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Abstract: A main assumption in many works considering multistage model predictive control
(MPC) is that discrete realizations of the uncertainty are chosen a-priori and that the scenario
tree is given. In this work, we focus on choosing the scenarios, which is an important practical
aspect of scenario-based multistage MPC. In many applications, the distribution of the uncertain
parameters is not available, but instead a finite set of data samples are available. Given this
finite set of data samples, we present a data-driven approach to selecting the scenarios using
principal component analysis (PCA). Using this approach, the scenarios are carefully selected
such that the conservativeness of the solution can be reduced while still maintaining robustness
towards constraint feasibility. The effectiveness of the proposed method is demonstrated using
a simple example.
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1. INTRODUCTION

Model predictive control under uncertainty is an active
research area that has received tremendous attention in
the recent past, with developments in several different
approaches to robust and stochastic MPC in the control
literature. Many of these approaches solve an open loop
optimization problem to determine the optimal control
sequence, taking into account the uncertainty. However,
this may not be optimal, since efficient handling of uncer-
tainty requires feedback. In a recent review paper, Mayne
(2014) notes that a better strategy would be to optimize
over different control trajectories (closed-loop optimiza-
tion) rather than a single control trajectory (open-loop op-
timization). One such closed-loop optimization strategy is
the multistage scenario MPC also known as feedback min-
max MPC or scenario-tree MPC (Scokaert and Mayne,
1998; Lucia et al., 2013).

In this approach, the evolution of the uncertainty in
the prediction horizon is described by a scenario tree
generated using discrete realizations of the uncertainty. By
computing different control trajectories for the different
scenarios, the notion of feedback, also known as recourse,
is explicitly taken into account in the receding horizon
implementation. This was later extended to nonlinear
model predictive control by Lucia et al. (2013) in the
framework of robust multistage MPC. The approach has
since then received a lot of interest and has been applied
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to several chemical process systems (Lucia and Engell,
2013; Mart́ı et al., 2015), autonomous vehicles (Klintberg
et al., 2016), energy systems including power systems, oil
and gas (Krishnamoorthy et al., 2016; Verheyleweghen and
Jäschke, 2017), building climate control (Maiworm et al.,
2015) etc. to name a few.

Most of these works assume that the uncertainty charac-
teristics are known a-priori and that the discrete scenar-
ios are given, for example, based on engineering insight
before the MPC is designed. However, the issue of how to
select the discrete realizations of the uncertainty for the
scenario tree generation is an important practical aspect
that has not been well studied in the control literature.
Nevertheless, the problem has recently been considered in
the operations research community under the topic of mul-
tistage stochastic optimization and is usually applied only
for convex multistage optimization problems assuming full
recourse. For example, Monte-Carlo sampling methods
were considered in Shapiro (2003) and moment matching
methods of the probability density functions (PDF) were
used in Høyland et al. (2003). Lucia et al. (2013) also noted
that the issue of how to generate the scenario tree for MPC
applications is an important future research direction that
must be addressed to enable practical implementation of
such methods. Recently, a quadrature-based scenario tree
generation was proposed using sparse grids by Leidereiter
et al. (2014).

In many real applications, the probability distribution
function (PDF) or the uncertainty set for the uncertain
parameters is not readily available, but only a finite num-
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ber of data samples may be available. Classical stochastic
MPC frameworks make use of such data indirectly to
infer the probability distribution of the uncertain problem
parameters by means of statistical estimation methods.
The estimated probability distribution function is then
subsequently used in the optimization problem (Parys
et al., 2016). Thus classical stochastic MPC problem is
based on this two-step approach:

(1) estimate the PDF from the finite data samples
(2) use the estimated PDF in the optimization problem.

The main issue with this two step approach is that the
estimation step often aims to achieve maximum prediction
accuracy without tailoring it to the optimization problem.
Hence, the estimated probability distribution function it-
self may be uncertain as noted by Parys et al. (2016) (lead-
ing to recent developments in the so-called distributionally
robust optimization). In multistage MPC, the scenario
tree is generated using a finite number of uncertainty
representations. Given finite data samples, the uncertainty
representations may be chosen directly from this data set,
thus releasing the assumption of the uncertainty having
any particular distribution.

