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Abstract: An engineer always has to make assumptions about the system boundary. In
this paper, the impact of neglected dependencies of manipulated variables on the disturbance
variables as example for said assumptions is investigated in the context of self-optimizing control.
The feedback through dependent disturbances influences both the optimal operating point and
the combination of measurements. As a case study, we consider an ammonia synthesis reactor
with a simplified model for the ammonia separation and the recycle. The disturbance dependency
changes the optimal selection matrices through the recycle. However, we find that it is possible
to neglect the recycle in the selection of the controlled variables for this example if the setpoint
is adjusted.
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ammonia reactors.

1. INTRODUCTION

Control structure design, and in particular what to control,
is important for both economic performance and stabiliza-
tion of a process. The aim of a good control structure is to
operate at the economic optimum while satisfying safety
and environmental constraints in the presence of distur-
bances. In order to achieve economic optimal operation,
different methods can be utilized. One can generally dis-
tinguish between online and offline optimization methods.
Examples for online optimization include real time opti-
mization (RTO) and economic nonlinear model predictive
control (E-NMPC), whereas offline methods include self-
optimizing control (SOC).

The starting point for selecting a good control structure is
to optimize the process for various disturbances. The aim
is to find a simple way of implementing optimal operation,
that is, a simple control structure with a small loss. Fre-
quently, it is difficult to obtain a detailed process model
that can be used for optimization, especially for systems
that incorporate mass and energy recycles. In this situa-
tion, it may be possible to utilize the concepts of surrogate
models to obtain such a process flowsheet (Straus and
Skogestad, 2016), or use submodels in which optimization
is applied locally.

Applying optimization locally, however, results in a sce-
nario where the considered disturbances may be dependent
on the selected input variables through the recycle, result-
ing in a feedback. Furthermore, the cost function may be
different in the overall flowsheet and the submodels. The
submodel operation point does not necessarily correspond
to the true optimum including the recycle loop as well.
Therefore, the application of self-optimizing control to
individual submodels of a large process can result in a
situation, in which the selected measurement combination
is not optimal.

The aim of this paper is to investigate, how the depen-
dency of disturbances may influence the theoretical per-
formance of a self-optimizing control structure. Section 2
recapitulates SOC with focus on the applied exact local
method (Halvorsen et al., 2003), whereas Section 3 looks
into the effect of dependent disturbances in the calculation
of the optimal selection matrix H. Section 4 investigates
the influence of the feedback on a case study representing
an ammonia reactor with a simplified recycle loop.

2. SELF-OPTIMIZING CONTROL

Self-optimizing control (SOC) is the selection of controlled
variables c which when kept constant in the case of a
disturbance, result in an acceptable economic loss (Sko-
gestad, 2000). The starting point is a steady-state opti-
mization problem given by

min
x,u

J(x,d,u)

s.t. 0 = g(x,d,u)

0 ≥ h(x,d,u)

(1)

in which x ∈ Rnx denote the state variables, d ∈ Rnd

the disturbance variables, and u ∈ Rnu the steady-state
degrees of freedom. The process model itself is given by
g : Rnx × Rnd × Rnu → Rng whereas h : Rnx × Rnd ×
Rnu → Rnh denote the operational constraints given by
the process. The cost function J : Rnx × Rnd × Rnu → R
describes an economic cost of the system.

For given disturbances d, we assume that there exists
an input uopt(d) which minimizes the optimization prob-
lem (1). If different values than the optimal input uopt are
chosen for the manipulated variables u, there will be a
steady-state loss

L = J (u,d)− J
(
uopt(d),d

)
(2)
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The aim of self-optimizing control is then to find controlled
variables c which when kept constant give a u that
minimize this loss for expected disturbances.

One direct solution to self-optimizing control is to control
the gradient of the cost function J with respect to the
inputs u (Ju) to 0 as this would imply that the cost
function is always at an extremum. The corresponding
model-free approach of controlling the measured gradient
to zero is called extremum seeking control and dates
back to 1922 (Tan et al., 2010). However, in general, the
gradient cannot be measured. In certain cases it is possible
to express the gradient of the cost function as a direct
function of the measurements and control it to 0 (Jäschke
and Skogestad, 2014).

As it is frequently not possible to obtain the gradient of the
cost function as a simple expression of the measurements
y ∈ Rny

y = hy(x,d,u) (3)

it is necessary to define the controlled variables c as a
function of the available measurements as

c = hc (y) (4)

in which hc : Rny → Rnc may be a function of any
type. Frequently, linear measurement combinations are
used resulting in

c = Hy (5)

in which H ∈ Rnc×ny .

