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a b s t r a c t 

In this paper, we consider near-optimal operation for a class of unconstrained batch processes using the 

self-optimizing control (SOC) methodology. The existing static SOC approach is extended to the dynamic 

case by means of a static reformulation of the dynamic optimization problem. However, the dynamic SOC 

problem is posed as a structure-constrained controlled variable (CV) selection problem, which is different 

from the static cases. A lower-block triangular structure is specified for the combination matrix, H , to al- 

low for optimal operation whilst respecting causality. A new result is that the structure-constrained SOC 

problem still results in a convex formulation, which has an analytic solution where the optimal CVs as- 

sociated with discrete time instants are solved separately. In addition, the inputs are directly determined 

based on current CV functions for on-line utilization. A fed-batch reactor and a batch distillation column 

are used to demonstrate the usefulness of the proposed approach. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Self-optimizing control (SOC) ( Jäschke et al., 2017; Skoges-

ad, 20 0 0 ) is a relatively new control methodology for real-

ime optimization (RTO) of industrial processes. A key feature is

hat near-optimal performance (with acceptable economic loss)

an be achieved with simple implementations. The core con-

ern in SOC is to identify controlled variables (CVs), such that

hen disturbances occur and the CVs are maintained at constant

etpoints, the system is automatically operated near optimum

ithout the need of re-optimization, or at least with only in-

requent re-optimization. Since the implementation only requires

imple feedback controllers, the optimizing speed of SOC is gener-

lly much faster than other RTO approaches ( Francois et al., 2005;

aschke and Skogestad, 2011; Ye et al., 2013a; 2014 ), which require

n-line identification and optimization. Importantly, SOC is com-

lementary to these other RTO approaches ( Jaschke and Skogestad,

011; Ye et al., 2017c ), as the setpoints of the self-optimizing vari-

bles are still degrees of freedom to optimize. This reserves the

ossibility of handling unknown disturbances which are not con-

idered in SOC. 

In an SOC control system, the achievable optimizing perfor-

ance depends on the CVs selected. Therefore, intensive research

as been carried out on selecting optimal CVs to minimize the eco-

omic loss when disturbances and other uncertainties occur. Typ-
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cally, linear combinations of the measurements, c = Hy , are con-

idered where H is the combination matrix to be optimized. Com-

ared to the traditional cases where H is a selection matrix with

ingle measurements controlled, measurement combinations pro- 

ide a more generalized option which allows the performance to

e further improved. To this end, Halvorsen et al. (2003) proposed

he so-called exact local method on the basis of a local analysis.

he optimal CV selection problem was formulated as a nonlin-

ar programming (NLP). Alstad and Skogestad (2007) considered

 special case when there is no measurement noise and derived

he null space method ( Alstad and Skogestad, 2007 ), which has a

imple explicit solution HF = 0 where F = ∂ y opt /∂ d is the sensitiv-

ty of optimal measurements with respect to the assumed distur-

ances, d . However, Alstad et al. (2009) later showed that the NLP

roblem for the “exact local method” has an explicit analytical so-

ution. Meanwhile, Kariwala (2007) and Kariwala et al. (2008) de-

eloped an eigenvalue decomposition approach for the exact local

ethod, and the local worst-case and average losses were used

s minimized criterions, respectively. The exact local method is

ased on a linearized local input-output model, hence satisfactory

erformance is only guaranteed within a small operating region

round the nominal point. To overcome this drawback, approaches

imed at enlarging the self-optimizing operating region have re-

ently been proposed ( Ye et al., 2013a; 2015 ). For example, the

lobal average loss over the entire nonlinear operating space was

roposed to be minimized ( Ye et al., 2015 ). 

All the above approaches deal with static optimization prob-

ems, hence they are most suitable for continuous processes, where

https://doi.org/10.1016/j.compchemeng.2018.06.024
http://www.ScienceDirect.com
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typically the economics are dominated by the steady states. For

batch processes, which call for dynamic optimization, not so many

systematic SOC methods have been reported. Previously, the max-

imum gain rule ( Halvorsen et al., 2003 ) has been proposed for

optimal operation of batch processes ( Dahl-Olsen et al., 2008 ).

However, the CV candidates were restricted to be single measure-

ments, and the criterion was based on an inaccurate loss func-

tion. In another work, a local perturbation control approach was

used to select CVs for dynamic systems ( Hu et al., 2012a ). Again,

this method did not provide a solution to identify optimal mea-

surement combinations. More recently, the null space method has

been extended to dynamic processes ( Oliveira et al., 2016 ). How-

ever, the application of the null space method is limited because

of the inherent assumptions. In other works, the invariant of dy-

namic optimization, namely the Hamiltonian function, was pro-

posed to be controlled for dynamic processes ( Jaschke et al., 2011;

Ye et al., 2013b ). In these approaches, the Hamiltonian of dynamic

optimization problems need to be analytically derived first, then

they are inferred or numerically approximated with measurement

combinations. Grema and Cao (2016) performed dynamic optimiza-

tion of oil reservoir waterflooding processes under uncertainties.

Their method was extended from the (data-based) NCO regres-

sion methods ( Girei et al., 2014; Ye et al., 2013a ). As pointed out

in ref ( Ye et al., 2014 ), an underlying drawback may be the over-

regression for unnecessary non-optimal data points, and the lack

of a rigorous way of dealing with measurement noise. Recently, a

batch-to-batch SOC approach was proposed for batch processes, by

utilizing the repetitive nature of batch processes ( Ye et al., 2017b ).

However, a main disadvantage for the batch-to-batch optimiza-

tion is that the input sequence is purely determined from histor-

ical measurements occurred at previous batches, hence the cur-

rent uncertainties are not accounted for. In this paper, however,

the within-batch optimization will be considered. 

In general, the dynamic optimization techniques for batch pro-

cess are classified into the analytic (indirect) approach and numer-

ical (direct) approach ( Srinivasan et al., 2003 ). The former is nor-

mally built upon the necessary conditions of optimality of Pontrya-

gin’s Minimum Principle and the Hamilton–Jacobi–Bellman princi-

ple. Lagrange multipliers (adjoint states) are typically introduced

and solved in companion with the optimal inputs/states. Since it

is symbolically difficult to eliminate the undesired adjoints from

the equations of interest, the analytic approach is restricted to

some small-scale processes ( Srinivasan et al., 2003 ). Some of the

SOC approaches ( Jaschke et al., 2011; Ye et al., 2013b ) mentioned

above fall into this category. On the other hand, the numerical

approach breaks the problem down into a sequence of decision

steps over time, from which a static NLP problem is formulated

( Biegler, 2007; Han et al., 2018 ). Although mathematically less rig-

orous, the performance loss due to numerical approximation turns

out to be minor with a fine parameterization scheme. In practical

cases, the numerical approach is easier to implement, and many

optimization solvers/packages are available to solve large-scale dy-

namic problems efficiently, such as the NPSOL, SNOPT, IPOPT, etc

( Biegler, 2007; Biegler and Zavala, 2009 ). 

Following the perspective of the numerical approach, it is inter-

esting to point out that existing static SOC approaches can be, in

principle, adapted to dynamic systems on basis of the reformulated

static NLP, which substantially reduces the gap between static and

dynamic SOC problems. However, there are some potential obsta-

cles in the context of dynamic problems, for example: 

• The number of decision variables is large. 
• For dynamic problems, causality issues need to be taken care

of. More specifically, for a static NLP, the true optimal solution

assumes full system information about the whole time horizon.
However, for operation, feedback controllers cannot make use

of future measurements. 

To cope with the causality problem, this paper specifies the

oefficients associated with future measurements as zeros, thus

esulting in a structure-constrained SOC problem. Among several

ossible structures of the combination matrix H , the present study

ainly considers a lower-block triangular structure, which admits

he maximal attainable dynamic performance. In this regard, the

xact local method is extended and a locally optimal dynamic SOC

olution is obtained. An important new result is the derivation of a

onvex formulation with a structure-constrained H , and an analyt-

cal solution for the optimal CV selection. The locally optimal CVs

ssigned to each time instant are solved separately along the time

orizon. One may argue that the obtained SOC solution becomes

omplex, but this seems reasonable due to the dynamic nature of

atch processes. Nonetheless, since the dynamic SOC design is car-

ied out offline, the computational cost is not important. 

The paper is organized as follows. In Section 2 , the main ex-

sting results for static SOC methods are summarized. In particu-

ar, the exact local method is introduced, together with its convex

ormulation and analytic solution. In Section 3 , the dynamic SOC

roblem is posed as a static one, however with the combination

atrix structurally constrained. Solution methods are presented in

his section. A fed-batch reactor and a batch distillation column

re investigated in Section 4 , and the final section concludes this

rticle. 

. Self-optimizing control for static systems 

.1. Problem descriptions 

Self-optimizing control (SOC) is concerned with a class of opti-

al operation problem in the presence of disturbances and uncer-

ainties, d . Consider a static NLP problem as follows 

min 

u 
J(u , d ) 

s . t . g ( u , d ) ≤ 0 (1)

ith available measurements 

 m 

= y + n = f y (u , d ) + n (2)

here J is a cost function to be minimized, which is generally

n economic index, u ∈ R 

n u and d ∈ R 

n d are the manipulated vari-

bles and disturbances, respectively. The disturbances may include

lso parameter changes. y , y m 

, n ∈ R 

n y are the true, measured out-

uts and measurement error(noise). f y is the input-output map-

ing function and g is the inequality constraints. Throughout this

aper, the strong second-order sufficiency conditions (SOSCs) are

ssumed for an optimization problem, with guaranteed regularity

nd differentiability of all functions at the optimal solution. 

Suppose that a subset of the constraints g are active at the op-

imal point. In static SOC problems, these active constraints are

upposed to be directly measured and controlled by assigning the

ame number of the degrees of freedom. We further assume that

he active set is unchanged in the whole operating region. (Note

hat in the framework of SOC, the changing active set problem

as also been considered elsewhere with different strategies ( Cao,

005; Hu et al., 2012b; Manum and Skogestad, 2012; Ye et al.,

017a ).) In this case, one is able to formulate a reduced optimiza-

ion problem using the remaining degrees of freedom ( Ye et al.,

013a ), provided with the linear independence constraint qualifi-

ation (LICQ) and strict complementarity slackness. Since SOC is

ainly concerned with the unconstrained part of a general NLP

roblem, to focus on the key methodology development, hereafter,

e consider the following unconstrained optimization problem 

in 

u 
J(u , d ) (3)
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ote that for the sake of simplicity, we have used the same no-

ation u for the remaining degrees of freedoms, as in the original

roblem (1) . To evaluate the optimality of the operation, the eco-

omic loss L is defined as the difference between the actual cost

 ( u, d ) and the optimal cost, J opt (d ) = J(u 

opt (d ) , d ) , i.e. 