Therefore in this paper, we propose a data-driven multi-
stage scenario MPC problem that avoids the estimation
of probability distribution functions and selects discrete
realizations of the uncertainty from the finite set of data
samples using Big data analytics.

In the case of multi-dimensional parametric uncertainty,
the scenario tree becomes large. In such cases, careful se-
lection of scenarios becomes very important to reduce the
conservativeness and keep the computation cost low. Given
a finite set of data for the different parameters, the use of
univariate statistical analysis may fail to detect the rela-
tionship between the different parameters. Consequently,
this often leads us to choose the scenarios assuming that
the parameters are independent of one another. The re-
sulting scenario tree may then span over an unnecessarily
large uncertainty space leading to conservative solutions.
Big data analytics can examine such large and varied
data sets to uncover hidden correlations and can help
us choose the scenarios. Therefore in our approach, the
relationship between the different parameters is exploited
to carefully choose only those combinations of parameters
that are likely to be the true realization of the uncertain
parameters.

In this paper, we address the issue of how to choose the
discrete scenarios from a finite number of data samples and
propose the use of multivariate data mining tools such as
principal component analysis (PCA) to judiciously choose
the scenarios in order to reduce the conservativeness. We
use an example to motivate and demonstrate the use of
PCA in choosing the scenarios for the multistage MPC
formulation.

Methods such as principal component analysis have long
since been used together with model predictive control.
Among these, the two main application areas combining
MPC and PCA has been 1) online performance monitoring
(Loquasto and Seborg, 2003; Qin and Yu, 2007; AlGhaz-
zawi and Lennox, 2009) and 2) model reduction (Maurath
et al., 1988; Wang et al., 2002; Drgoňa et al., 2018). In
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Fig. 1. Schematic representation of a scenario tree gen-
erated for M = 5 models and a robust horizon of
Nr = 1.

an another interesting approach by Liu et al. (2006), the
MPC framework is used to control the score space of the
PCA to reduce variations in product specifications.

The remainder of the paper is organized as follows. We
introduce the multistage MPC problem in Section 2. Using
a simple example, Section 3 motivates the need for data-
mining techniques for choosing the discrete scenarios and
describes the proposed data-driven multistage scenario
MPC using principal component analysis (PCA). Simu-
lation results for the corresponding multistage scenario
MPC are provided in Section 4 as a proof-of-concept. Sec-
tion 5 provides some useful discussions and future research
directions towards Big data optimization with respect to
multistage MPC before concluding the paper in Section 6.

2. MULTISTAGE MPC

Consider a discrete time nonlinear dynamic system

xk+1 = f(xk,uk,p) (1)

where xk ∈ Rnx and uk ∈ Rnu denotes the states and
inputs at time step k respectively and p ∈ Rnp denotes the
vector of constant but uncertain parameters. The objective
is to minimize a performance function J(xk,uk) : Rnx ×
Rnu → R while satisfying constraints g(xk,uk) ≤ 0 using
an MPC with a prediction horizon of length N .

In multistage MPC, branching of the scenarios at each
sample makes the problem size to grow exponentially over
the prediction horizon. In order to curb the problem size,
the scenario tree branching is stopped after a certain
number of samples Nr < N known as robust horizon as
justified by Lucia et al. (2013).

Given M discrete realizations of the uncertainty and a
robust horizon of length Nr, we then have S = MNr

discrete scenarios in the scenario tree as shown in Fig. 1.
The resulting multistage MPC problem can be formulated
as,
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Fig. 2. Raw data of the two parameters p1 (left subplot)
and p2 (right subplot).

min
xk,j ,uk,j

S∑
j=1

ωj

N∑
k=1

J(xk,j ,uk,j) (2a)

s.t.

xk+1,j = f(xk,j ,uk,j ,pj) (2b)

g(xk,j ,uk,j) ≤ 0 (2c)
S∑

j=1

Ejuj = 0 (2d)

∀k ∈ {1, . . . , N},∀j ∈ {1, . . . , S}
where the subscript (·)k,j denotes the time step k and sce-
nario j and ωj represents the weight given to each scenario.
(2d) represents the non-anticipativity constraints with

uj =
[
uT
0,j · · ·uT

N−1,j

]T ∈ RnuN . The non-anticipativity
constraints enforce the fact that all the decisions that
branch at the same parent node are the same. This cap-
tures the real-time decision process correctly, since the
control inputs cannot anticipate the future realization of
the uncertainty, see Krishnamoorthy et al. (2018a,b) for
more details on the structure of Ej .