2.1 Linearization of the process model and cost function

The majority of the self-optimizing control methods are
based on a local analysis at the nominal optimal operation
point. This results in a linearization of the measurements

y = Gyu + Gy
dd (6)

where Gy ∈ Rny×nu and Gy
d ∈ Rny×nd are the process

and disturbance gain matrices, respectively. The cost is
approximated through a second order Taylor expansion
around the nominal operation point (u∗, d∗)

J (u,d) =J (u∗,d∗) +

[
Ju

Jd

]T [
∆d
∆u

]
+

1

2

[
∆d
∆u

]T [
Juu Jud

JT
ud Jdd

] [
∆d
∆u

] (7)

with ∆d = d − d∗ and ∆u = u − u∗. Note, that the
derivatives Ju, Jd, Juu, Jud, and Jdd are evaluated at
the nominal point (u∗, d∗). Combining (2) with (7) and
utilizing that Ju = 0 at the optimum, we can calculate the
loss for disturbances d = d∗ as

L =
1

2

(
u− uopt(d)

)T
Juu

(
u− uopt(d)

)
(8)

2.2 Calculation of the selection matrix H

Several methods exist to obtain optimal measurement
combinations, c = Hy. The reader is referred to (Jäschke
et al., 2017) for a concise review of the different methods
which can be utilized. In this study, the exact local method
as developed by Halvorsen et al. (2003) and simplified
by Yelchuru and Skogestad (2012) is utilized. In order to
make a statement about the loss, Halvorsen et al. (2003)

introduced diagonal scaling matrices for the disturbances
Wd and measurement errors Wny as

∆d = Wdd
′; ny = Wnyny′

(9)

in which the vectors d′ and ny′
are assumed to satisfy∥∥∥∥[ d′ny′

]∥∥∥∥
2

≤ 1 (10)

For a given selection matrix H, the linearized model (6),
and the general loss expression (8), it is possible to derive
the worst-case loss (Halvorsen et al., 2003) and the average
expected loss (Kariwala et al., 2008) as

LWC (H) =
1

2
σ̄ (M)

2
(11)

Lavg (H) =
1

2
‖M‖2

F
(12)

in which the loss matrix M is shown to be

M = J1/2
uu (HGy)

−1
HY (13)

with
Y = [FWd Wny ] (14)

The optimal sensitivity matrix for the measurements F can
be obtained numerically or calculated from the linearized
model (Halvorsen et al., 2003)

F =
∂yopt

∂d
(15)

= −
(
GyJ−1uuJud −Gy

d

)
(16)

The optimal measurement combination H can now be cal-
culated as the solution which minimizes the average (12)
and worst case (11). Both these optimization problems
have the same optimal solution (Kariwala et al., 2008)
which can be obtained by solving

min
H

∥∥Juu
1/2 (HGy)

−1
HY

∥∥
F

(17)

The analytical solution to this problem was first described
by Alstad et al. (2009) and later simplified by Yelchuru
and Skogestad (2012) to

HT =
(
YYT

)−1
Gy (18)

From (18) and (14), we can see that the required model
information is Gy and F, where the latter can be calcu-
lated using (16). In practice, if a nonlinear process model is
utilized, it is simpler to calculate F numerically from (15).
Similarly, the loss L can be calculated using the nonlinear
model and optimization problem (1).

3. DEPENDENT DISTURBANCES

Consider the block diagram in Figure 1, where “Local
plant” represents our submodel (ammonia reactor in our
case study) and “Remaining plant” represents the ne-
glected part of the process (the recycle in our case).

The first question now is: Assume that we optimize our
“Local plant” with a fixed value of d0, that is, we neglect
the effect u has on d0 through, for example, the recycle.
Is this acceptable? Of course, the answer is generally no

The second question is: Assume now that we find con-
trolled variables (that is, find H0) based on considering
our “Local plant”. Is this acceptable? Again, the answer
is generally no, but in practice the answer may be “yes” if
the local cost function is the same as the overall one. To
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Fig. 1. Visualization of the dependency of local distur-
bances d0 on the inputs u, measurements y, and the
independent disturbances d.

better understand this, let us consider how the matrices
used to find H in (13) and (14) may change.

