
Optimization of Fixed-Order Controllers Using Exact
Gradients

Chriss Grimholt and Sigurd Skogestad

September 6, 2018

Abstract

Finding good controller settings that satisfy complex design criteria is
not trivial. This is also the case for simple fixed-order controllers including
the three parameter pid controller. To be rigorous, we formulate the design
problem into an optimization problem. However, the algorithm may fail to
converge to the optimal solution because of inaccuracies in the estimation of
the gradients needed for this optimization. In this paper we derive exact
gradients for the problem of optimizing performance (iae for input and
output disturbances) with constraints on robustness (Ms, Mt). Exact
gradients, give increased accuracy and better convergence properties than
numerical gradients, including forward finite differences. The approach may
be easily extended to other control objectives and other fixed-order
controllers, including Smith Predictor and pidf controllers.

1 Introduction

The background for this paper was our efforts to find optimal
proportional-integral-derivative (pid) controllers for first order plus time delay
(foptd) processes. The pid controller may be expressed as

Kpid(s; p) = kp + ki/s + kds (1)

where kp, ki, and kd are the proportional, integral, and derivative gain,
respectivly. The objective was to minimize for the simple feedback system in
Figure 1, the integrated absolute error (iae) (time domain)

min
K

iae =
∫ ∞

0

∣∣e(t)∣∣dt, (2)

1

for given disturbances subject to achieving a given frequency domain robustness
Mst

Mst = max{Ms, Mt} ≤ Mub. (3)

where Ms and Mt are the peaks of the sensitivity and complementary sensitivity
functions, respectively. In general, this is a non-convex optimization problem
which we initially solved using standard optimization software in Matlab. We
used gradient-free optimization like the Nelder-Mead Simplex method (Nelder
and Mead, 1965), similar to the work of Garpinger and Hägglund (2008), and
used simc settings (Skogestad, 2003) as initial values for the pid parameters.
However, the gradient-free method was slow and unreliable for our purpose of
generating trade-off curves between iae and Mst, which involves repeated
optimizations with changing Mst-values (Grimholt and Skogestad, 2013).

We achieved significant speedup by switching to gradient-based methods
(fmincon in Matlab), where the gradients of the cost function (J) and the
constraints (Mst) with respect to the controller parameters were found
numerically using finite differences. Our experience with this approach were
fairly good, but quite frequently, for example for small values of Mst, it did not
converge to a solution. Surprisingly, this also occurred even though the initial
guess was close to the optimum. It turned out that the main problem was not
the non-convexity of the problem or the possibility for local minima, but rather
inaccuracies in the estimation of the gradients when using finite-differences.

This led us to derive exact (analytical) expressions for the gradients of iae

and Mst ≤ Mub. This approach is based on the chain rule, that is, first we
derive the gradient of iae with respect to the control error e(t), then the
gradient of e(t) with respect to the controller K(s), and then the gradient of K(s)
with respect to the controllers parameters p. Some of the gradients are derived

K(s)
u

G(s)

du dy

y

F (s) n

eys
−

Figure 1: Block diagram of the closed loop system. In this paper we assume
ys = 0, n = 0, and F(s) = 1. K(s) is the feedback controller, G(s) is the process,
and F(s) is the measurement filter (part of the controller). with controller K(s)
and plant G(s).

2

in the Laplace domain, but they are evaluated in the time domain, based on a
delayed state space realization.

The derivation of these gradients is the main part of the paper (Section 4).
Our experience with exact gradients has been very good, and we achieve
convergence for a much wider range of conditions in terms of constraints (Mst)
and models, see Section 4.4. In addition, the approach can easily be extended to
other fixed-order controller (e.g., proportional-integral-derivative-filter (pidf)
controller, Smith Predictor), and to other process models. This is discussed in
Section 5. Naote that the gradient of iae is not calculated using direct sensitivity
results (Biegler, 2010), but calculated through Laplace transforms. This greatly
simplifies the derivation and the numerical results are good.

A preliminary version of this results was presented at the
PSE2015/ESCAPE25 conference (Grimholt and Skogestad, 2015). The main
contribution compared to the conference paper is to provide a derivation of the
gradients and focus on general fixed-order controllers instead of just PID.

2 Previous related work on optimal PID tuning

The simple three-parameter pid controller is the most common controller in the
process industry. However, finding good tuning parameter by trial and error is
generally difficult and also time consuming. Alternatively, parameters may be
found for by use of tuning rules (e.g. Ziegler and Nichols (1942), and the
simc-rules of Skogestad (2003)). Nevertheless, when the complexity of the
design increases, it is beneficial to switch to optimization-based design. This
approach can handle complex process models, non-standard controller
parametrizations, and special requirements on controller performance and
robustness.