In this paper, we consider a constrained optimization
problem under uncertainty, where the constraint feasibility
must be ensured for any given realization of the uncer-
tainty at the cost of conservativeness. Multistage MPC
was shown to provide robust constraint feasible solutions
whilst being less conservative than min-max approaches
(Lucia et al., 2014).

In the next section, we will present a method for analyzing
the data and choosing appropriate M discrete realizations
of the uncertain parameters p given a finite set of data
samples representing the uncertainty. Note that we require
no knowledge on how the data is distributed, however, we
assume that discrete historical data samples are available
for the different uncertain parameters.

3. DATA-DRIVEN MULTISTAGE MPC

3.1 Motivating example

For the sake of simplicity, let us consider a system with
two parameters (np = 2) and the finite data samples for
each of the parameters are available as shown in Fig. 2.
At first glance, the data samples tell us that each of
the parameters vary in [−1, 1]. With no additional in-
formation, one often tends to assume that the param-
eters are uncorrelated, and assumes for example, a box
uncertainty set. Consequently, the discrete realizations of
the uncertainty from the four corners of the uncertainty
set and the nominal value may be chosen, namely, pj ∈
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Fig. 3. Multivariate plot of the two parameters. The points
pj ∈ {(−1,−1), (1,−1), (0, 0), (−1, 1), (1, 1)} are rep-
resented by the black ’+’ and the gray shaded area
represents the univariate limits of the two parameters.

{(−1,−1), (1,−1), (0, 0), (−1, 1), (1, 1)}, to get a good rep-
resentation of the uncertainty as shown in Fig. 3 (in gray
shaded area). It is also often argued that a combination
of extreme and nominal values of the all the parameters
must be part of the scenario tree (Lucia et al., 2013).

However, plotting the two parameters against each other
gives us more information about the relationship between
the two parameters, as shown in Fig. 3. One can imme-
diately see that pj selected using independent parameter
variations includes parameter combinations that are un-
likely to be the true realization of the uncertainty. Seeking
robustness against parameter combinations that are not
likely can lead to very conservative and hence suboptimal
operation. The information from the simple multivariate
plot in Fig. 3 gives us more information into the data’s
hidden structure which can be exploited to choose the
different uncertainty realizations that are more likely. This
simple two parameter example already motivates the need
for multivariate data analysis methods when choosing the
discrete scenarios for multistage MPC.

When the number of parameters and the number of
data points increases, it can be cumbersome and time
consuming, if not impossible, to plot two parameters at a
time to find out the hidden structures in the data simply
due to information overload and the effort required to
make each plot. Multivariate data mining approaches that
attempt to find the hidden structure in big data sets can
thus lead to more information that would not have been
otherwise discovered. This can directly be exploited in
the scenario tree generation to select and include only
those parameter combinations that are likely to be the
true realization of the uncertainty.

3.2 Data mining using principal component analysis

Principal component analysis (PCA) is a universal data
mining tool for extracting useful information hidden in
massive amounts of data (Seber, 1984). Principal com-
ponent analysis attempts to explain the variability in a
given set of data by separating the data into so-called
principal components (PC) where each PC contributes to
explaining the total variability of the data. More specifi-
cally, PCA uses an orthogonal transformation to convert
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a set of (possibly correlated) data into a set of linearly
uncorrelated principal components. This transformation
is such that the first principal component explains the
largest variance in the data set and the other PCs are
ordered in decreasing component variance. A principal
component therefore points out which variables contribute
most to the observed variability in the data and finds the
relationship between the different variables (Rao, 1964).
In simplest terms, PCA can be thought of as fitting a
multi-dimensional ellipsoid to the data, where each axis of
the ellipsoid represents a principal component (Hotelling,
1933).