 = J(u , d ) − J opt (d ) (4)

The objective for SOC is to select measurement combinations

s CVs, c = Hy , such that loss L is small or minimized, when c are

aintained at constant setpoints, c s . Here, the combination matrix

 ∈ R 

n c ×n y ( n c = n u ) is on the form 

 = 

⎡ 

⎣ 

h 1 

. . . 
h n c 

⎤ 

⎦ = 

⎡ 

⎣ 

h 11 · · · h 1 n y 

. . . 
. . . 

h n c 1 · · · h n c n y 

⎤ 

⎦ 

here h i (i = 1 , . . . , n c ) is a row vector representing individual CVs.

To proceed, define an average (expected) loss over the entire

ncertain operating region as follows (assuming that d and n are

ndependent) 

 av = E[ L ] = 

∫ 
d ∈D, n ∈N 

ρ(d ) ρ(n ) L d n d d (5) 

here D and N is the variation region spanned by d and n , respec-

ively, ρ( · ) is the probability density of a random variable. In this

aper, we choose to use the average economic loss as the criterion.

ccording to Kariwala et al. (2008) , the H that minimizes the aver-

ge loss is “super-optimal”, because it simultaneously minimizes

he worst-case loss hence guarantees a better economic perfor-

ance. 

.2. Exact local method for static SOC 

.2.1. Loss evaluation 

The exact local method ( Halvorsen et al., 2003 ) was developed

ased on linearization of the plant model y = f y (u , d ) around the

ptimal nominal point 

y = G y �u + G yd �d (6) 

here G y and G yd are gain matrices and the symbol “�” denotes a

mall deviation from the nominal value. For example, �d = d − d 

∗

here d is the actual disturbance and d 

∗ is the nominal distur-

ance. In the exact local method, the linear model is assumed to

e a good approximation for the original nonlinear system f y . 

A disturbance �d causes the optimal inputs u opt ( d ) to deviate

rom the nominal point, u opt ( d 

∗). The change can be derived by lin-

arizing the first order necessary conditions of optimality, i.e. the

radient J u , around the nominal point. The new optimal inputs are

alculated as Halvorsen et al. (2003) 

u opt (d ) = −J −1 
uu J ud �d (7) 

here J uu and J ud are the second order sensitivities (Hessian) of

 . Under the assumption of strong second-order sufficiency condi-

ions, J uu is a symmetric positive definite matrix. Around this new

ptimum, the local economic loss is evaluated in a quadratic form

n terms of input deviations, as 

 = 

1 

2 

e T u J uu e u (8) 

here e u � �u − �u opt (d ) is the deviation between the actual in-

ut change �u and the optimal change �u opt ( d ). Given a combi-

ation matrix H , the actual value of u under closed-loop control of

Vs ( c = Hy ) is a function of the occurred disturbances and mea-

urement noises ( Halvorsen et al., 2003 ) 

u = −( HG y ) 
−1 

HG yd �d + ( HG y ) 
−1 

Hn (9) 
nserting (7) and (9) into (8) and with some rearrangements, the

ocal loss is obtained as follows 

 = 

1 

2 

‖ z ‖ 

2 
2 , (10) 

here 

 � V (HG y ) 
−1 H 

[
FW d W n 

]︸ ︷︷ ︸ 
˜ F 

[
d 

′ 
n 

′ 

]
= M 

[
d 

′ 
n 

′ 

]
(11) 

ere, V is a matrix satisfying V 

T V = J uu (Note that in existing liter-

tures ( Alstad et al., 2009; Halvorsen et al., 2003; Kariwala et al.,

008 ), V = J 1 / 2 uu is a typical practice), F � 

∂y opt 

∂d 
= −G y J 

−1 
uu J ud + G yd is

he gain matrix of optimal measurements y with respect to distur-

ances, 

[
d 

′ 
n 

′ 
]

is a scaled vector of the combined uncertainties 

[
d 

n 

]
uch that all elements vary within a norm of 1, where W d and W n 

diagonal) are their absolute magnitudes. The matrices ˜ F and M are

efined as ˜ F = 

[
FW d W n 

]
and M = V (HG y ) −1 H ̃

 F . 

The loss in (10) is for a specific single disturbance d 

′ and noise

 

′ . The average loss L av defined in (5) can be derived ( Alstad et al.,

009; Kariwala et al., 2008 ) assuming that the scaled disturbances

nd noise are normally distributed, 

[
d 

′ 
n 

′ 
]

∼ N(0 , I ) . The resulting

verage loss is L av = 

1 
2 ‖ M ‖ 2 

F 
so the local SOC problem becomes 

in 

H 
L av = min 

H 

1 

2 

‖ M ‖ 

2 
F (12) 

here ‖ · ‖ F stands for Frobenius norm of a matrix. Notice that,

his formulation also applies to other distributions for the random

ector 

[
d 

′ 
n 

′ 
]
, for example a uniform distribution, because the loss

unction differs by a constant factor, which does not affect the op-

imal H ( Kariwala et al., 2008; Yelchuru and Skogestad, 2012 ). 

.2.2. Convex formulation for static SOC problems 

It has been proved ( Alstad et al., 2009 ) that a convex formu-

ation to the local SOC problem (12) can be derived which yields

n analytic optimal H . To explain this point, we first note that the

ollowing lemma is true for a general SOC problem: 

emma 1. Alstad et al. (2009) . The average loss by using a trans-

ormed combination matrix, H 

′ = QH is equivalent to H , i.e. L av (H 

′ ) =
 av (H ) , where Q ∈ R 

n u ×n u is any nonsingular matrix. 

The correctness of this lemma can be easily confirmed by in-

erting H 

′ = QH into L av in equation (12) such that two terms Q 

−1 

nd Q cancel with each other, under the assumption that Q is in-

ertible. 

Lemma 1 has some implications. First, the solution to (12) is not

nique. To guarantee uniqueness, some constraints are required so

hat extra degrees of freedom in the decision variables H are elim-

nated. Second, such constraints can be appropriately chosen such

hat (12) is significantly simplified, for example HG y = V ( V = J 1 / 2 uu )

s typically utilized ( Alstad et al., 2009; Ye et al., 2015 ). This way,

12) is reformulated into a constrained convex optimization prob-

em. Based on these implications, the following two theorems out-

ine the convex formulation of exact local method, together with

n analytic optimal solution. 

heorem 1. The solution to the local SOC problem shown in (12) can

e solved through the following reformulated constrained convex

uadratic programming (QP) ( Alstad et al., 2009 ) 

min 

H 
L av = min 

H 

1 

2 

‖ H ̃

 F ‖ 

2 
F 

s . t . HG y = J 1 / 2 uu (13) 
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Fig. 1. Measurements in the operation horizon (Solid circles and dashed lines in 

color: measurements at discrete and within grids; Solid bars: manipulated vari- 

ables). 
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Theorem 2. An analytic solution to the convex constrained QP (13) is

given as ( Alstad et al., 2009 ) 

H 

T = 

(
˜ F ̃ F T 

)−1 
G y 

(
G 

T 
y 

(
˜ F ̃ F T 

)−1 
G y 

)−1 

J 1 / 2 uu (14)

For the original optimization problem in (12) , because of the non-

uniqueness, the solution can be further simplified to ( Rangaiah and

Kariwala, 2012 ; Yelchuru and Skogestad, 2012) ) 

H 

T = 

(
˜ F ̃ F T 

)−1 
G y (15)

as the dropped part is a nonsingular square matrix. 

The proofs of above theorems can be found in the cited refer-

ences, hence they are not further presented for brevity. 

3. Dynamic self-optimizing control for batch processes 

In this paper, we extend the static SOC methods to the dynamic

optimization problem of batch processes, such that near-optimal

operation can be achieved via selecting optimal CVs. For methodol-

ogy development, we deal with batch processes with the following

assumptions: 

Assumption 1. The batch process is represented in a discrete-time

form with a fixed finite time horizon. 

Assumption 2. Measurements are available at all discrete time

points with no time delays. 

Assumption 3. The operation of the batch system is uncon-

strained, or can be transformed into an unconstrained operation

problem. 

Assumption 1 admits a simple form with a static reformula-

tion of the optimization problem. In general, the continuous phys-

ical system of batch process can be approximated with a discrete

representation, for example, by appropriate control parameteriza-

tions. Variations of the process variables between the discrete time

points are overlooked, which is reasonable provided that we use a

sufficiently fine discretization. Assumption 2 ensures that measure-

ments can be used to constitute the CVs immediately after their

occurrence. Otherwise, the structure of CV combination matrix will

be additionally constrained. Assumption 3 may seem restrictive as

batch processes are typically operated under various constraints.

However, the active constraints are commonly controlled variables

in the first place. Furthermore, many constraints can be trans-

formed into unconstrained formulations. For example, input sat-

uration constraints can be eliminated as switching time between

successive input arcs, and end point constraints can be absorbed

in the cost function using the penalty approach; see the batch

column case in Section 4 as an example. It should be mentioned

that constraints in batch systems are difficult to handle in general.

There are two main types of constraints, namely path constraints

and terminal constraints. Path constraints may be handled using

open-loop operation or on-line feedback control with associated

input arcs ( Francois et al., 2005 ), where the remaining input arcs

are then parameterized to form a static NLP. Terminal constraints

are generally difficult to handle within a single batch. In any case,

systematic ways dealing with various constraints are beyond the

scope of this paper; readers are referred to, e.g. ( Srinivasan and

Bonvin, 2007 ), for discussions regarding various constraints. The

scope of this work is restricted to cases where Assumption 3 holds.

3.1. Discrete-time batch process 

The discrete-time batch process is described as 

x (k + 1) = f k (x (k ) , u (k ) , ̃  d (k )) (16)
y m 

(k ) = g 

k (x (k ) , u (k )) ︸ ︷︷ ︸ 
y (k ) 

+ n (k ) 

ith a fixed finite time horizon [0, N ]. u (k ) ∈ R 

n u , x (k ) ∈ R 

n x and

 (k ) / y m 

(k ) ∈ R 

n y denote the manipulated variables, state variables

nd true/measured output variables at time instant k , respectively.

 

k and g k are the time-varying state dynamic and measurement

unctions. ˜ d and n represent disturbances and measurement er-

ors(noise). Furthermore, we may consider the initial system states,

enoted as x 0 ≡ x (0), are uncertain. Hence, both x (0) and 

˜ d are

ointly referred as the disturbances , d 

T � [ x T 
0 

˜ d 

T ] . 

The objective of plant operation is to minimize the following

eneral cost function 

 = φ( x (N) ) + 

N−1 ∑ 

k =0 

ψ 

k ( x (k ) , u (k ) ) (17)

here φ is a scalar cost associated with the final state x ( N ), and

 

k is the contribution at time k to the integrated cost, which is

llowed to be a time-varying function of states and inputs. 