The first systematic contribution on pid tuning is the famous Ziegler-Nichols
(zn) tuning rule published in 1942 under the title Optimum Setting for
Automatic-Controllers. However, the “optimum” pid settings were manly derived
from visual inspection of the closed-loop response, aiming at disturbance
attenuation with a quarter decay ratio, which results in a quite oscillatory and
aggressive response for most process control application.

Hall (1943) proposed finding optimal controller settings by minimizing the
integrated squared error (ise =

∫
e2 dt). The ise criteria is generally selected

because it has nice analytical properties. By minimizing ise, Hazebroek and
Van der Waerden (1950) analyzed the zn tuning rule, and proposed an
improved rule. The authors noted that minimizing the ise criterion could give
rise to large fluctuations in the manipulated variable, and that the allowable
parameters must be restricted for these processes. The analytical treatment of

3

the ise-optimization was further developed in the influential book by Newton
et al. (1957).

The first appearance of a “modern” optimization formulation, which
includes a performance vs. robustness trade-off, similar to the one used in this
paper, is found in Balchen (1958). Balchen minimizes the integrated absolute
error (iae =

∫
|e|dt) while limiting the peak of the sensitivity function (Ms).

The constraint on Ms may be adjusted to ensure a given relative dampening or
stability margin. This is similar to the formulation used much later in
Kristiansson and Lennartson (2006). In addition, Balchen mentions the direct
link between minimizing integrated error (ie =

∫
e dt) and maximizing the

integral gain (ki) for a unit step input disturbance, as given by the relationship
ie = 1/ki. Though the paper of Balchen is very interesting, it seems to have
been largely overlooked by the scientific community.

Schei (1994) followed up this idea and derived proportional-integral (pi)
settings by maximizing the integral gain ki subject to a given bound on the
sensitivity function Ms. Åström et al. (1998) formulated this optimization
problem as a set of algebraic equations which could be efficiently solved. In
Panagopoulos et al. (2002) the formulation was extended to pid control, and a
fast concave-convex optimization algorithm is presented in Hast et al. (2013).
However, quantifying performance in terms of ie can lead to oscillatory
response, especially for pid controllers, because it does not penalize oscillations.
Shinskey (1990) argued that the iae is a better measure of performance, and iae

is now widely adopted in pid design (Ingimundarson and Hägglund, 2002;
Åström and Hägglund, 2006; Skogestad, 2003; Huba, 2013; Garpinger et al.,
2014; Alfaro et al., 2010; Alcántara et al., 2013).

3 Problem Formulation

3.1 Feedback system

We consider the linear feedback system in Figure 1, with disturbances entering
at both the plant input (du) and plant output (dy). Because the response to
setpoints can always be improved by using a two degree-of-freedom (dof)
controller, we do not consider setpoints (ys) in the initial design of the feedback
controller. That is, we assume ys = 0. It is worth noticing that, from a feedback
point of view, a disturbance entering at the plant output (dy) is equivalent to a
setpoint change. Measurement noise (n) enters the system at the measured
output (y). This system can be represented by four transfer functions,

4

nicknamed “the gang of four”,

S(s) =
1

1 + G(s)K(s)
, T(s) = 1− S(s),

GS(s) = G(s) S(s), KS(s) = K(s) S(s).

Their effect on the control error and plant input is,

−e = y− ys = S(s) dy + GS(s) du − T(s) n, (4)

−u = KS(s) dy + T(s) du + KS(s) n. (5)

Although we could use any fixed-order controller, we consider in this paper
mostly the parallel (linear in the parameter) pid controller,

Kpid(s; p) = kp + ki/s + kds, (6)

p =
(

kp ki kd

)T
, (7)

where kp, ki, and kd is the proportional, integral, and derivative gain,
respectively. The controller can equivalently be written in the form

Kpid(s; p) = kc

(
1 +

1
τis

+ τds
)

, (8)

where kc = kp, τi = kc/ki, and τd = kd/kc is the proportional gain, integral
time, and derivative time, respectively. Note that for τi < 4τd, the parallel pid

controllers has complex zeros. We have observed that this can result in several
peaks or plateaux for the magnitude of sensitivity function in the frequency
domain

∣∣S(jω)
∣∣. As shown later, this becomes important when adding

robustness specifications on the frequency behaviour.

