optimization tools that
do not require complex physical models in the reminder of
the paper.

The use of data-driven methods such as extremum seek-
ing control for oil and gas production optimization has
recently been gaining steady interest. Peixoto et al. (2015)
and Krishnamoorthy et al. (2016b) applied the classical
extremum seeking scheme for gas lift optimization for a
single gas lifted well. Extremum seeking control involves
estimating the steady-state gradient (i.e. marginal GOR)
directly using the gas lift rate and oil production rate
measurements. The estimated marginal GOR is then con-
trolled to a constant setpoint using simple integral action
to drive the system to its optimum.

Since extremum seeking control involves estimating the
steady-state gradient directly from the measurements, the
use of transient measurements leads to erroneous gradient
estimation. Therefore, such methods often require clear
time scale separation between the plant dynamics and the
perturbation and the convergence to the optimum, such
that the plant can be approximated as a static map (Krstić
and Wang, 2000). This results in very slow convergence to
the optimum.

For processes such as gas lifted oil wells that have long
settling times (typically in the range of minutes to hours),
the convergence to the optimum can be prohibitively slow
due to the time scale separation requirements. This im-
pedes the direct applicability of the classical extremum
seeking control scheme for oil and gas applications. Al-
though Extremum seeking control was used for optimizing
a gas lifted well by Peixoto et al. (2015), Krishnamoorthy
et al. (2016b) and Pavlov et al. (2017) to name a few, the
convergence time to the optimum was not the main focus
of these works.

There have been several improvements in extremum seek-
ing control to address the issue of slow convergence. For
example, Hunnekens et al. (2014) proposed to use a least-
square based method to improve the convergence. How-
ever, this method still assumes the plant as a static map,
restricting the use of transient measurements. Trollberg
and Jacobsen (2016) proposed the so-called greedy ex-
tremum seeking control to optimize during the transients
for chemical and bio-processes with long settling times.
However, the greedy extremum seeking control can be
implemented only for a class of systems with a specific
timescale structure. Peixoto et al. (2017), recently pro-
posed a phase-lock-loop based extremum seeking control
to account for the phase shift due to the plant dynamics
and speed up the convergence to the optimum point.

In this paper, we investigate a different approach, where
we directly use the transient measurements to identify a
local linear dynamic model around the current operating
point, instead of a local linear static model. For example,
we can identify linear ARX models from the process
measurements that are locally valid around the current
operating point. The steady-state gradient can then be
estimated from the identified local linear dynamic model.

In fact, the use of measurements to identify a dynamic
model around the current operating point for optimiza-
tion dates back to 1977 in the work by Bamberger and
Isermann (1978). This was later extended by McFarlane
and Bacon (1989), where the authors presented an empir-
ical strategy for open-loop online optimization using ARX
models. The main motivation for these works were indeed
to optimize the steady-state behaviour of slow dynamic
processes in a relatively short period of time. With the
recent surge of interest in extremum seeking control for
oil and gas applications, we reframe this old idea in the
context of extremum seeking control in this paper and
show that the proposed dynamic extremum seeking control
addresses the convergence issues of classical extremum
seeking control, especially for processes with long settling
times. In addition, we also propose a simple control struc-
ture for distributed dynamic extremum seeking control
scheme and apply to an oil and gas production network.



The reminder of the paper is organized as follows. Section
2 introduces the proposed dynamic extremum seeking
scheme. Section 3 demonstrates the effectiveness of the
proposed dynamic ESC compared to the classical ESC
scheme for a single gas lifted well. A distributed dynamic
ESC scheme is also proposed and applied in Section 3
to a production network with 6 gas lifted wells before
concluding the paper in Section 4.

2. DYNAMIC EXTREMUM SEEKING SCHEME

Consider a nonlinear process, where the objective is to
drive the cost J to its minimum by using the input u.

Assumption 1. The plant cost J can be measured.