Based on the above, the dynamic optimization is formulated

s 

min 

ū 
J = φ( x (N) ) + 

N−1 ∑ 

k =0 

ψ 

k ( x (k ) , u (k ) ) (18)

.t. d ynamic mod el : (16) 

here ū is a stacked input variable vector defined as 

¯
 � 

[
u (0) T . . . u (N − 1) T 

]T 
(19)

ith the dimension n ū = Nn u . 

.2. Selection of candidate measurements 

Similar to the stacked input variable in (19) , the stacked states

nd measurements can also be defined along the time sequence 

¯
 � 

[
x (0) T · · · x (N) T 

]T 

= 

[
x (0) · · · f N−1 (x (N − 1) , u (N − 1) , ̃  d (N − 1)) 

]T 
(20)

¯
 � 

[
y (0) T · · · y (N) T 

]T 

= 

[
g 

0 (x (0) , u (0)) · · · g 

N (x (N) , u (N)) 
]T 

(21)

We will assume that u ( k ) is included in the measurement set

 ( k ) and that u ( k ) is kept constant between the discretized sam-

les. See Fig. 1 for a visual illustration. 

With full information about the system model and its parame-

ers/disturbances, it is well known that the dynamic optimization
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roblem (18) can be solved through a static reformulation, by us-

ng for example dynamic programming ( Biegler and Zavala, 2009 ).

n general, the following static NLP problem can be considered 

in 

ū 
J = φ( x (N) ) + 

N−1 ∑ 

k =0 

ψ 

k ( x (k ) , u (k ) ) 

s.t. x (0 ) = x 0 

x̄ = f 

(
ū , ̄̃  d 

)
, ȳ = g 

(
ū , ̄̃  d 

)
(22) 

here ¯̃
 d is the stacked disturbances, f and g are the reformulated

tatic mapping function of states and outputs, respectively. In the

bove dynamic optimization problem, the strong second-order suf-

ciency conditions for optimality and regularity conditions are also

ssumed. 

Objective: Self-optimizing control (SOC) aims to identify a set of

Vs which are to be controlled at constant setpoints, such that the

conomic loss is acceptable even when there are uncertainties. For

atch processes, a distinct feature differing it from the static cases

s that available measurements ȳ along the time direction, reflect

he system dynamics. Therefore, all measurements from the entire

orizon, ȳ , can be regarded as potential candidates for the purpose

f SOC. The objective of this paper is to identify an optimal combi-

ation matrix H̄ , such that economic loss is minimized by selecting

elf-optimizing CVs, c = H̄ ̄y . 

As in the static SOC, the problem formulation (22) integrates all

ncertainties, namely the initial states, parametric process distur-

ances and measurement noise, into a unified framework, which

ater leads to a pure output feedback control. This is different from

he formulation of classic optimal control problems ( Bryson and

o, 1975 ), where these uncertainties are handled in different fash-

ons, thus leading to different online implementations. More de-

ailed discussions are given in section 3.7 . 

.3. Structure of combination matrix 

In general, we want to select n c = n ū controlled variables, c =
¯
 ̄y , with H̄ of dimension n c × n ȳ , whose row vectors represent

ndividual CVs. Regarding the structure of combination matrix H̄ ,

hich would be an important issue for the dynamic SOC problem,

he following typical structures are discussed: 

(1) Structure 1: Full H̄ (infeasible because of causality). This is

the most general case, where all elements in H̄ are al-

lowed to vary and considered as decision variables for self-

optimizing control. Interestingly, this case is equivalent to

the static SOC problem where the structure of combination

matrix is full. Since the static SOC has been proved to be

convex with an analytic solution given in Section 2 , a full

H̄ here is also solvable for the dynamic problem. Unfortu-

nately, here a causality problem arises. For example, at time

instant k , measurements corresponding to t > k are not avail-

able. However, in a full matrix H̄ , those elements associated

with future measurements are not necessarily zero, so in

practice it is impossible to control the desired CVs within

one batch. 

(2) Structure 2: Lower-block triangular (LBT) H̄ . In this case, the

causality problem is avoided by restricting H̄ to be a lower-

block triangular (LBT) matrix 
H̄ = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

H 0 (0) 0 0 · · · 0 

H 0 (1) H 1 (1) 0 · · · 0 

. . 

. 
. . 
. 

. . 

. 
. . . 

. . 

. 

H 0 (N − 1) H 1 (N − 1) H 2 (N − 1) · · · H N−1 (N − 1) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

H (0) 0 0 · · · 0 

H (1) 0 · · · 0 

. 

. . 
. . . 

. 

. . 

H (N − 1) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

written as lbt[ H (0) , H (1) , . . . , H (N − 1)] (23)

where H i ( k ) is of dimension n u × n y , which represents the

contribution of measurements at time i to CVs at time k .

For brevity, we define H (k ) � [ H 0 (k ) . . . H k (k )] of dimen-

sion n u × ( n y k ), and furthermore write the big combination

matrix as H̄ = lbt[ H (0) , . . . , H (N − 1)] . We will see below

that we can derive an analytical optimal solution for this

structure ( Theorem 3 ). 

By specifying the elements associated with future measure-

ments as zero, we only use measurements available up to

time k (denoted as ȳ (k ) ) for SOC purpose. In addition, it

would be a natural choice to control the CVs associated with

time t = k, 

c (k ) = H (k ) ̄y (k ) , k = 0 , . . . , N − 1 (24) 

in sequence as the operation proceeds. 

(3) Structure 3: diagonal H̄ (time-varying). A further simplified

case is when H̄ is a block-diagonal matrix 

H̄ = 

⎡ 

⎢ ⎢ ⎣ 

H (0) 0 0 · · · 0 

0 H (1) 0 · · · 0 

. . . 
. . . 

. . . 
. . . 

0 0 0 · · · H (N − 1) 

⎤ 

⎥ ⎥ ⎦ 

written as diag[ H (0) , . . . , H (N − 1)] (25)

Here, the sub-matrices H ( k ) are of dimension n u × n y and

different from the ones defined in (23) . Then, individual CVs

are decomposed as 

c (k ) = H (k ) y (k ) , k = 0 , . . . , N − 1 (26) 

which only makes use of the current measurements y ( k ).

We will see below that in the noise-free case and suffi-

cient number of measurements we can use the nullspace

method to derive an optimal solution for this structure

( section 3.7.1 ). However, more generally, Structure 3 must be

obtained numerically. 

(4) Structure 4: diagonal H̄ (time-invariant). To further simplify

H̄ , one may enforce all elements H ( k ) in eq (25) to be the

same, 

H̄ = 

⎡ 

⎢ ⎢ ⎣ 

H 0 0 · · · 0 

0 H 0 · · · 0 

. . . 
. . . 

. . . 
. . . 

0 0 0 · · · H 

⎤ 

⎥ ⎥ ⎦ 

written as diag(H ) (27) 

where H is a time-invariant sub-matrix. This time, the indi-

vidual CVs are 

c (k ) = Hy (k ) , k = 0 , . . . , N − 1 (28) 

It is evident that as one proceeds from Structure 1 to 4, the

ub-optimality (loss) increases because the latter structure is a

pecial case of the previous one. However, the latter cases are eas-

er to implement in operation. On the other hand, for the last

wo cases, the mathematical solutions to find the optimal H̄ are
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generally difficult ( Yelchuru and Skogestad, 2012 ). Since Structure

1 is non-causal and thus not feasible, we will select Structure 2

as the starting point to analyze the SOC performance. The limita-

tion of the combination matrix H̄ to have a particular form, as in

Structures 2–4, is known as the structure-constrained SOC prob-

lem ( Yelchuru and Skogestad, 2012 ). Such problems are generally

believed to be non-convex problems and no closed-form solutions

were derived ( Yelchuru, 2012; Yelchuru and Skogestad, 2012 ). In

this paper, however, we will show that a convex constrained QP

can be formulated for Structure 2, and then an analytic solution

follows. Therefore, the dynamic self-optimizing control problem for

batch processes can be efficiently solved. However, for Structures 3

and 4, the problems remain non-convex. It should be highlighted

that when the assumption of no measurement delay is not true,

more elements in Structure 2 should be zeros. For example, if

the measurements are delayed one sample, the block diagonal ele-

ments in H̄ should be zeros, because they are associated with the

current measurements. 

3.4. Linear model and sensitivity matrices 

To proceed in the same way as in the static case, let us as-

sume that at the nominal operating conditions with zero uncer-

tainties, an optimal input sequence, u 

∗
opt (k ) is found. Then, the

nonlinear plant (16) is linearized along the obtained nominal tra-

jectory, which gives the following locally linear dynamic model in

terms of deviation variables 

x (k + 1) = A (k ) x (k ) + B (k ) u (k ) + B ˜ d 
(k ) ̃  d (k ) 

y m 

(k ) = C (k ) x (k ) + D (k ) u (k ) + n (k ) (29)

where A (k ) = ∂ f k /∂ x (k ) , B (k ) = ∂ f k /∂ u (k ) , B ˜ d 
(k ) = ∂ f k /∂ ̃  d (k ) ,

C (k ) = ∂ g k /∂ x (k ) and D (k ) = ∂ g k /∂ u (k ) , respectively. 

By iteratively applying the dynamic linear model (29) , the

input-output gain matrix between the stacked process variables ȳ

and ū , denoted as Ḡ y , becomes 

Ḡ y � 

∂ ̄y 

∂ ̄u 

= 

⎡ 

⎢ ⎢ ⎣ 

D (0) 0 

C (1) B (0) D (1)
. . . 

. . . 
C (N − 1) A (N − 2) · · · A (1) B (0) C (N − 1) A (N − 2)

In the same way, the disturbance-output gain matrix can be ob-

tained. First, the gain matrix of ȳ associated with the initial states

x 0 becomes 

Ḡ yx 0 � 

∂ ̄y 

∂ x 0 

= 

⎡ 

⎢ ⎢ ⎣ 

C (0) A (0) 
C (1) A (1) A (0) 

. . . 
C (N − 1) A (N − 2) · · · A (0) 

⎤ 

⎥ ⎥ ⎦ 

(31)

In a general case, where we allow the parametric disturbance, ˜ d , to

be time varying, the gain matrix of ȳ in terms of the time stacked

disturbance ¯̃
 d � [ ̃ d (0) T . . . ˜ d ( N − 1) T ] T , Ḡ 

y ̃  d 
becomes 

Ḡ 

y ̃ d 
� 

∂ ̄y 

∂ ̄̃  d 

= 

⎡ 

⎢ ⎢ ⎣ 

0 0
C (1) B ˜ d 

(0) 0
. . . 

...
C (N − 1) A (N − 2) · · · A (1) B ˜ d 

(0) C (N − 1) A (N − 2

Finally, the overall disturbance-output sensitivity matrix G yd read-

ily follows as Ḡ yd = 

[
Ḡ yx 0 Ḡ 

y ̃  d 

]
. Notice that, in some cases, we

may only interested in time-invariant disturbance ˜ d ( ̃ d (k ) = 

˜ d (0) ),

that is, disturbances that occur initially remain unchanged in a

single batch. It can then be easily shown that the gain matrix

Ḡ 

y ̃  d 
� 

∂ ̄y 

∂ ̃ d (0) 
is equal to the sum of (32) along the row direction. 
0 0 

0 0 

. . . 
. . . 