Consider a data set with no number of observations for
each parameter and the data is represented by a data
matrix P ∈ Rno×np . It is important to note that PCA
is sensitive to the scaling of the variables and hence the
data must be scaled. In addition, mean-centering is also
necessary to ensure that the first principal component
describes the direction of maximum variance (Jolliffe,
1986).

Therefore, let P0 ∈ Rno×np be the scaled and mean-
centered data matrix corresponding to P. PCA returns
the bilinear model

P0 = ΛCT (3)
where the matrix Λ ∈ Rno×np contains the so-called scores
(left-hand eigenvectors). The scores represent the distance
of the different data points from the mean along the direc-
tion of the principal components. The matrix C ∈ Rnp×np

contains the coefficients of the principal components which
represents the weight by which each original data point
should be multiplied to get the component score.

The principal components, scores and coefficients are use-
ful means of understanding the correlation between the
different parameters. This information can be exploited in
choosing the scenarios as explained in the section below.

In the following subsection, we show how PCA can be
used to select scenarios for the multistage robust MPC
framework, which to the best of our knowledge has not
been used before.

3.3 Scenario generation using data

We now describe how the scores and the coefficients
from the principal component analysis can be used to
select the discrete realizations of the uncertain parameters.
The variance in the scores along the different principal
components can be used to describe the uncertainty set
instead of using the univariate parameter data. To do this,
we pick the data points corresponding to the maximum
and minimum scores along the directions of the different
principal components that explains the variability with
sufficient component variance. Using the coefficients of
the principal components, we can then transform this to
the original parameter space. These points now form the
discrete realizations of the uncertainty that represents the
uncertainty space.

This is further illustrated using the data set for two
parameters shown in Fig. 2 and Fig. 3. The score plot
for this data set is shown in Fig. 4, where the data points
corresponding to the maximum and minimum scores along
first and second principal component directions are shown

Fig. 4. Score plot along the two principal component direc-
tions. The data points corresponding to the maximum
and minimum scores along the two PC directions are
shown in blue circles.
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Fig. 5. Data plot in the original space, with realizations
corresponding to maximum scores on first and second
principal components marked by red ‘×’. The black
‘×’ correspond to realizations picked by simply taking
the combination of extreme values of the parameters.

in blue circles. These are then transformed into the original
parameter space as shown in Fig. 5 using a red ‘×’. We can
see that the discrete realizations selected using principal
component analysis captures the parameter variations
more tightly than the ones chosen by looking at the
parameter variations independently.

The proposed approach can thus be summarized by the
following steps,

(1) Scale and mean center the data set P to obtain P0.
(2) Perform PCA to compute the principal components

and the scores for each of the data points Λ and the
corresponding co-efficient matrix C of the principal
components.

(3) Pick out the maximum and minimum scores along the
direction of the different principal components that
sufficiently explain the total variance of the data.

(4) Using the coefficient matrix, re-transform the selected
scores from step 3 to the original data space.

(5) Generate the scenario tree based on the discrete
realizations of the uncertainty selected in step 4.
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4. ILLUSTRATIVE EXAMPLE

In this section, we now compare the effect of the discrete
realizations of the uncertainty on the performance of the
multistage scenario MPC. We consider a simple example,
where the system is given by a model with two states
x = [x1, x2]T and one control input u = u and two
uncertain parameters p = [p1, p2]T as shown below,

ẋ1 =
1

τ

(
−3.5u2 + 30u− x1

)
(4)

ẋ2 =
1

τ
(4u+ 2p1 + 4p2 + 10− x2)

with τ = 5s being the time constant.

The objective is to maximize x1 while satisfying con-
straints on x2 despite the uncertainty in p1 and p2. We
apply the multistage scenario MPC approach (2) with,

• stage cost J(xk,j ,uk,j) = −x1,
• system model (4) discretized using third order direct

collocation,
• inequality constraint (2c): x2 ≤ 20,
• uncertain parameters discretized into M = 5 realiza-

tions of the uncertain parameter
• non-anticipativity constraints (2d).