3.2 Performance

We quantify controller performance in terms of the integrated absolute error
(iae),

IAE (p) =
∫ ∞

0
|e(t; p)| dt, (9)

when the system is subject to step disturbances. We include both input (du) and
output (dy) disturbances and choose the weighted cost function

J(p) = 0.5

(
ϕdy iaedy(p) + ϕdu iaedu(p)

)
(10)

5

where ϕdy and ϕdu are normalization factors. It is necessary to normalize the
resulting iaedu and iaedy, to be able to compare the two terms in the cost
function (10), and it is ultimately up to the user to decide which normalization
method is most appropriate. Numerically the exact value of these variables are
not very important, and in this paper we have, similar to previous work
(Grimholt and Skogestad, 2012, 2013), selected the normalisation factors to be
the inverse of the optimal iae values for reference controllers (e.g. pi, pid) tuned
for a step change on the input (iae

◦
du) and output (iae

◦
dy), respectively.

ϕdu =
1

iae
◦
du

and ϕdy =
1

iae
◦
dy

.

This normalisation is similar to the one used in Shinskey (1990). To ensure
robust reference controllers, they are required to have Ms = Mt = 1.59 1. Note
that two different reference controllers are used to obtain the iae

◦ values,
whereas a single controller K(s; p) is used to find iaedy(p) and iaedu(p), when
minimizing the cost function J(p) in (10).

3.3 Robustness

In this paper, we have chosen to quantify robustness in terms of the largest
sensitivity peak, Mst = max {Ms, Mt} (Garpinger and Hägglund, 2008), where

Ms = max
ω
|S(jω)| = ‖S(jω)‖∞,

Mt = max
ω
|T(jω)| = ‖T(jω)‖∞,

and‖·‖∞ is the H∞ norm (maximum peak as a function of frequency).
For stable process, Ms is usually larger than Mt. In the Nyquist plot, Ms is

the inverse of the closest distance to the critical point (−1, 0) for the loop
transfer function L(s) = G(s)K(s). For robustness, a small Ms-value is desired,
and generally Ms should not exceed 2. A reasonable Ms-value is about 1.6, and
notice that Ms < 1.6 guarantees the following good gain and phase margins:
gm> 2.67 and pm> 36.4◦ (Rivera et al., 1986).

From our experience, using the sensitivity peak as a single constraint∣∣S(jω)
∣∣ ≤ Mub for all ω can lead to poor convergence. This is because the

optimal controller can have several peaks of equal magnitude at different
frequencies (see Figure 3), and the optimizer may jump between peaks during
iterations. Each peak has a different gradient with respect to the pid parameters.

1For those that are curious about the origin of this specific value Ms = 1.59, it is the resulting Ms

value for a Simple Internal Model Control (simc) tuned pi controller with τc = θ on foptd process
with τ ≤ 8θ.

6

To avoid this problem, instead of using a single constraint, we use multiple
constraints obtained by gridding the frequency response,∣∣S(jω)

∣∣ ≤ Mub for all ω in Ω, (11)

where Ω = [ω1, ω2, . . . , ωn] is a finite set of frequency points. This gives one
inequality constraint for each grid frequency. In addition to handling multiple
peaks, this approximation also improves convergence for infeasible initial
controllers because more information is supplied to the optimizer. On the
downside, the approximation results in a somewhat reduced accuracy and an
increased computational load; However, we found that the benefit of improved
convergence makes up for this.

3.4 Summary of the optimization problem

In summary, the optimization problem can be stated as follows,

minimize
p

J(p) = 0.5

(
ϕdy iaedy(p) + ϕdu iaedu(p)

)
(12)

subject to cs(p) =
∣∣S(jω; p)

∣∣−Mub
s
≤ 0 for all ω in Ω (13)

ct(p) =
∣∣T(jω; p)

∣∣−Mub
t
≤ 0 for all ω in Ω, (14)

where Mub
s

and Mub
t

are the upper bound on
∣∣S(jω)

∣∣ and
∣∣T(jω)

∣∣, respectively.
Typically, we select Mub = Mub

s
= Mub

t
. From experience, selecting Ω as 104

logarithmically spaced frequency points with a frequency range from 0.01/θ to
100/θ, where θ is the effective time delay of the process. If there is a trade-off
between performance and robustness, at least one robustness constraints in (13)
or (14) will be active.