Assumption 2. The plant cost J can be represented as
Hammerstein model with a combination of a nonlinear
time invariant mapping f(·) : R → R, with proper,
stable, finite-dimensional, linear, time-invariant (FDLTI)
dynamics G(s), at its output, see Fig.2.

Assumption 3. f(u) is sufficiently smooth and continu-
ously differentiable such that

∂f

∂u
(u∗) = 0 (1)

∂2f

∂u2
(u∗) > 0 (2)

Assumption 3 ensures that f(u) has a unique minimizer
at u = u∗ and the goal is to drive u to the neighborhood
of u∗.

In this section, we propose a dynamic extremum seeking
scheme which is based on identifying a local linear dynamic
model around the current operating point using transient
measurements. The cost and input measurements from a
fixed moving window containing the last N data samples
are used to continuously fit an ARX model of the form,

J(t) =− a1J(t− 1)− · · · − anaJ(t− na)

+ bu(t− 1) + · · ·+ bnb
u(t− nb) + e(t)

(3)

Remark 1. The input and cost measurements in (3) are
pre-processed such that they are mean-centered (Ljung,
1999).

We estimate the ARX polynomials,

θ = [a1 · · · ana
b1 · · · bnb ] (4)

using linear least squares estimation

θ̂ = arg min
θ
‖J − ΦTθ‖22 (5)

where Φ is given by the expression

Φ = [−J(t− 1) . . . −J(t− na) u(t− 1) . . . u(t− nb)]T
(6)

Introducing the notation

Apoly(q) = 1 + a1q
−1 + · · ·+ ana

q−na

and
Bpoly(q) = b1q

−1 + · · ·+ bnb
q−nb

yields a local linear dynamic system of the form,

J(t) =
Bpoly(q)

Apoly(q)
u(t) +

1

Apoly(q)
e(t) (7)

The steady-state gradient around the current operating
point can then be estimated by,

Ĵu = Apoly(q)−1Bpoly(q) (8)
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Fig. 2. A schematic representation of the proposed dy-
namic extremum seeking control scheme for a class
of systems that can be modelled as Hammerstein
models.

Alternatively, the identified ARX polynomials Apoly(q)
and Bpoly(q) can be converted to continuous time state-
space system 1 as shown below,

ẋ = Ax+Bu

J = Cx+Du
(9)

The steady state gain is then given by setting ẋ = 0 and
eliminating the states x in (9),

J =
(
−CA−1B +D

)︸ ︷︷ ︸
Ĵu

u (10)

Once the steady-state gradient Ĵu is estimated, a simple
integral action can be used to drive the system to its
extremum. In discrete time, this can be expressed as,

û(t+ 1) = û(t) +
KI

Ts
Ĵu (11)

where KI is the integral gain and Ts is the sample time.
Additional perturbation ω such as a pseudo random binary
sequence (PRBS) signal is added to the input signal
to provide sufficient excitation, u(t + 1) = û(t + 1) +
ω. A schematic representation of the proposed dynamic
extremum seeking scheme using ARX model identification
is shown in Fig.2.

3. ILLUSTRATIVE EXAMPLE

3.1 Process description

We consider a production network with nw gas lifted wells.
The steady-state oil production rate for the ith well wpo,i
is a function of the corresponding gas lift injection rate
ui = wgl,i and is given by the gas lift performance curve
wpo,i = f(wgl,i). Each gas lifted well is then modelled as a
Hammerstein model with a proper stable first order linear
dynamics Gi(s)

wpo,i = f(wgl,i)Gi(s)wgl,i (12)

The use of such simplified Hammerstein models for gas-
lifted well is justified in Peixoto et al. (2015) and Peixoto
et al. (2017), where the authors show that the main fea-
tures of the mechanistic model from Eikrem et al. (2006)
can be sufficiently captured by using such a Hammerstein
model. Plucenio et al. (2009) also use a Hammerstein
model for gas lifted wells. Empirical models are also often
used in practice (Hamedi et al., 2011).