 (2) B (1) · · · D (N − 1) 

⎤ 

⎥ ⎥ ⎦ 

(30)

0 0 

0 0 

. . . 
. . . 

A (2) B ˜ d 
(1) · · · 0 

⎤ 

⎥ ⎥ ⎦ 

(32)

Based on above sensitivity matrices, the local input-output lin-

ar model is 

¯
 = Ḡ y ̄u + Ḡ yd ̄d (33)

here d̄ � [ x T 0 
¯̃
 d 

T 
] T . One notes that above relationship is in the

ame form as in the static case, except that the process variables

re defined as stacked ones. 

In the same fashion, the other matrices, for example J̄ uu , F̄ , ¯̃
 F ,

¯
 d , W̄ n , can also be readily extended to the dynamic case. For

xample, 

¯
 uu � 

d 

2 J 

d ̄u 

2 

¯
 � −Ḡ y ̄J 

−1 
uu ̄J ud + Ḡ yd 

nd so on; see (5)-(10) for their definitions in the static case. Note

hat J̄ uu is defined as the total derivative, which follows by elim-

nating state variables in the dynamic process model. Under the

ssumption of strong second order sufficient condition, J̄ uu is posi-

ive definite. By utilizing the available results in the static case, we

re allowed to formulate the following dynamic SOC problem: 

min 

H̄ 
L av = min 

H̄ 

1 

2 

‖ V 

(
H̄ ̄G y 

)−1 
H̄ ̄̃

 F ‖ 

2 
F (34)

 . t . H̄ on the f orm of a part icular st ruct ure 

here V is a matrix satisfying V 

T V = ̄J uu . 

.5. Main result: Optimal LBT-structured H 

Based on the reformulation of the static NLP, the static SOC re-

ults can be extended to dynamic systems with notations adapta-

ions. However, the solution given in Theorem 2 is a “full” com-

ination matrix (Structure 1). As has been explained, Structure 1

uffers from causality problem for dynamic systems and cannot

e used here. The causal Structures 2-4 impose structural con-

traints. In general, structural constraints cannot be reformulated

s convex QP problems (at least for static processes) ( Yelchuru,

012; Yelchuru and Skogestad, 2012 ). Instead, it was proposed in

elchuru (2012) to solve these structured problems with: (1) brute-

orce search using a nonlinear optimization solver, which is com-

utationally inefficient and furthermore suffers from local optima;

2) convex approximation by dropping the nonlinear term, in par-

icular the term ( HG y ) −1 , which leads to suboptimal solutions. 

In this paper, we will show that a convex QP can be formu-

ated for the case of a lower-block triangular (LBT) structured H̄

Structure 2). Furthermore, the reformulated constrained QP can be

olved with an analytical solution. The main results are presented

s follows. 

emma 2. For a LBT-structured combination matrix H̄ in (23) , a non-

ingular transformation H̄ 

′ = Q ̄H is also LBT, if the nonsingular Q is

BT. 
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The correctness of Lemma 2 can be established very eas-

ly. Using this result and Lemma 1 , we further know that the

osses of both LBT-structured H̄ 

′ and H̄ are equivalent, because

emma 1 does not impose extra structural requirements on Q . 

heorem 3. (Convex formulation for dynamic SOC problem). For the

BT-structured H̄ in (23) , the optimal solution of (34) is equivalent to

he following convex constrained QP problem 

in 

H̄ 
L av = min 

H̄ 

1 

2 

‖ ̄H ̄̃

 F ‖ 

2 
F 

s . t . H̄ ̄G y = V 

H̄ on f orm of H̄ = lbt [ H (0) , . . . , H (N − 1) ] (35) 

here V is a lower triangular matrix satisfying V 

T V = ̄J uu . 

roof. First, we will prove that there is no loss in generality by

nforcing the equality constraint of H̄ ̄G y = V when solving H̄ =
bt[ H (0) , . . . , H (N − 1)] , on the condition that V is lower triangu-

ar. This can be proved by recognizing the following facts: 

1. For an arbitrary LBT-structured H̄ unc , which may not satisfy

the equality constraint, we can always find a Q = V ( ̄H unc ̄G y ) −1 ,

such that H̄ con = Q ̄H unc satisfying the constraint H̄ con ̄G y = V . 

2. Since Q = V ( ̄H unc ̄G y ) 
−1 is LBT (note that G y is LBT, see eq (30) )

and H̄ unc is LBT, then from Lemma 2 , H̄ con is also LBT. 

3. The losses of H̄ con and H̄ unc are equivalent according to

Lemma 1 . Therefore, the introduced equality constraint does

not lose generality in searching for an optimal H̄ . 

Second, there exists a lower-triangular V such that V 

T V = ̄J uu .

his can be confirmed by recognizing the existence of Cholesky de-

omposition of a symmetric, positive definite matrix J̄ uu . However,

he normal Cholesky decomposition is defined as a multiplication

f a lower triangular matrix and its transpose, which is a reversed

rder in our problem. This can be addressed by rotating ̄J uu by 180-

egree and performing a normal Cholesky decomposition and then

otating the decomposed matrix back. 

Third, by inserting the enforced relationship H̄ ̄G y = V into the

bjective function of L av = 

1 
2 ‖ V ( ̄H ̄G y ) 

−1 H̄ ̄̃

 F ‖ 2 
F 
, then L av = 

1 
2 ‖ ̄H ̄̃

 F ‖ 2 
F 

ollows. 

The above facts leads to the proposed convex constrained QP

roblem. �

Comments : The above convex formulation is similar to the static

ase in the sense that both of them have utilized the trick of a

onsingular transformation ( Lemma 1 ). However, the main differ-

nce is that due to causality issue in the dynamic process, the

ombination matrix must be LBT, which requires a different equal-

ty constraint. Here, it is critical to choose a slightly different lower

riangular matrix V , rather than a full J̄ 1 / 2 uu . It is also worth men-

ioning that the convex formulation applies to the LBT-structured
¯
 but not to the diagonal-structured one (Structures 3 and 4).

his is because in point 1 of the proof, where the transformation
¯
 con = Q ̄H unc is used, H̄ con and H̄ unc are no longer structurally con-

istent, because both Ḡ y and V are not block diagonal. In this case,

nforcing the proposed constraint loses generality and the deriva-

ions no longer hold. 

For the convex constrained QP, an analytic solution also follows,

s given in the following theorem. 

heorem 4. (Analytic solution of the dynamic SOC problem in

heorem 3 ) The optimal solution to the convex constrained QP

35) can be solved by determining submatrices H ( i ) separately, as 

 (i ) T = 

(
˜ F i ̃  F T i 

)−1 
G yi 

(
G 

T 
yi 

(
˜ F i ̃  F T i 

)−1 
G yi 

)−1 

V 

T 
i (36) 

here ˜ F i is a submatrix of ˜ F intersected by its first n y (i + 1) rows

nd (n d + n y (i + 1)) columns, G yi is a submatrix of G y intersected by
ts first n y (i + 1) rows and first n u (i + 1) columns, V i denotes the ith

artition of V . 

roof. Based on the convex constrained QP (35) , decomposing the

verall loss row-wise in terms of H̄ (i ) , we have 

 av = 

1 

2 

‖ ̄H ̄̃

 F ‖ 

2 
F = 

1 

2 

∥∥∥∥∥∥∥∥

⎡ 

⎢ ⎢ ⎣ 

H (0) 0 0 · · · 0 

H (1) 0 · · · 0 

. . . 
. . . 

. . . 
H (N − 1) 

⎤ 

⎥ ⎥ ⎦ 

×

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

¯̃
 F 0 · · ·

¯̃
 F 1 · · ·
. . . 

. . . 
¯̃
 F N−1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

∥∥∥∥∥∥∥∥∥∥∥

2 

F 

= 

1 

2 

∥∥∥∥∥∥∥
⎡ 

⎢ ⎣ 

H (0) ̄̃ F 0 
. . . 

H (N − 1) ̄̃ F N−1 

⎤ 

⎥ ⎦ 

∥∥∥∥∥∥∥
2 

F 

= 

N−1 ∑ 

i =1 

‖ H (i ) ̄̃ F i ‖ 

2 
F (37) 

On the other hand, the constraint H̄ ̄G y = V is also decomposed

s 

¯
 ̄G y = V 

⇔ 

⎡ 

⎢ ⎢ ⎣ 

H (0) 0 0 · · · 0 

H (1) 0 · · · 0 

. . . 
. . . 

. . . 
H (N − 1) 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

Ḡ y 0 · · ·
Ḡ y 1 · · ·

. . . 
. . . 

Ḡ y (N−1) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

V 0 0 0 · · · 0 

V 1 0 · · · 0 

. . . 
. . . 

. . . 
V N−1 

⎤ 

⎥ ⎥ ⎦ 

⇔ H (i ) ̄G yi = V i , ∀ i = 0 , . . . , N − 1 (38) 

Since both the objective function and equality constraint have

een decomposed onto individual H ( i ), it is equivalent to solving

he following N constrained optimization problems separately {
min H̄ L av = min H̄ 

1 
2 
‖ ̄H ̄̃

 F ‖ 

2 
F 

s . t . H̄ ̄G y = V , H̄ on f orm of H̄ = lbt[ H (0) , . . . , H (N − 1)] 

 

{
min { H (0) , ... , H (N−1) } 

∑ N−1 
i =1 ‖ H (i ) ̄̃ F i ‖ 

2 
F 

s . t . H (i ) ̄G yi = V i , ∀ i = 0 , . . . , N − 1 

 

{
min H (i ) 

1 
2 
‖ H (i ) ̄̃ F i ‖ 

2 
F 

s . t . H (i ) ̄G yi = V i 

, ∀ i = 0 , . . . , N − 1 (39) 

All subproblems in (39) are convex constrained QP problems,

hich can be solved based on the KKT-conditions of augmented

angrange functions. Actually, by making an analogy between the

ubproblem in (39) and the static SOC problem (13) , an analytic

olution can be derived as follows 

 (i ) T = 

(
˜ F i ̃  F T i 

)−1 
G yi 

(
G 

T 
yi 

(
˜ F i ̃  F T i 

)−1 
G yi 

)−1 

V 

T 
i (40) 

here the proof is similar to the one in ref ( Alstad et al., 2009 )

ence not further provided. �
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timizing CVs associated with different time instants can be obtained 

uality constraint such that the effects of non-optimal operations along 

ilar to the static case, however, no time issue is involved in the latter 
 can be simply dropped (see eqs (15) and (14) ) because the dropped 

 here the term (G 

T 
yi 
( ̃ F i ̃  F T 

i 
) −1 G yi ) 

−1 V 

T 
i 

cannot be dropped because it is of 

ltiplying Q ) can nonetheless be utilized for the overall matrix H̄ . 

hod, a numerical example is provided. 

ribed as 

(41) 

 0 . In this case, the three measurements in y include all the states and 

tion (see the case study section). 