To see the difference between Gy (based on the overall
plant) and Gy

0 (based on the local plant), we can look at
the total differential,

Gy ,

(
dy

du

)
d

=

(
∂y

∂u

)
d0

+
∂y

∂d0

∂d0

∂yd0

dyd0

du

= Gy
0 +Gy

d0 G
d0
yd0

Gyd0
u

(19)

with yd0 corresponding to the outlet variables of the local
plant which affect the neglected part, see Figure 1. In our
case, these are the outlet flow, pressure, temperature, and
composition. The gain Gd0

yd0
is the previously neglected

feedback and can be obtained from the submodel of the
remaining plant. The gain Gyd0

u corresponds to the change
in the outlet variables with changing input.

A similar analysis can be conducted for the Hessian of the
cost function (Juu) and the disturbance gain Gy

d.

4. CASE STUDY - AMMONIA SYNTHESIS LOOP

The core of the case study is a three-bed ammonia reactor
previously described by Morud and Skogestad (1998) and
utilized by Straus and Skogestad (2017) in the application
of economic nonlinear model predictive control. In this
model, the disturbances (d0) are the inlet variables to the
system

d0 = [ṁFeed0 pFeed0 TFeed0 wNH3,Feed0] (20)

There exist 3 input variables (u), which correspond to the
split ratios to the three reactor beds. The cost function for
the ammonia reactor is to maximize the extent of reaction
ξ, i.e.

J = −ξ
= −ṁFeed0 (wNH3,Rea − wNH3,Feed0)

(21)

As the reaction is limited by the thermodynamical equi-
librium, a recycle is necessary to utilize the unreacted
hydrogen and nitrogen. The reactor is connected to the
recycle through the inlet stream d0 and the outlet stream
yd0. This recycle stream (dr) corresponds to 75 % of the
mass of the feed to the reactor. Hence, the impact of the
dependency of the neglected remaining plant is expected
to be large in this case study.

Bed 3 Bed 2

T30 T20

Bed 1

T10

Rea = yd0

u3

TIn,1

u1u2

TIn,2

Recycle = dr

Separator

Compressor
Sep

Feed = d

Feed0 = d0

Local plant = Reactor

TIn,3

Fig. 2. Heat-integrated three-bed reactor system incor-
porated into a simple recycle system consisting of a
separator and a recycle compressor.

The model incorporating the recycle is depicted in Fig-
ure 2. In the recycle system, the actual disturbances (which
usually are the true disturbances) are the inlet values to
the new system:

d = [ṁFeed pFeed TFeed wNH3,Feed]
T

(22)

Note, that d0 is dependent on both d and yd0 (through
dr) as fresh feed is mixed with the recycle.

4.1 Model description

The recycle adds the following assumptions to the model
in addition to the ones described previously:

• hydrogen and nitrogen are fed as a stoichiometric
mixture and no inerts are present in the feed, resulting
in neglecting a purge flow;

• the feed to the system determines the pressure in the
reactor as well as the inlet temperature of the reactor
system;

• the pressure drop in the system occurs after the
reactor resulting in a constant pressure in the reactor;

• the compressor operates with a fixed efficiency of
η = 80 % and is considered to be isothermal as the
compression ratio is smaller than 1.1 in an ammonia
synthesis loop;

• the separation is defined via a (fixed) separation
coefficient α = 0.25 and only ammonia is separated.

Based on the assumptions, the separation of ammonia is
then calculated as

ṁSepwNH3,Sep = αṁReawNH3,Rea (23)

2018 IFAC ADCHEM
Shenyang, Liaoning, China, July 25-27, 2018

532



Table 1. Nominal (optimal) inlet conditions for
the reactor

Recycle ṁFeed0 pFeed0 TFeed0 wNH3,Feed0

[kg/s] [bar] [◦C] [wt.%]

Without 70.0 200 250 8.0
With 61.8 200 250 8.3

Additionally, a model equation similar to a valve coefficient
has to be added for the pressure drop after the separator

0 = ṅSep − k
√
pFeed − pSep (24)

with a given pressure drop coefficient k (kmol/(s·
√

bar)).
The compressor duty of an isothermal compressor is
(e.g. Skogestad (2008))

W =
ṅSepRTFeed

η
ln

(
pFeed

pSep

)
(25)

As there is no purge flow and the product is pure ammonia,
all of the feed has to be converted. The system will
therefore operate with a constant extent of reaction, and
hence, it cannot be used anymore as cost function as it
was the case in the local reactor system. Instead, the
new economic cost function corresponds to minimizing the
compressor duty of the recycle loop, i.e.