We choose a prediction horizon of T=1 min divided equally
into N = 60 samples and a robust horizon of Nr = 2 sam-
ples (25 scenarios). The true realization of the parameters
for the simulation was chosen to be at its nominal value
(0, 0). The resulting multistage MPC was implemented in
MATLAB using CasADi algorithmic differentiation tool (An-
dersson, 2013) version 3.1.0, and IPOPT solver (Wächter
and Biegler, 2006) was used to solve the resulting nonlinear
programming problem.

We first simulate the multistage scenario MPC using pj

selected using the parameters variations independently, as
shown in Table.1 (Simulation 1) and in Fig. 5 using black
‘+’. This corresponds to using the corner points of the
box [−1 1]× [−1 1]. The points at the boundaries that
constitute a combination of the minimum and maximum
values of the uncertain parameters along with the nominal
point (0,0) have been selected to get a good representation
of the uncertainty based on the time series (univariate)
data in Fig.2. This simulation is used as a benchmark.

We then solve the same problem but by replacing pj

which is now selected using principal component analysis
as shown in Table.1 (Simulation 2) and Fig. 5 using red
‘×’. The simulation results are compared in Fig. 6. The
left subplot shows x1 which has to be maximized, the
right subplot shows x2 which must be maintained below
its maximum value of 20. It can be clearly seen from the
simulation results that the scenarios chosen using principal
component analysis is much less conservative than the
scenarios chosen using the parameter data independently.
This is because, in the proposed approach, we do not
consider scenarios in the scenario tree that are not likely
to be the true realization of the uncertainty.

We then simulated the system for 30 runs with different
randomly chosen realizations of the uncertain parameters
in the plant simulator as shown in Fig. 7 (right subplot).
To evaluate the performance, we also plot the integrated
objective (left subplot), which is the objective function J

Table 1. Discrete realizations of p used in the
simulations

j Simulation 1 Simulation 2
p1 p2 p1 p2

1 1 1 0.18 0.44
2 1 -1 0.79 -0.92
3 0 0 0 0
4 -1 1 -0.87 0.99
5 -1 -1 -0.18 -0.56

Fig. 6. Simulations results with two different set of scenar-
ios.

Fig. 7. Monte Carlo Simulations results with different
realizations of the uncertain parameters.

integrated over the entire simulation time of t = 60 min
for each simulation, i.e. integrated objective

Jint =

∫ t=60

t=0

J(t) dt.

It can be clearly seen that by using the scenarios selected
using the PCA method, we are able to improve the
performance for different realizations of the uncertainty
from the given data set whilst being robust feasible.

5. DISCUSSION AND FUTURE WORK

In this paper, we proposed to use data mining approaches
to select the scenarios based on a finite set of data samples.
Note that we have purposefully used a simple example
with two uncertain parameters to clearly demonstrate the
concept to readers of any level of expertise with such
methods. Indeed, the full potential of such data-mining
techniques is realized for large data sets with multidi-
mensional parameters, where it may be difficult to select
the scenarios purely based on engineering intuition and
univariate analysis. For example, consider the building

2018 IFAC NMPC
Madison, WI, USA, August 19-22, 2018

562



1
-1

-0.5

0-1

0

-0.5

0.5

1

0
0.5 -11

1

-1

0

-0.5

-1

0

-0.5

0.5

0

1

0.5 -11

Fig. 8. Data samples for three parameters and the corre-
sponding score plot.

climate control problem, where many uncertain param-
eters such as temperature, humidity, cloud cover, solar
radiation, building occupancy level etc. affect the building
climate control problem. Multistage MPC for the building
climate control was shown to be a promising approach in
Maiworm et al. (2015). One or more of these parameters
affecting the climate control problem may be correlated,
such as cloud cover, solar radiation and temperature. Us-
ing historical data of the weather conditions and building
occupancy levels, multivariate data mining techniques can
be used to appropriately choose the scenarios to reduce the
conservativeness, instead of picking the scenarios based on
a combination of maximum and minimum values of the dif-
ferent parameters. By doing so, one can potentially reduce
the number of scenarios or the span of the scenario tree to
be used in the multistage MPC problem. The application
of the proposed data-based scenario selection approach for
a building climate control problem is an ongoing work.