(42) 

 0.3, 0.5, 1, respectively. Here, we assume that ˜ d is time-invariant for 

2 for the two states and 0.01 for the input u , respectively. 

d from a static NLP solver, 

(43) 

0 . 02 0 0 0 0 0 0 0 0 

0 0 . 02 0 0 0 0 0 0 0 

0 0 0 . 01 0 0 0 0 0 0 

0 0 0 0 . 02 0 0 0 0 0 

0 0 0 0 0 . 02 0 0 0 0 

0 0 0 0 0 0 . 01 0 0 0 

0 0 0 0 0 0 0 . 02 0 0 

0 0 0 0 0 0 0 0 . 02 0 

0 0 0 0 0 0 0 0 0 . 01 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(44) 

= 0 is 

 , and we obtain 
Theorem 4 implies that for the dynamic SOC problem, self-op

separately, which is made possible by enforcing the introduced eq

the time direction are not cross-interacting. Such decoupling is sim

case. Another point is that in the static case, the right part of H 

T

part (G 

T 
y ( ̃ F ̃ F T ) −1 G y ) 

−1 J 1 / 2 uu is a nonsingular square matrix. However,

dimension i × n u . The nonsingular transformation property (left mu

To better explain how to obtain the CVs with the proposed met

Illustrative example: A 2 × 2 linear time-invariant system is desc

x (k + 1) = Ax (k ) + B u (k ) + B ˜ d 
˜ d 

y (k ) = Cx (k ) + D u (k ) + n (k ) 

where 

A = 

[
0 . 6 0 . 4 

0 . 3 0 . 5 

]
, B = 

[
0 . 3 

0 . 07 

]
, B ˜ d 

= 

[
−0 . 7 

0 . 2 

]
, 

C = 

[
I 
0 

]
, D = 

[
0 

1 

]
with a time horizen of N = 3 and a nominal initial condition x (0) =
inputs, but in general there is no requirement of full state informa

The cost function is 

J = 

1 

2 

x (3) T Sx (3) + 

1 

2 

2 ∑ 

i =0 

[
x (i ) T Qx (i ) + ru (i ) 2 

]
where the weight matrices are set as 

S = 

[
1 0 

0 1 

]
, Q = 

[
0 . 5 0 

0 0 . 5 

]
, r = 0 . 1 

The disturbances are d = [ x 1 (0) x 2 (0) ˜ d ] T with magnitudes as

simplicity. The magnitudes of measurement errors are taken as 0.0

Around the nominal trajectory, the Hessian and V were obtaine

J̄ uu = 

[ 

0 . 223050 0 . 087546 0 . 061183 

0 . 087546 0 . 206339 0 . 071150 

0 . 061183 0 . 071150 0 . 194900 

] 

, 

V = 

[ 

0 . 424578 0 0 

0 . 153547 0 . 424694 0 

0 . 138588 0 . 161164 0 . 441475 

] 

The gain matrix Ḡ y and sensitivity matrix ¯̃
 F become 

Ḡ y = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 

0 0 0 

1 0 0 

0 . 3 0 0 

0 . 07 0 0 

0 1 0 

0 . 208 0 . 3 0 

0 . 125 0 . 07 0 

0 0 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, ̄̃  F = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 . 3 0 0 

0 0 . 5 0 

−0 . 3 −0 . 437 1 . 152 

0 . 09 0 . 069 −0 . 354 

0 . 069 0 . 219 0 . 281 

−0 . 15 −0 . 261 1 . 171 

0 . 036 0 . 051 −0 . 449 

0 . 051 0 . 112 0 . 316 

−0 . 078 −0 . 142 1 . 217 

Based on Theorem 4 , the combination matrix associated with t 

H (0) T = 

(
˜ F 0 ̃  F T 0 

)−1 
G y 0 

(
G 

T 
y 0 

(
˜ F 0 ̃  F T 0 

)−1 
G y 0 

)−1 

V 

T 
0 

where G y 0 = 

[
0 0 1 

]T 
, 

˜ F 0 = 

[ 

0 . 3 0 0 0 . 02 0 0 

0 0 . 5 0 0 0 . 02 0 

−0 . 3 −0 . 437 1 . 152 0 0 0 . 01 

] 

, V 0 = 0 . 4246

H (0) = 

[
0 . 4231 0 . 3706 0 . 4246 

]
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e other partitioned matrices in (44), 

H

H 0 . 576 −0 . 076 0 . 4414 

]

3

 based on the obtained CV functions, provided u is included in the 

m t = k are 

c (45) 

w luding u ( k ), then a simple rearrangement of the CVs gives 

⇒ (46) 

w k ) and current inputs u ( k ), respectively. Above relationship requires an 

i

C

P  that D (k ) = 

[
0 

I 

]
in the linear dynamic model (29) . Since the diagonal 

b lationship H (k ) ̄G yk = V k is expanded as 

H  = V kk (47) 

w l submatirx in V , which is invertible due to the positive definite ̄J uu . �

one just needs to measure ȳ ′ (k ) in the on-line phase and use (46) to 

u perfect control of CVs in one sampling period without any overshoot 

i stphal, 1995 ), however, a main difference in our problem is that the 

s ed in the control law. 

ectory of this example is the origin, all setpoints are exactly 0. On basis 

o

u

u
 

 

]

u 1 . 304 0 . 173 

][ 

y (0) 
y (1) 
x (2) 

] 

(48) 

w

3

3  measurement noise and sufficient number of measurements 

(

form H̄ = diag(H (1) , . . . , H (N)) given in (25) (Structure 3). To see this, 

n

L (49) 
In the same way, H (1) and H (2) are readily obtained by using th

 (1) = 

[
−0 . 1 0 . 115 −0 . 098 0 . 895 −0 . 236 0 . 4247 

]
 (2) = 

[
−0 . 094 0 . 027 −0 . 071 0 . 362 −0 . 134 −0 . 006 

The example continues below. 

.6. On-line implementation 

Note that an input adaptation law (controller) can be derived

easurements. Suppose that the CVs associated with time instant 

 (k ) = H (k ) ̄y (k ) 

ith setpoints c s ( k ). Denote a measurement subset as ȳ ′ (k ) by exc

c s (k ) = 

[
H 

y (k ) H 

u (k ) 
]︸ ︷︷ ︸ 

H (k ) 

[
ȳ ′ (k ) 
u (k ) 

]
︸ ︷︷ ︸ 

ȳ (k ) 

 u (k ) = H 

u (k ) −1 
[
c s (k ) − H 

y (k ) ̄y ′ (k ) 
]

here H 

y ( k ) and H 

u ( k ) are submatrices of H ( k ) associated with ȳ ′ (
nvertible H 

u ( k ), which is ensured by the following corollary. 

orollary 1. H 

u ( k ) equals to the kth diagonal submatirx in V . 

roof. When measurements include the inputs, it is easy to show

lock of the gain matrix Ḡ y defined in (30) is D ( k ), the enforced re

 (k ) ̄G yk = V k ⇒ 

[
H 

y (k ) H 

u (k ) 
]⎡ 

⎢ ⎣ 

0 0 

I 0 

× 0 

0 I 

⎤ 

⎥ ⎦ 

= 

[
× V kk 

]
⇒ H 

u (k )

here “ × ” represents nonzero elements, and V kk is the k th diagona

Note that H 

y , H 

u and c s for all k can be calculated off-line, so 

pdate the control inputs, which is very easy to implement. The 

s similar to the deadbeat response in the digital control field ( We

etpoints of CVs are time-varying and old measurements are includ

Illustrative example (continued): Since the nominally optimal traj

f the CVs obtained previously, the input control law becomes 

 (0) = − 1 

0 . 4246 

(0 . 4231 x 1 (0) + 0 . 3706 x 2 (0)) 

= 

[
−0 . 9965 −0 . 8730 

]
x (0) 

 (1) = 

[
0 . 2342 −0 . 2714 0 . 2319 −2 . 1078 0 . 5549 

][y (0)
x (1)

 (2) = 

[
0 . 212 −0 . 061 0 . 161 −0 . 820 0 . 303 0 . 014 −

here x (k ) = 

[
x 1 (k ) 

x 2 (k ) 

]
, y (0) = 

[
x (0) 

u (0) 

]
and y (1) = 

[
x (1) 

u (1) 

]
. 

.7. Discussion of proposed method 

.7.1. Null space method ( Oliveira et al., 2016 ): A special case with no

 n y ≥ n d + n u ) 

For this special case, zero loss can be obtained with H̄ on the 

ote that without noise we have ¯̃
 F = F̄ W̄ d , hence 

 = 

1 

2 

‖ z ‖ 

2 
2 , z = V 

(
H̄ ̄G y 

)−1 
H̄ ̄F W̄ d̄ 
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where the middle term is 

H̄ ̄F = 

⎡ 

⎢ ⎢ ⎣ 

H (0) 0 0 · · · 0 

0 H (1) 0 · · · 0 

. . . 
. . . 

. . . 
. . . 

0 0 0 · · · H (N − 1) 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

F (0) 
F (1) 

. . . 
F (N − 1) 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

H (0) F (0) 
H (1) F (1) 

. . . 
H (N − 1) F (N − 1) 

⎤ 

⎥ ⎥ ⎦ 

(50)

Here F ( k ) is the optimal sensitivity matrix of y opt ( k ) partitioned

from F̄ . Since F ( k ) is of dimension n y × n d and n y > n d + n u , it

is possible to select H ( k ) in the null space of F ( k ), such that

H (k ) F (k ) = 0 holds. This leads to the big matrix H̄ ̄F = 0 , hence the

loss L = 

1 
2 ‖ V ( ̄H ̄G y ) 

−1 H̄ ̄F W̄ d̄ ‖ 2 = 0 for any disturbance. The feed-

back solution obtained from the nullspace method is the same as

the optimal state feedback obtained from the classical optimal con-

trol theory ( Manum et al., 2008 ). 

