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1. Control Hierarchy in a Process Plant

The control layer is divided into:

@ Regulatory control

@ Supervisory/advanced control
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1. Control Hierarchy in a Process Plant

The control layer is divided into:
@ Regulatory control
» stable operation
@ Supervisory/advanced control

» follows the set points from long-term
economic optimisation

» calculates the set points for the
regulatory layer
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1.Optimal Operation

Objective function
min, J = J(u, x, d)

s.t.
f(u,x,d)=0
g(u,x,d) <0

@ f - model equations

@ g - operational constraints
@ u — degrees of freedom

@ x — states

@ d — disturbances
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1.Active Constraints

Active Constraints

@ variables that should optimally be kept at their limiting value

Reyes-Liia et al. (NTNU)

Advanced Control Structures




1.Active Constraints

Active Constraints
@ variables that should optimally be kept at their limiting value

MV constraints!

@ valves, pumps

CV constraints?

@ pressure,temperature

"Manipulated Variable

2Controlled Variable
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1.Active Constraints
Active Constraints
@ variables that should optimally be kept at their limiting value

@ always control active constraints — control structure (pairing)
depends on the operating region

MV constraints!

@ valves, pumps

CV constraints?

Region 1 Region 2

@ pressure,temperature

"Manipulated Variable

2Controlled Variable
Reyes-Liia et al. (NTNU) Advanced Control Structures 26 July 2018

(&

B
/21



1.Active Constraints

Active Constraints
@ variables that should optimally be kept at their limiting value

@ always control active constraints — control structure (pairing)
depends on the operating region

o disturbances may change active constraint region (space of active
constraints)

MV constraints!

@ valves, pumps

CV constraints?

Region 1 Region 2

@ pressure,temperature
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1.Active Constraints

Active Constraints
@ variables that should optimally be kept at their limiting value

@ always control active constraints — control structure (pairing)
depends on the operating region

o disturbances may change active constraint region (space of active
constraints)

@ how to ensure optimal operation with changing active constraint
region in a systematic way?

MV constraints! d>

@ valves, pumps

CV constraints?

Region 1 Region 2

@ pressure,temperature

"Manipulated Variable

2Controlled Variable A
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2.Classical Advanced Control Structures

Cascade control

Ratio control

Decoupling

Feed-forward

@ Selectors

@ Split range control (SRC) can handle changes in active constraints

e Valve position control (VPC)!

TAlso known as Input Resetting or Mid-Ranging
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2.Selectors for changes in active constraints

—_————

Reyes-Liia et al. (NTNU) Advanced Control Structures 26 July 2018

7/21



2. Split Range Control (SRC) for input constraints
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2. Valve Position Controller (VPC) for input constraints
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2. Two Controllers with min selector as alternative to SRC
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3.0ptimal Operation using Advanced Control Structures
Proposed systematic procedure

Step 1 Define control objectives and priority list of constraints
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3.Priority List

In Step 1.

If there are more CVs than MV —

P1 MV inequality constraints — physical constraints
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3.Priority List

In Step 1.
If there are more CVs than MV —

P1 MV inequality constraints — physical constraints
P2 CV inequality constraints — may be given up

P3 MV or CV equality constraints — optimal operation
P4 Desired throughput (TPM) — give up at bottleneck
P5 Self-optimizing variables! — can be given up

variables that minimize the loss when kept constant in spite of disturbances
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3.Handling Constraints

In Step 2.

Input Saturation Pairing Rule

An important controlled variable (CV) (which cannot be given up) should
be paired with a manipulated variables (MV) that is not likely to saturate.

v

MV Constraint

@ If pairing rule was followed: give-up low priority CV.
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3.Handling Constraints

In Step 2.

Input Saturation Pairing Rule

An important controlled variable (CV) (which cannot be given up) should
be paired with a manipulated variables (MV) that is not likely to saturate.

v

MV Constraint

@ If pairing rule was followed: give-up low priority CV.

@ If pairing rule was not followed: reassign high priority CV to MV
controlling low priority CV.

SRC or VPC + min/max selector

CV constraint

@ Give-up low priority CV — min/max selector
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4.Case study: Optimal Control of a Cooler
Control Objectives

Case study: Counter-current heat exchanger.

important CV: Th

o

o less important CV (TPM): Fh N @ T @ ,
e MV: Fc

o disturbance: 7" @

Reyes-Liia et al. (NTNU) Advanced Control Structures 26 July 2018 14 /21



4. Priorities and Constraints

Define the priority list for step 1.

Pl Fc < Fpax T

PL Fy < Ffjo o ey Fu
P2 Ty=T;F .

P3 Fy=FF
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4. Pairing at the nominal operating point
Step 2 in the procedure

Pairing
@ Use Fc to control Th.
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4. Pairing at the nominal operating point
Step 2 in the procedure

Pairing
@ Use Fc to control Th.

@ Impossible to use the input saturation pairing rule — Fc may saturate
for a large 7/".
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4. Active Constraints Regions

O 5 Infeasible Operation
~ Region @

= 26

) Region @

g 24

g May set F,, freely

5 22

= Region @ N

20 . . . . .
0 05 1 15 2 25
Hot stream mass flow, FH (kg/s)
Task

Active constraints in each region:
o Region 1: Fy = F;P < FJ?
o Region 2: Fy = F;f = F[J?
@ Region 3: Fc = F*

Compare 3 alternatives Advanced Control Structures to handle a transition
from Region 2 (the nominal operation point) to Region 3.
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4. Alternative 1: Split Range Control

TCm
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Tcin
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4. Alternative 2: Valve Position Controller
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4. Alternative 2: Valve Position Controller
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4. Alternative 3: Two Controllers

TCin
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4. Alternative 3: Two Controllers
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5.Conclusions

@ Systematic procedure to find control structure for systems with
change of active constraints
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supervisory control layer

@ Optimal control for simple systems with input saturation can be
achieved using advanced control structures

@ Split range control outperforms the two other alternatives
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