5.1 Scenario reduction using variability explanation

Methods such as principal component analysis also pro-
vides the percentage of variability explained by the differ-
ent principal components. This information can in addi-
tion, be used to discard scenarios that do not sufficiently
explain the variability in the data, hence reducing the
number of scenarios that must be considered in the mul-
tistage scenario MPC problem. This can help reduce the
problem size. For example, consider a different data set
for three parameters as shown in Fig. 8. The PCA for this
data set returns three principle components, where the
first principle component explains 72.5% and the second
principal component explains 26.9% of the variability in
the data. The third principal component explains only
0.48% of the variability. Based on this, we can then select
the maximum and minimum scores along the direction
of the first and second principle components and discard
the scenario combinations along principal component 3,
since it does not sufficiently explain the variability of the
data. This helps in reducing the number of scenarios to be
included in the scenario tree.

5.2 Weighting in the MPC cost function

The different scenarios can be weighted in the optimization
problem as shown in (2a). The results from principal
component analysis can not only be used to select the
scenarios from the data, but also provide a weight for the
selected scenario.

As mentioned earlier, the scores provided by the PCA
represent how far a data point is from the mean along
the direction of the principal components. Since the data

matrix is mean-centered, the data points with large scores
are far away from the mean and the vice versa. The weight
given to a data point that is far away from the mean (i.e.
large score) must be low, compared to the weight given
to a data point that is closer to the mean (i.e. low score).
Therefore, the weights for the discrete scenarios selected by
the PCA method are chosen to be inversely proportional
to its score.

5.3 Online update of scenarios

In this paper, we assumed that a finite set of data sam-
ples are available which was used to select the scenarios
offline using principal component analysis. As more data
points become available, PCA can also be used online
to continuously adapt the scenarios to reflect the most
recent data points. This can be especially useful when
the uncertain parameters are time varying in nature. As
more data points become available, this information can be
included to update the different scenarios in the multistage
MPC formulation.

5.4 Other data analytic methods

It must be noted here that PCA does have its limitations,
although it works well with the example considered in this
work. PCA aims to find hidden linear correlations within
the data set, and is thus lacking when data has inherently
nonlinear correlations. Further, it only finds PCs that are
orthogonal to each other, whereas the projections within
the data with highest variance may be nonorthogonal in
nature.

For data that is not linearly separable, other data classi-
fiers such as the nonlinear support vector machines (SVM)
may be used. The nonlinear SVM maps the given data
into a higher-dimensional space using so-called kernel func-
tions, and the transformed data is then linearly separable.
Another avenue for further research in improving upon
the proposed methodology would be to use advanced data
mining techniques for outlier detection. This would be
helpful in eliminating the selection of parameters that
correspond to ‘unlikely’ scenarios and help reducing the
conservativeness of the solution.

In the previous section, we selected the scenarios cor-
responding to the maximum scores along the different
PC directions. This was done in order to ensure robust
constraint feasibility for any realization of the uncertain
parameters from the given data set. Alternatively, the
scenarios can be chosen based on the scores that falls
within some user-defined percentile along the different
PC directions to further reduce the conservativeness by
trading off on the constraint satisfaction. For example, the
scenarios can be chosen using the scores that fall within
the 90th percentile in order to reduce the conservativeness
to ensure constraint satisfaction with a given probability
(analogous to using a chance constrained MPC formu-
lation). Alternatively, one may also use the associated
probabilities of the data points to appropriately choose
the scenarios. Note that more rigourous analysis must be
carried out to get an equivalent performance as using a
chance constrained optimization, which is another useful
future research direction.
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6. CONCLUSION

To conclude, we have motivated the need to develop
methods to appropriately choose the scenarios based on
a finite sample of historical data. Using a simple example
we have demonstrated the concept of how data mining
techniques such as principal component analysis can be
used to uncover hidden structures in the data, which can
then be exploited in choosing the necessary scenarios and
discarding the scenarios that need not be considered in
the optimization problem. This leads to a less conservative
solution as demonstrated in the simulation example. We
have also provided some discussions on possible research
avenues towards using data mining techniques for scenario
selection and hope to stimulate further research in this
direction.
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