Illustrative example (continued): Since the null space method can

only be applied when n y ≥ n d + n u , we now restrict d = x (0) T and

let ˜ d be fixed. In this case, the optimal sensitivity matrices are cal-

culated as follows 

F (0) = 

[ 

1 0 

0 1 

−1 . 001 −0 . 874 

] 

, F (1) = 

[ 

0 . 300 0 . 138 

0 . 230 0 . 439 

−0 . 501 −0 . 521 

] 

, 

F (2) = 

[ 

0 . 122 0 . 102 

0 . 170 0 . 224 

−0 . 260 −0 . 283 

] 

Then H ( k ) in (50) is selected as the null space of F ( k ) 

H (0) = 

[
0 . 6018 0 . 5257 0 . 6012 

]
, 

H (1) = 

[
0 . 6020 0 . 5255 0 . 6012 

]
, 

H (2) = 

[
0 . 6281 0 . 4843 0 . 6090 

]
which gives the following input control law 

u (0) = 

[
−1 . 0010 −0 . 8744 

]
x (0) , 

u (1) = 

[
−1 . 0012 −0 . 8739 

]
x (1) , 

u (2) = 

[
−1 . 0313 −0 . 7953 

]
x (2) 

which is a time-varying feedback law u (k ) = K (k ) x (k ) . Similar to

the classic optimal control theory, the present state measurements

x ( k ) contain all information because there is no noise. 

3.7.2. Different structures of H̄ and the time horizon 

The proposed dynamic SOC solution gives a time-varying lower-

block triangular structured H (Structure 2), which gives time-

varying CVs and also setpoints along the trajectory. This may seem

complex, but the most appealing merit of SOC is still preserved.

That is, we get an on-line invariant control strategy to cope with

disturbances, where the CVs and their setpoints are not necessar-

ily re-optimized for changing disturbances, which is done in many

other real-time optimization approaches. A limitation of the pro-

posed method is, nonetheless, that when the time horizon N is

large, the combination matrix H̄ is also very large. However, for a

finite batch system, it is generally possible to approximate the real

process with a small value of N . An alternative is to consider using

Structure 3 or 4 to get a suboptimal, but simpler solution. In addi-

tion, other structure may be considered. For example, an interest-

ing topic would be to select CVs using only a few recent measure-

ments, namely, c ( k ) is a linear combination of y (k − m ) , . . . , y (k ) .

This way, one can further pursue the trade-off between the eco-

nomic performance and CV complexity, as it gives rise to a new
parse structure of H̄ , lying between structures 2 and 3/4. Using

he most recent measurements was previously considered in asso-

iated regression approach ( Grema and Cao, 2016 ). However, we

ave been unable to formulate such considerations into convex

ptimization problems, from which analytic solutions can be ob-

ained. This is because there are not enough degrees of freedom

sing the nonsingular transformation of H̄ to eliminate the nonlin-

ar term in the loss function. Actually, the constant CV case (Struc-

ure 4) reduces to the output feedback problem for linear dynamic

ystems, which has been proven to be NP-hard ( Blondel and Tsit-

iklis, 1997 ). 

Another limitation related to a large N is the off-line compu-

ational cost for obtaining H̄ . We note that the algorithm contains

everal steps: (1) numerical optimization at the nominal condition;

2) obtain sensitivity matrices along the optimal trajectory; (3) cal-

ulate H̄ based on Theorem 4 . The computational cost for Step 1

epends on the used dynamic programming solver. The sensitiv-

ty matrices in Step 2 can be available along with the dynamic

rogramming solver, except that a Cholesky decomposition for the

otated J̄ uu is additionally needed ( n 3 /3 flops for the cost). The

ull H̄ is obtained using Theorem 4 , which is a closed-form so-

ution. A computational experiment shows that the algorithm fin-

shes within 100 s when N = 100 , n y = 20 (in a notebook with In-

el i5 CPU), which most likely fulfills performance requirements for

atch processes. 

.7.3. Comparisons with the optimal control method 

The presented SOC approach implements a simple output feed-

ack control policy, where the uncertain initial states, parametric

isturbances and measurement noise, are systematically handled

n an integrated manner. This is quite different from the classic

ptimal control theory ( Bryson and Ho, 1975 ) and related meth-

ds, such as the neighbouring-extremal control (NEC) ( Gros et al.,

009 ), which are based on full state feedback. In the case of par-

ially measured states and/or with measurement errors, the meth-

ds require online state observers such as the Kalman filter and

ts variants. The situation becomes even more difficult when there

re unknown disturbances or parameters in the process model

 Gros et al., 2009 ). In this case, one needs to extend the estima-

ors to handle the disturbances ( Lee and Bryson, 1989 ), which is

ot a trivial task. In contrast, the SOC solution does not involve

eparated online estimations, hence it is easier to implement. An

dditional advantage of SOC is that it provides a quantified index

the loss) indicating the influence of various uncertainties. 

. Case studies 

.1. Fed-batch reactor 

.1.1. Process description 

The fed-batch reactor involves two reactions ( Gros et al., 2009;

liveira et al., 2016 ), A + B → C and 2 B → D , where A and B are the

eactants, C is the desired product, and D is the byproduct pro-

uced by the side reaction. The first-principle nonlinear dynamic

odel of this reactor is 

dc A 
dt 

= −k 1 c A c B − c A u/V, c A (0) = c A 0 (51)

dc B 
dt 

= −k 1 c A c B − 2 k 2 c 
2 
B − (c B − c in B ) u/V, c B (0) = c B 0 (52)

dV 

dt 
= u, V (0) = V 0 (53)
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Table 1 

Parameter values and variation magnitudes. 

Variable Description Nominal Value Variation Magnitude Unit 

c A 0 initial concentration (A) 0.72 ± 20% mol / l 

c B 0 initial concentration (B) 0.0614 ± 20% mol / l 

V 0 initial volume 1 ± 20% l 

k 1 kinetic coefficient (main) 0.053 ± 40% ( Case 2 ) l /( mol · min ) 

k 2 kinetic coefficient (side) 0.128 ± 40% ( Case 2 ) l /( mol · min ) 

c in B inlet concentration of B 5 fixed mol / l 

t f batch duration 250 fixed min 
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⎢⎢⎣
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m  

A  
 C = (c A 0 V 0 − c A V ) /V (54) 

 D = ((c A + c Bin − c B ) V − (c A 0 + c Bin − c B 0 )) / 2 V (55) 

here c X and c X 0 represents the concentration of component X and

ts initial value, respectively; V is the reactor volume with initial

alue V 0 ; k 1 and k 2 are the kinetic constants for the two reactions;

 is the feed rate of B (manipulated variable) and c in 
B 

is the con-

entration of B in the feed. 

The operational objective is to maximize the amount of product

 whilst minimizing the byproduct D at the final batch time t f , by

anipulating the feed rate of reactant B, u ( t ), which is constrained

ithin the bound 0 ≤ u ( t ) ≤ 0.001 [ l / min ]. The batch time is fixed at

 f = 250 min . Therefore, a dynamic optimization problem is formu-

ated as follows 

in 

u (t) 
J = 

[
c D (t f ) − c C (t f ) 

]
V (t f ) 

s.t. process model (51) − (55) 

0 ≤ u (t) ≤ 0 . 001 l/min (56) 

The process parameters, together with their nominal values

nd expected variations, are given in Table 1 . On basis of the

iven nominal condition, a numerical optimization was first per-

ormed using a dynamic optimization solver. The open-source tool

asADi ( Andersson, 2013 ) (Version 3.1.0) with IPOPT ( Biegler and

avala, 2009 ) as the NLP solver is used. The numerical optimiza-

ion was performed by dividing the time horizon [0, t f ] equally into

 = 20 grids with piecewise constant inputs (control vector param-

terization). Numerical experiments showed that the choice N = 20

s sufficient enough to get a good optimizing accuracy, because the

erformance improvement in J is less than 10 −8 mol when N is fur-

her increased. On the other hand, it is noted that the analytical

ptimal input arc for this batch reactor is singular unconstrained

 Gros et al., 2009; Srinivasan et al., 2003 ), thus J̄ uu is asymptoti-

ally singular in terms of N . In this case, the strong second-order

ufficiency conditions for the static NLP formulation resulting from

he control parameterization have to be checked first. To this end,

he condition number of the Hessian, J̄ uu , is calculated as 60.4,

hich is reasonably small hence the condition is considered sat-

sfied. In contrast, the condition number is large (1494.7) when

 = 100 . The differences between the analytical and numerical ap-

roaches were also discussed in, e.g. ref ( Podmajersk ̀y et al., 2013 ).

ig. 2 shows the optimal input trajectory u ( t ) and system states

or N = 20 . We see that u ( t ) is unconstrained over the entire time

orizon. The reason is that increasing the feed of reactant B, u ( t ), is

n one hand helpful to produce product C , but on the other hand,

t gives more undesired byproduct D . 

.1.2. Disturbances and measurements 

To explore the proposed dynamic SOC scheme, two cases with

ifferent uncertainties are considered: 

ase 1. The initial values of the 3 states are uncertain, i.e. d =
 c A 0 c B 0 V 0 ] 

T . In this case, we compare the proposed method and

he null space method. Note that measurement noise is included,

hich is not explicitly accounted for by the null space method. 
ase 2. In addition to uncertain initial states, the reaction kinetic

arameters k 1 and k 2 , are included as uncertainties. Therefore, the

isturbance variable is d = [ c A 0 c B 0 V 0 k 1 k 2 ] 
T . In this case, we com-

are three different structures of the combination matrix H (Struc-

ures 2, 3, 4). 

The variations for the initial states are ± 20 % of their nominal

alues and ± 40 % for k 1 and k 2 , see Table 1 . The process measure-

ents considered are the 3 system states and the input variable

 ( t ), i.e. 

 = 

[
c A c B V u 

]T 

ote that we assume c C and c D are only measured at end of

he batch to compute the cost, hence they cannot be adopted for

ithin-batch usage. All measurements (except for noise-free case

n Case 1 ) are assumed to have zero-mean gaussian noise, with

tandard deviations of 0.03 mol / l for concentrations and 0.1 l for

olume, respectively. To be more realistic, a small noise (0.025

l / min ) for u ( t ) is also included to represent possible implemen-

ation error in the manipulated variable. 

.1.3. Results and simulations 

To apply the proposed method, the continuous reactor system

n [0, t f ] is discretized into N = 20 finite horizons. A time-varying

iscrete linear model is obtained numerically by linearizing the

rocess around the nominally optimal trajectory. On the basis of

his linearized model, the sensitivity matrices ( ̄G y , Ḡ yd , and so on)

re calculated as given in (30) –(32) . The Hessian J̄ uu is directly ob-

ained from the dynamic programming solver used for the nominal

oint optimization. 

ase 1. Uncertain initial states. 

Null space method. The null space method can be applied by

gnoring the measurement noise. The combination matrix H̄ is on

he diagonal form in eq (25) (Structure 3), with the diagonal sub-

atrices selected as the null space of F ( k ) at each time instant k .

he following result is obtained 

¯
 = diag(H (0) , . . . , H (N − 1)) (57) 

here 
 

 

 

 

H (0) 
H (1) 

. . . 
H (19) 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

−0 . 0020 0 . 0165 −6 . 59 × 10 

−4 1 

−0 . 0021 0 . 0167 −6 . 32 × 10 

−4 1 

. . . 