1 for example using idss and d2c command in MATLAB



Fig. 3. Simulation results for the dynamic ESC for a single
gas lifted well.

We assume that the measurements for the oil production
rate for each well Ji = wpo,i is available. The objective
is to maximize the total oil production rate wto which is
given by

max J = wto =

nw∑
i=1

wpo,i (13)

In many fields, the amount of gas available for gas lift
injection is limited to wmaxgl and the total amount of the
lift gas must be optimally allocated among the different
wells. This is represented by the following constraint,

nw∑
i=1

wgl,i ≤ wmaxgl (14)

Marginal gas oil ratio, which is defined as the change in
the oil rate per unit change in the gas lift injection rate,
is represented by the symbol ν

mGORi = νi =
∂wpo,i
∂wgl,i

∀i ∈ {1, . . . , nw} (15)

which is equivalent to the steady state gradient of (12)
with respect to the gas lift injection rate.

3.2 Single gas lifted well

In the first simulation case, we demonstrate the effective-
ness of the proposed dynamic extremum seeking scheme
compared to the classical extremum seeking scheme using
a single gas lifted well ( i.e. nw = 1), with special focus on
the convergence time to the optimum. The gas lifted well
model from Krishnamoorthy et al. (2016a) is captured by
a Hammerstein system with the gas lift performance curve
wpo = −0.1(wgl−20)2 +45 and first order linear dynamics

G(s) =
1

(1 + τs)
(16)

Fig. 4. Simulation results for the classical ESC for a single
gas lifted well (red) compared to the dynamic ESC
(blue).

where the time constant was set to τ = 174s. For the
dynamic extremum seeking scheme, we identify an ARX
model with orders na = 1 and nb = 1, using the past
data points from a fixed moving window size of N = 720
samples. This implies that Apoly(q) = 1 + a1q

−1 and
Bpoly(q) = b1q

−1. Therefore two parameters, namely, a1
and b1 are fitted. The measurements are assumed to be
available with a sample time of 1s. An additional PRBS
perturbation with an amplitude of 0.1kg/s was added to
the gas lift injection rate. An adaptation gain of KI =
0.005 was used to drive the estimated steady state gradient
(marginal GOR) to zero, since this is an unconstrained
problem.

Fig.3 shows the simulation results for the proposed dy-
namic extremum seeking scheme for a single gas lifted well.
Note that the extremum seeking controller was turned on
after the first 720s (0.2h). It can be seen that the pro-
posed scheme successfully drives the system to its optimal
operating point within 1 hour.

We then compare the performance of the proposed method
with the classical high-pass filter and low-pass filter based
extremum seeking control (Krstić and Wang, 2000), where
the system was perturbed with a sinusoidal signal with
a time period of 800s and an amplitude of 0.1kg/s. An
adaptation gain of KI = 0.00075 was used to drive the
estimated steady state gradient to zero.

Fig.4 shows the simulation results of the classical ex-
tremum seeking scheme compared to the proposed dy-
namic extremum seeking scheme. It can be clearly seen
that the classical extremum seeking scheme has a sig-
nificantly slower convergence compared to the proposed
dynamic extremum seeking scheme due to the static map
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Fig. 5. Schematic representation of 6 gas lifted wells
producing to a subsea processing unit. The proposed
control structure is shown in grey blocks.

assumption. The classical ESC takes more than 15 hours to
converge to the optimum, whereas the proposed dynamic
ESC scheme converges only within 1 hour, making it
more relevant for practical implementation. This exam-
ple clearly demonstrates the effectiveness of the proposed
dynamic extremum seeking scheme.

3.3 Gas lifted well network

In this simulation case, we now apply the proposed dy-
namic extremum seeking scheme to a production network
consisting of nw = 6 gas lifted wells producing to a com-
mon subsea processing unit. The total available gas for gas
lift is limited to wmaxgl = 56kg/s during normal operation,
which must be optimally allocated among the six wells. All
the six wells are modelled as Hammerstein models with a
polynomial function for the gas lift performance curve and
linear first order dynamics with the time constants varying
between 170 - 180s. See Ryu (2018) for detailed description
of the models used for the six wells.