J = W (26)

As mentioned beforehand, this change in cost function
may affect SOC variables defined for the reactor system.
The new cost function aims at minimizing the flow within
the recycle. This corresponds to minimizing the feed flow
to the reactor while maintaining a constant extent of
reaction. It can be seen as equivalent to the old cost
function where the aim is to maximize the extent of
reaction for a given feed. Alternatively, maximizing the
conversion per pass can be used in both cases as it is
equivalent to ξ for a fixed feed and in addition minimize
the recycle flow.

The optimization was performed using CasADi (Anders-
son, 2013) with IPOPT (Wächter and Biegler, 2006).

Let us first consider the first question in Section 3; is it
possible to optimize the reactor neglecting the recycle?
With the new cost function and the modified system, the
optimal nominal inlet conditions of the reactor are given
in Table 1. Unsurprisingly, it is not possible to neglect the
recycle in the optimization. Especially the reactor inlet
mass flow ṁFeed0 changes a lot due to the recycle. This
is caused by a positive feedback. A higher conversion per
pass corresponds to more ammonia separated, and hence, a
lower recycle flowrate. This in turn increases the residence
time in the beds and hence increases the conversion per
pass. The ammonia mass fraction experiences negative
feedback due to the assumption of a constant split factor.
Hence, its value changes only by a small value. Due to
the aforementioned assumptions, the inlet pressure and
temperature of the system are the same with and without
the recycle stream.

4.2 Application of SOC

This brings us to the second question in Section 3. Are the
controlled variables c0 = H0y based on considering only
the reactor a valid choice?

To this end, we apply the exact local method as explained
in Section 2.2 to both only the reactor (local plant) and to
the reactor+recycle (global plant). In order to reduce the
number of measurements utilized and pair the controlled
variables close to the inputs, each reactor bed is treated
individually and the exact local method is applied to
the inlet temperature and the outlet temperature of the
respective reactor bed; i.e.

yi =

[
TIn,i
Ti0

]
∀i = 1, 2, 3 (27)

This results in the combination of two measurements
and corresponds additionally to selecting measurements
that have a high gain from the input to the respective
measurements.

The scaling matrices for the disturbance and measurement
error in (9) are given by

Wd = diag ([5 20 20 1]) (28)

Wny,i = diag ([4 4]) ∀i = 1, 2, 3 (29)

This implies that the actual optimal operation point with
recycle does not fulfill requirement (10).

Utilizing the initial model of the reactor without recycle
and cost function (21), we achieve the following combina-
tions of self-optimizing control variables (H0)

c1,0 = 0.053 TIn,1+T10
c2,0 = 0.329 TIn,2+T20
c3,0 = 1.311 TIn,3+T30

(30)

whereas, if we incorporate the recycle in the calculation of
our SOC variables and use cost function (26), we get (H)

c1 = −0.288 TIn,1+T10
c2 = −0.161 TIn,2+T20
c3 = 0.940 TIn,3+T30

(31)

Comparing (30) and (31), we can directly see that there are
changes in the SOC variables. The most important mea-
surement (T10, T20) in the first 2 self-optimizing variables
ci remains the same, however the weights change.

This can be partly explained by an increase in the process
gains Gy

1 , Gy
2 , and Gy

3 corresponding to the gains from ui
to yi by around 15% in average:

Gy
1,0 = −

[
576
1071

]
, Gy

1 = −
[

667
1283

]
Gy

2,0 = −
[
603
800

]
, Gy

2 = −
[
703
948

]
Gy

3,0 = −
[
563
229

]
, Gy

3 = −
[
656
253

] (32)

The changes in the optimal sensitivity matrices Fi (not
shown) are even more pronounced, especially for the two
disturbances with different values in the nominal optimal
case; the inlet flowrate ṁFeed0 (ṁFeed) and the inlet mass
fraction wNH3,Feed0 (wNH3,Feed).

Based on these findings, it can be concluded that the
linearization (not surprisingly) looses validity through the
introduction of a recycle stream. This can be caused by
the change in the optimal inlet flowrate of the reactor as
shown in Table 1. ṁFeed0 is reduced by 12 % and should
be outside the linear range of the nonlinear model.
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Fig. 3. Loss as a function of the disturbance for both cases
(H0 and H). The setpoints for the local selection
matrices Hi,0 are not adjusted to optimal setpoints
of the global recycle system.