−0 . 0071 0 . 0238 −3 . 68 × 10 

−4 0 . 997 

⎤ 

⎥ ⎥ ⎦ 

A plot of the time-varying coefficients associated with c A , c B 
nd V (normalized with their mean nominal values along the tra-

ectories) is shown in Fig. 3 (a). One notes that the normalized co-

fficient associated with c A changes with time, whereas those as-

ociated with c B and V are relatively constant. 

Exact local method. Next, consider the exact local

ethod which also takes into account measurement noise.

 LBT-structured combination matrix H̄ is obtained using
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Fig. 2. Nominal optimal trajectories for fed-batch reactor. 
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Table 2 

Average loss [mol] evaluated from nonlinear dynamic model ( Case 1 ). 

disturbance noise-free case noisy case 

magnitudes null space method null space method exact local method 

–100 % 2 . 2 × 10 −5 0.0069 0.0 0 083 

–50 % 1 . 4 × 10 −6 0.0060 0.0 0 030 

+ 50 % 1 . 5 × 10 −6 0.0056 0.0 0 023 

+ 100 % 2 . 4 × 10 −5 0.0059 0.0 0 038 
Theorem 4 (Structure 2). The results are as follows 

H̄ = lbt(H (0) , . . . , H (N − 1)) (58)

where 

H (0) = 

[
−0 . 117 0 . 146 −0 . 033 61 . 81 

]
H (1) = 

[
−0 . 065 0 . 063 −0 . 030 41 . 87 −0 . 086 0 . 039 

. . . 

To better visualize the coefficients in H̄ , we plot in Fig. 3 (b) the

first 3 columns of H̄ , which are associated with the initial mea-

surements at k = 0 . The magnitudes of these coefficients show that

the contributions of older measurements decay with time, which

is reasonable from a physical point of view. However, older mea-

surements still contain useful information because they reduce the

effect of measurement noise. In the more general case with fewer

measurements than disturbances (see Case 2 ), older measurements

additionally help to better reconstruct the disturbances that oc-

curred (see Case 2 ). Another interesting implication from Fig. 3 is

the possibility of using approximations, for example, low order

polynomials, to reduce the complexity of H̄ . 

Comparison in terms of optimality. The local average loss for

the disturbances and noise is 0.0 0 030 [mol] with the exact local

method in (58) . In contrast, if we substitute the combination ma-

trix obtained from null space method in (57) into the loss func-

tion used when deriving the exact local method, the loss is 0.0128

[mol], which is about 4.8 % of the nominal cost and two orders of

magnitude larger than the exact local method. 

To validate the above results, the original nonlinear reactor

model was simulated for 4 typical disturbance scenarios, where
 03 62 . 1 

]

ll 3 disturbances in initial states are simultaneously perturbed by

50% and ± 100% of their maximal allowable uncertain magni-

udes ( Fig. 4 ). To include the effect of noisy measurements, 100

ealizations were repeated to calculate the average loss. The re-

ults are summarized in Table 2 . The numerical results support the

ollowing facts: (1) The null space method is indeed excellent in

he noise-free case, since all losses are very small ( 2 . 4 × 10 −5 at

he maximum) for the 4 investigated disturbance scenarios. This

llustrates that nonlinearity is not a serious problem for this case.

2) In the more realistic case with measurement noise, the exact

ocal method performs much better than the null space method.

n the nonlinear model evaluations, the exact local method gives

ery small average losses (0.0 0 02-0.0 0 08), whereas the null space

ethod gives much larger losses of about 0.0060 (more than 2 %
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Fig. 3. Coefficients in combination matrix: (a) null space method (b) exact local 

method (the first 5 columns of H̄ = lbt(H (0) , . . . , H (N − 1)) ). 
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f the nominal cost), which is more than 20 times larger than the

xact local method. 

Fig. 4 shows the input response u ( t ) and economic loss un-

er different situations. Again, we note that null space method

s very good in the noise-free case, where the responded inputs
ig. 4. Input responses and losses under different magnitude disturbances. (green: null s

ase; black: exact local method applied to noisy case; red: optimal input arc). (For interp

he web version of this article.) 
green dash-dot line) perfectly follow the optimal arcs (red line),

hich leads to negligible losses in all cases. However, the null

pace method is very sensitive to measurement noise (blue dotted

ine). We see that the input has severe fluctuations, which almost

eem random at first glance! However, on average, the approach

till captures the basic trend of the optimal feedrates. To confirm

his, one sees that as the optimal input arc moves upward from

ig. 4 (a) to (d), the input arc hits the low bound more frequently

n (a) and hits the upper bound more frequently in (d). Anyway,

he use of null space method is restrictive in a noisy environment,

nd can lead to large economic losses. On the other hand, the exact

ocal method effectively rejects the measurement noise, and the

nput arcs (black solid line) follow the desired optimal operations

losely for all disturbance cases and the losses are very small. Note

hat losses are unavoidable in this case because of measurement

oise. 

ase 2. With uncertain k 1 and k 2 . 

In this case, the disturbance variable is d = [ c A 0 c B 0 V 0 k 1 k 2 ] 
T .

he inclusion of more disturbances makes the null space inappli-

able because the number of disturbances is greater than the num-

er of measurements. Thus, for this case, in addition to the time-

arying LBT structure from Theorem 4 (Structure 2), we consider

he time-varying diagonal structure (Structure 3) and the time-

nvariant diagonal structure (Structure 4). Since no analytical so-

utions for Structure 3 and 4 are available, numerical optimizations

ere performed. During this process, we found that the solutions

re sensitive to initial guesses of the combination matrix, due to

he nonconvex formulations. Hence, we performed repeated trial

nd error optimizations with different starting points. In all cases,

e also explicitly include u such that a feedback law can be de-

ived based on obtained CVs. 

We considered all possible measurement subsets when the

umber of measurements, n y , varies from 2 to 4. For all cases, we

btained optimal combination matrices and further the input con-
pace method applied to noise-free case; blue: null space method applied to noisy 

retation of the references to colour in this figure legend, the reader is referred to 
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Fig. 5. Input responses and losses under different kinetic scenarios. (blue: Structure 2; black: Structure 3; green: Structure 4; red: optimal input arc). (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

Local losses of structure 2–4 for measurement subsets ( Case 2 ). 

Measurements Structure 2 Structure 3 Structure 4 

n y = 2 c A , u 0.0152 0.0191 0.0196 

c B , u 0.0161 0.0191 0.0193 

V, u 0.0193 0.0193 0.0194 

n y = 3 c A , c B , u 0.0105 0.0158 0.0167 

c A , V, u 0.0049 0.0138 0.0158 

c B , V, u 0.0148 0.0164 0.0167 

n y = 4 c A , c B , V, u 0.0047 0.0127 0.0144 
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trol laws, given in Table 3 . For example, when n y = 2 and the mea-

surements are [ c A , u ], the obtained control laws are as follows: 

Structure 2 : u ( 0 ) = −0 . 0 0 071 + 0 . 0019 c A ( 0 ) 

u ( 1 ) = −0 . 0 0 055 + 0 . 0027 c A ( 0 ) − 0 . 73 u ( 0 ) 

−0 . 0 0 04 c A ( 1 ) . . . (59)

Structure 3 : u ( 0 ) = −0 . 0013 + 0 . 0027 c A ( 0 ) , 

u ( 1 ) = −0 . 0 0 019 + 0 . 0012 c A ( 1 ) , . . . (60)

Structure 4 : u ( 0 ) = −0 . 0 0 0 026 + 0 . 0 0 095 c A ( 0 ) , 

u ( 1 ) = 0 . 0 0 0 015 + 0 . 0 0 095 c A ( 1 ) , . . . (61)

The losses for the various measurement subsets are given in

Table 3 . We make some observations: (1) For all cases, the ranking

in terms of the loss is Structure 2 < Structure 3 < Structure 4,

which is reasonable due to more and more restricted combination

matrix for Structure 3 and 4. For example, when all measurements

are included ( n y = 4 ), the losses for Structure 2, 3 and 4 are 0.0047,

0.0127 and 0.0144, respectively. (2) Controlling measurement com-

binations improves the economic performance. For example, with
tructure 2 and using only the measurements [ c A , u ] ( n y = 2 ), the

ocal average loss (Structure 2) is 0.0152 mol , whilst it is reduced to

.0047 mol by using all the measurements ( n y = 4 ). This fact holds

or Structures 3 and 4 as well. 

In the following dynamic simulations, we consider the case

ith all measurements ( n y = 4 ). Four kinetic scenarios for [ k 1 , k 2 ]

re considered as [0.0318,0.0768], [0.0318,0.1792], [0.0742,0.0768]

nd [0.0742,0.1792]. These values are chosen such that they are ei-

her +100 % or −100 % magnitude of their uncertain ranges. Mean-

hile, the initial system states are all taken as the nominal condi-

ion for brevity. For all kinetic scenarios, we show in Fig. 5 their

losed-loop responses without measurement noise for Structures 2,

, 4. Noise is excluded to make the comparisons clearer, otherwise

heir differences will be buried in the random noise. A general ob-

ervation that the dynamic self-optimizing control method (Struc-

ure 2, blue curve) works reasonably well. In most cases, the inputs

blue curve) follow the optimal input arcs (red curve) quite tightly,

specially for the first and fourth kinetic scenarios. The worst case

s the scenario (b) with [ k 1 , k 2 ] = [0 . 0318 , 0 . 1792] . Here the devia-

ions from the optimal input are relatively large, hence so are the

conomic losses. This may be caused by the fact that the kinetics

re rather extreme (small main reaction rate and large side reac-

ion rate) such that true optimal input arc is significantly differ-

nt from the nominal case. Note that the change in the kinetic pa-

ameters cannot be well detected until enough measurements have

een collected. For example, at t = 0 we have only initial measure-

ents of the states which contain no information about k 1 and k 2 .

herefore, the optimizing performance is likely to be poor at the

arly stage of the dynamic operation. This can indeed be observed

rom subfigures (b) and (c). As time evolves, the operation is driven

owards the optimum as more measurements become available.

egarding Structures 2, 3 and 4, it is evident that the simplified

tructure 4 (green line) gives the worst results for all kinetic sce-

arios, where its input arcs being most distant from the optimal
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Fig. 6. Batch distillation column. 
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Table 4 

Parameter values of batch distillation column. 

Parameter Value Unit Parameter Value Unit 

p 10 V 15 ± 2 kmol / h 

t f 10 h x des 
d 

0.9 

α 1.5 ± 0.1 M 1 (0) 100 kmol 

M i 0.2 kmol x i (0) 0.5 

M c 2 kmol x c (0) 0.5 
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rcs. In all cases, the losses are Structure 2 < Structure 3 < Struc-

ure 4, as shown in boxes in Fig. 5 . 