In the case of limited gas lift, the optimum operation
happens when all the available gas is used for lifting (i.e.
the constraint (14) is active at the optimum), which is
typically the case in most gas lifted fields. According to
good plantwide control practice (Skogestad and Postleth-
waite, 2007), we then control the active constraint tightly
using one of the wells. We use the remaining (nw − 1) un-
constrained degrees of freedom to optimize the production
from the well network. This is achieved by maintaining the
marginal GOR for all the wells to be equal, according to
the principle of equal slopes as described by Downs and
Skogestad (2011).

We propose a simple decentralized control structure such
that we have (nw − 1) feedback controllers to control the
difference in the marginal GOR between two wells to a
constant setpoint of zero and 1 feedback controller to
control the active constraint tightly. In other words, the
controlled variables for the (nw − 1) feedback controllers
would be (νi − νi+1) for all i ∈ {1, . . . , nw − 1} which is
controlled to a constant setpoint of zero, thereby fulfilling
the principle of equal slopes for optimal operation, and
one feedback controller to control the total input usage∑nw

i wgl,i to a constant setpoint of wmaxgl , as described

by Krishnamoorthy et al. (2018). The marginal GOR νi
for each well is estimated using the proposed dynamic
extremum seeking scheme (10).

The simulation starts with normal operation with the total
gas capacity constrained at wmaxgl = 56kg/s. At time
t = 12h, due to some unexpected topside disturbance, the
processing capacity is reduced to wmaxgl = 52kg/s. Fig.6

Fig. 6. Simulation results for the dynamic extremum
seeking scheme applied to a network of 6 gas lifted
wells.

Fig. 7. Simulation results showing the total oil production
rate from the well network (top subplot) and the total
gas lift injection rate (bottom subplot).

shows the simulations results for the 6 well case. The top
subplot shows the oil production from the 6 wells and the
second subplot shows the gas lift injection rates. From the
principle of equal slopes, it is known that the optimal
operation happens when then marginal GOR for all the
wells are equal. It can be clearly seen that the marginal
GOR for all the wells converge to a value of 1.5kg/kg
during normal operation and the marginal GOR of all the
wells change to a value of 1.61kg/kg when the processing
capacity is reduced. Fig.7 shows the total oil production
and the total gas lift injection rate.



Table 1 shows the oil production rate converged to
steady-state using the proposed dynamic extremum seek-
ing scheme compared to the true optimum which is com-
puted by solving a nonlinear optimization problem (used
as benchmark). This shows that the proposed scheme is
able to drive the system to its true optimum.

Table 1. Oil production rates converged to
the steady state using the proposed method

compared to the true optimum .

True optimum Converged solution
wmax

gl 56kg/s 52kg/s 56kg/s 52kg/s

well 1 39.375 38.51 39.37 38.57
well 2 53.875 53.70 53.88 53.63
well 3 52.187 51.75 52.19 51.77
well 4 43.75 42.02 43.75 42.01
well 5 25.9375 23.78 25.93 23.78
well 6 24.375 23.51 24.4 23.49

Total 239.5 233.28 239.5 233.25

4. CONCLUSION

In this paper we proposed a dynamic extremum seeking
scheme for a class of systems that can be modeled as
Hammerstein models, which is based on identifying a local
linear dynamic model around the current operating point.
The steady-state gradient is estimated from the identified
ARX model using (10). By using transient measurements
for the gradient estimation, we have effectively eliminated
the time scale separation required between the plant dy-
namics and the dither signal. This leads to a significantly
faster convergence to the optimum, especially for systems
with very long settling times, as demonstrated in Fig.3
and Fig.4. Additionally, for a network of gas lifted wells,
we presented a simple decentralized framework for optimal
allocation of lift gas in a network of gas lifted wells using
the proposed dynamic extremum seeking scheme.
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