Adjusting the reactor inlet in the model without recycle
to the new optimal value allows the verification of this
claim. The plant gains Gy

i are in this situation similar to
the ones with recycle. Furthermore, Juu is similar except
for a scalar multiplier. This can be explained by the total
differential (19). In the case of the ammonia reactor with
a maximized extent of reaction, wNH3,Rea is maximized.
In addition, TRea is maximized as well whereas pRea and
ṁRea are unaffected due to mass conservation and the
assumption of constant feed pressure to the reactor. Hence,
in our case Gyd0

u = 0 and

Gy = Gy
0 (33)

This special behaviour occurs, if the outlet variables are
equivalent to the cost function.

The optimal sensitivity matrices change however due the
neglected dependency of d0 on yd0 (and hence u) through
changes in Gy

d and Jud. This explains the changes in the
selection matrices Hi, see (30) and (31).

4.3 Loss calculation

In order to evaluate the performance of both CV selections,
Hi,0 in (30) and Hi in (31), the loss as defined in (2) with
the cost function (26) and the (nonlinear) model including
the recycle was calculated. The setpoints for the controller
in the problem without recycle were given by the optimal
setpoints without recycle. The comparison of both losses
is shown in Figure 3. As can be seen from the red curves
in Figure 3, there is a loss even at the nominal point. This
is not necessarily caused by a poor H0 matrix, but by a
non-optimal operating point.

Hence, the setpoint for the SOC variables should be
adjusted to the new nominal optimum in which the recycle
is considered. The new loss calculations are shown in
Figure 4. It is interesting to note, that the differences are
surprisingly small. For an inlet pressure disturbance and

Fig. 4. Loss as a function of the disturbance for both cases
(H0 and H). The setpoints for local selection matrices
Hi,0 are adjusted to optimal setpoints of the global
recycle system.

mass flow disturbance, the loss is smaller for H, whereas
the loss is higher for H than for H0 for an inlet pressure
and ammonia mass fraction disturbance.

Both H0 and H use the same weighting matrices (9).
As the reactor inlet mass flow ṁFeed0 is varying between
42 kg/s and 84 kg/s for a flowrate disturbance, we can
directly see the incorrect weighting of the inlet mass flow.
Changing the value of the mass flow disturbance in the
weighting matrix to 20 kg/s results in new controlled
variables (H0,2)

c1,0,2 = −0.181 TIn,1+T10
c2,0,2 = −0.053 TIn,2+T20
c3,0,2 = 0.971 TIn,3+T30

(34)

which are more similar to (31). The corresponding loss is
depicted in Figure 5. We can directly see that the difference
in the loss is marginal, especially for ṁFeed, which had the
largest loss in Figure 4. This is not surprising as the the
optimal selection matrix H0,2 (34) is close to H (31).

4.4 Discussion

It has to be highlighted that in this specific case study,
it was possible to define a cost function in the system
without recycle which corresponds to the cost function in
the system with recycle. This is not necessarily the case
for all submodels of recycle systems. If one would consider
the case of a detailed separation section, the aim would
be to minimize the cooling costs for a given feed. This
feed would also represent some of the disturbances to the
model. An unconstrained optimal solution would be given
by no cooling and hence no separation. Therefore, sepa-
ration requirements are needed, either on the separated
product or through assigning cost values to all connection
streams. Hence, the optimal point would be based on
these separation requirements. On the other hand, the
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Fig. 5. Loss as a function of the disturbance for both
cases (H0,2 and H). The setpoints for local selection
matrices Hi,0,2 are adjusted to optimal setpoints of
the global recycle system and the weighting matrix
Wd changed.

total model does not need constraints on the separation
as separating no product would result in no profit.

From the definition of the loss in (2), it is obvious that
there is a constant loss at the nominal operation point
if the setpoint for the self-optimizing variables is not ad-
justed. Recall that the starting point of this investigation
is that it is however too complicated to optimize the
overall model, and hence, to calculate the true optimal
setpoint. Therefore, a model-free approach, e.g. extremum-
seeking control or necessary conditions of optimality track-
ing (François et al., 2005), should be used on top of self-
optimizing control for calculating the optimal setpoint.

5. CONCLUSION

The dependency of considered disturbances on the input
(and measurements) changes the optimal selection matrix
in the application of self-optimizing control. This is the
case even if the actual values of the disturbances, and
hence, the feed to the submodel are unchanged.

The loss is in the investigated case study similar if the
setpoints to the controllers and the disturbance weighting
matrix Wd are adjusted. This cannot be generalized and
is depending on the neglected dependencies.
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Jäschke, J., Cao, Y., and Kariwala, V. (2017). Self-
optimizing control – a survey. Annual Reviews in
Control, 43(Supplement C), 199 – 223.
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