.2. Batch distillation column 

.2.1. Process description 

In this subsection, we study optimal operation problem of the

atch distillation column in Fig. 6 ( Welz et al., 2002 ). This is a

inary system, where the valuable product is the light compo-

ent which is collected at the top of column. The process model

s based on the following assumptions: (1) constant molar flows

same vapor flow on stages), (2) constant relative volatility, (3)

quilibrium stages, (4) no vapor holdup, (5) constant liquid holdup

n stages and in condenser and, (6) total condenser. 

Based on the above assumptions and material balance relation-

hips, the process model is: 

eboiler : 
dM 1 

dt 
= −uV (62) 

dx 1 
dt 

= 

V 

M 1 

(x 1 − y 1 + (1 − u ) x 2 ) (63) 

tages : 
dx i 
dt 

= 

V 

M i 

(y i −1 − y i + (1 − u )(x i +1 − x i )) (64) 

ondenser : 
dx c 

dt 
= 

V 

M c 
(y p − x c ) (65) 

ith i = 2 , . . . , p. The notation is as follows. p : number of stages;

 i : liquid holdup on stage i (counting from the bottom and stage

 is the reboiler); x i and y i : molar fraction in liquid and vapor on

tage i; x c : liquid molar fraction in condenser; V : vapor flow; u :

istillate ratio u = D/V, 0 ≤ u ≤ 1. With a total condenser, x c = y p 
ollows. The vapor-liquid equilibrium relationship holds with con-

tant relative volatility α gives on all stages: 

 i = 

αx i 
1 + (α − 1) x i 

(66) 

he accumulated distillate, M d , and its composition, x d , are 

 d (t) = 

∫ t 

0 

uV d t = M 1 (0) − M 1 (t) (67) 

 d (t) = 

∑ p 
i =1 

x i (0) M i (0) − x i (t) M i (t) 

M (0) − M (t) 
(68) 
1 1 c  
The operation objective is to maximize the amount of distillate

aluable product M d x d for a fixed batch duration [0, t f ], while sat-

sfying a desired product quality. The following optimization prob-

em is formulated: 

ax 
u (t) 

J = M d (t f ) x d (t f ) (69) 

 . t . x d (t f ) ≥ x des 
d 

0 ≤ u (t) ≤ 1 

dynamic process model : (62) − (68) 

here x des 
d 

is the minimal allowable quality. The nominal model

arameters are given in Table 4 , where α and V are the un-

ertain disturbances, whose variation ranges are 1.4 ≤α ≤ 1.6 and

3 ≤ V ≤ 17 kmol / h , respectively. 

.2.2. Nominal optimization and problem reformulation 

The optimal trajectory of the distillate ratio u ( t ) consists of

hree arcs ( Welz et al., 20 02; 20 08 ). The first arc is zero distillate

 u (t) = 0 , active input constraint) to initially separate the compo-

ents. The second arc maintains u ( t ) at unconstrained values. The

hird arc is u (t) = 1 to empty the volume of light component prod-

ct before terminating the operation. However, the effect of the

hird arc is negligible and can be absorbed into the second one.

herefore, for optimization purpose the arc of u ( t ) is parameterized

s u = [ t s , u 0 , . . . , u N−1 ] 
T , where 0 < t s < t f is the switching time be-

ween the first two arcs, then the remaining time is equally di-

ided into N grids, each of which implements a constant input, u k .

In the following, we select N = 40 . This choice is reasonable as

t gives a nominal product of J = 20 . 37 kmol, which corresponds

o a loss of about 0.09 kmol (less than 0.5%) compared to the case

ith N = 100 ; see Fig. 7 which shows the trajectories of x d , x 10 

composition on top stage) and the objective function J . However,

 problem here is that the end product composition is optimally

onstrained at x d (t f ) = x des 
d 

, and this is also the case for all other

perating conditions. Since the basis for all our results is that we

ave unconstrained operation, we propose to consider the follow-

ng modified cost function which adds the end point constraint as

 penalty 

J ′ = −M d (t f ) x d (t f ) + ω 

(
x d (t f ) − x des 

d 

)2 
(70) 

here ω is the penalty factor which is set as 10 5 afterwards. Even

ith a large value for the weight ω, the penalty approach may still

esult in a small constraint violation. We therefore introduce an

xtra safety margin of 0.005, for the desired product quality, which

s realized by using x des 
d 

= 0 . 905 in (70) in the following. 

With the above input parameterization without the third arc

nd the modified cost function, a new static NLP is reformulated,

hich is nominally unconstrained. In the new formulation, the

ominally optimal t s is 1.03 h and J ′ = 19 . 82 . With this, the true

ollected product is J = 19 . 85 kmol with a purity of x d = 0 . 904 .

ote that the reduced product compared to the nominal case is

ainly caused by the backoff of x d . 

.2.3. Self-optimizing control and results 

We want to find a control policy so that operation remains

lose to optimal when there are uncertain disturbances. For self-
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Fig. 7. Nominally optimal trajectories for the batch column ( N = 40 and N = 100). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Local average losses for the batch column. 

subset Structure of H̄ average loss 

y 1 Structure 2 11.22 

Structure 3 21.53 

Structure 4 23.48 

y 2 Structure 2 2.31 

Structure 3 11.23 

Structure 4 16.37 

Fig. 8. Dynamic simulations for y 1 (Structure 2), [ α, V ] = [1 . 4 , 13] . 
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i  
optimizing control, we consider the following two measurement

sets: 

y 1 = 

[
x d u 

]T 
, y 2 = 

[
x 2 x 6 x 9 u 

]T 

where the terminal value of x d in y 1 is the constraint itself, which

seems to be an obvious controlled variable in practice. y 2 con-

tains three in-column compositions, which is advantageous be-

cause the in-column compositions have stronger connections with

other easy-to-measure variables, e.g. the tray temperatures, hence

it would be easier to build an inferential model first when the

compositions are unmeasured in a practical application. In both

cases, the magnitudes of measurement noise are taken as 0.05 for

the compositions and 0.01 for u . 

For both measurements sets y 1 and y 2 , we consider the opti-

mal time-varying LBT structure (Structure 2), the simplified time-

varying diagonal structure (Structure 3) and the further simplified

time-invariant diagonal structure (Structure 4). We obtain the in-

put laws for Structure 2 analytically ( Theorem 4 ), and for Structure

3 and 4 numerically. For example,the solution for measurement set

y 1 becomes (following the initial startup period), 

Structure 2 : u 0 = −1 . 95 + 2 . 40 x d ( t s ) , 

u 1 = −2 . 222 + 1 . 397 x d ( t s ) − 0 . 672 u 0 

+ 1 . 40 x d ( t s + �t ) , 

. . . (71)

Structure 3 : u 0 = −0 . 948 + 1 . 249 x d ( t s ) , 

u 1 = −0 . 557 + 0 . 82 x d ( t s + �t ) 

· · · (72)

Structure 4 : u 0 = −2 . 334 − 2 . 826 x d ( t s ) , 

u 1 = −2 . 367 − 2 . 826 x d ( t s + �t ) ) 

. . . (73)
here �t = (t f − t s ) /N. Notice that, in all cases, the derived results

lso contain an input law for the switching time, t s , as a function

f initial conditions, t s = k 0 + k 1 x d (0) . However, since there in this

ase are no uncertainties assumed in the initial states, it is equiv-

lent to fixing t s at the nominal value. The local average losses

or different schemes are given in Table 5 . It can be observed that

or measurement set y 1 (Structure 2) gives a loss of 11.22, and as

xpected the loss is larger when using Structures 3 and 4 (21.53

nd 23.48, respectively). With measurement set y 2 , the losses are

maller especially for Structure 2 which gives a loss of 2.31. 

In the following, we investigate the performances of the two

easurements subsets y 1 and y 2 for Structure 2. Dynamic simu-

ations for two extreme scenarios, [ α, V ] = [1 . 4 , 13] and [1.6, 17],

re carried out. In the first case, the two disturbances are small

nd give less product. In the second case, the situation is opposite.

The results with [ α, V ] = [1 . 4 , 13] are showed in Fig. 8 and 9

or the two measurement sets, respectively, for 10 0 0 batches with

andom measurement noise. It turns out that in the case of y 1 , 83.9

 batches satisfy the desired terminal quality, x d ( t f ) ≥ 0.9, while for

 2 all batches satisfy this condition, as tabulated in Table 6 . Re-

arding the economic index, the measurement set y 1 gives on aver-

ge 11.01 kmol product, while y 2 gives 10.43 kmol. The better ob-

ective function for y 1 is caused by the under-purified product. For

xample, if we increase the safety margin by setting x des 
d 

= 0 . 912 in

70) , in which case the constraint satisfactions can be about 99 %,

he collected product decreases to 10.14 kmol, which is as expected

orse than y 2 . 

The results for the scenario with [ α, V ] = [1 . 6 , 17] are shown

n Figs. 10 and 11 . This time, measurement set y performs even
1 
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Table 6 

Dynamic simulation performances with 10 0 0 random batches. 

[ α, V ] subset x d ( t f ) average J ( kmol ) 

average s.t.d. ≥ 0.9 

[1.4, 13] y 1 (Structure 2) 0.904 0.0045 83.9 % 11.01 

y 2 (Structure 2) 0.910 0.0034 100.0 % 10.43 

[1.6, 17] y 1 (Structure 2) 0.900 0.0058 51.6 % 28.02 

y 2 (Structure 2) 0.908 0.0021 100.0 % 27.31 

Fig. 9. Dynamic simulations for y 2 (Structure 2), [ α, V ] = [1 . 4 , 13] . 

Fig. 10. Dynamic simulations for y 1 (Structure 2), [ α, V ] = [1 . 6 , 17] . 

Fig. 11. Dynamic simulations for y 2 (Structure 2), [ α, V ] = [1 . 6 , 17] . 
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orse regarding the product purity (51.6% constraint satisfaction).

n the other hand, the control scheme using measurement set y 2 
till gives 100 % constraint satisfaction and a smaller standard de-

iation for x d . As shown in Table 6 , the average objective function

or y 1 is 28.02 kmol, and for y 2 it is J = 27.01 kmol. However, again

he results with y 1 are not really relevant because many batches do

ot satisfy the product constraint. Therefore, the scheme using y 2 
s clearly the best. Note that the objective function values are very

lose to the exact true optimum, see Fig. 11 (c). 

. Conclusions 

In this paper, the self-optimizing control (SOC) methodology

or static process operation was extended to dynamic optimal op-

ration of unconstrained batch processes. The link between the

tatic and dynamic SOC problems was based on a static refor-

ulation of the dynamic optimization problem. In particular, the

xact local method was extended to the dynamic case. For the

ynamic case, the requirement of causality problem results in a

tructure-constrained SOC problem. For the lower-block triangu-

ar (LBT) structured, a convex constrained QP was formulated to-

ether with an analytical solution. On-line implementation of the

roposed SOC solution is very simple, as the inputs can be directly

alculated from the CV functions. A fed-batch reactor and a batch

olumn were studied to illustrate the usefulness of the proposed

ethod. 
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