A simple pseudo code for the cost function is shown in Algorithm 1 in
Appendix A. It is important that the cost function also returns the error
responses, such that they can be reused for the gradient. The pseudo code for
the constraint function is shown in Algorithm 2 in Appendix A The intention
behind the pseudo codes is to give an overview of the steps involved in the
calculations.

4 Gradients

The gradient of a function f (p) with respects to a parameter vector p is defined
as

∇p f (p) =
(

∂ f
∂p1

∂ f
∂p2

. . . ∂ f
∂pnp

)T
, (15)

7

where np is the number of parameters. In this paper, pi refers to parameter i,
and the partial derivative ∂ f

∂pi
is called the sensitivity of f . For simplicity we will

use short hand notation ∇ ≡ ∇p.

4.1 Forward finite differences

The sensitivities can be approximated by forward finite differences (ffd)

∂ f
∂pi
≈ f (pi + ∆pi)− f (pi)

∆pi
, (16)

which require (1 + np) perturbations. Because we consider both input and
output disturbances, this results in at total of 2(1 + np) time response
simulations.

One of the dominating factors affecting the accuracy of the finite difference
approximation of the sensitivities is the accuracy of the time response
simulation. This can easily be seen in the following example. The computed
iae-value (ĩae) we get from integrating (9) can be written into the true iae and
the integration error δ.

ĩae = iae± δ (17)

Using forward finite differences (ffd) (16), and assuming for simplicity only one
parameter p, the computed gradient becomes

∇ĩae =
iae1 ± δ1 − iae2 ± δ2

∆p
+ O(∆p) =

∆iae

∆p
+

∆δ

∆p
+ O(∆p) (18)

where ∆p is the perturbation in parameter, and O(∆p) is the truncation error.
The worst-case gradient error becomes

Effd =
2δ

∆p
+ O(∆p). (19)

As the perturbation size ∆p→ 0, the truncation error O(∆p)→ 0. However, the
simulation error is magnified as 2δ/∆p→ ∞. On the other hand, the impact of
simulation error can be reduced by increasing the perturbation size ∆p, but then
truncation error might became an issue. It this paper we have chosen to use
Matlab’s default perturbation size of

√
ε, where ε is the machine precession. In

order to derive simple expressions which are less prone to errors, we will
instead use the gradient expressions derived below.

8

4.2 Cost function gradient

The gradient of the cost function J(p) can be expressed as

∇J(p) = 0.5

(
ϕdy ∇iaedy(p) + ϕdu ∇iaedu(p)

)
(20)

The iae sensitivities are difficult to evaluate analytically, but they can be found
in a fairly straightforward manner by expressing them such that the integrals
can be evaluated numerically.

By taking advantage of the fixed structure of the problem, we develop
general expressions for the gradient. When the parameter sensitivity of the
controller K(s) is found, evaluating the gradient is a simple process of
combining and evaluating already defined transfer functions. This enables the
user to quickly find the gradients for a linear system for any fixed-order
controller K(s).

From the definition of the iae in (9) and assuming that |e(t)| is smooth, that
is that |e(t)| and sign

{
e(t)

}
∇e(t) are continuous, the sensitivity of the iae can

be expressed as (see Appendix B for details)

∇IAEdy(p) =
∫ t f

0
sign

{
edy(t)

}
∇edy(t)dt, (21)

∇IAEdu(p) =
∫ t f

0
sign

{
edy(t)

}
∇edy(t)dt. (22)

Introducing the Laplace transform, we see from (4) that

edy(s) = S(s) dy for output disturbances and (23)

edu(s) = GS(s) du for input disturbances. (24)

By using the chain rule (Åström and Hägglund, 2006), we can write the error
sensitivities as a function of the parameter sensitivity of the controller K(s) (See
Appendix B.4)

∇edy(s) = −GS(s) S(s) ∇K(s) dy (25)

and ∇edu(s) = −GS(s) GS(s) ∇K(s) du, (26)

For the pid controller defined in (6), the controller sensitivities ∇K(s) with

respects to the parameters p =
(

kp ki kd

)T
are.

∇Kpid(s) =
(

∂Kpid

∂kp

∂Kpid

∂ki

∂Kpid

∂kd

)T
=
(

1 1/s s
)T

(27)

9

To obtain ∇IAEdy(p) and ∇IAEdu(p) in (21) and (22), we must obtain the
inverse transforms of ∇edy(s) and ∇edu(s) in (25) and (26). However, for
processes G(s) with time delay (which is the case for our problem), the
sensitivity S(s) will have internal delays (delays in the denominator), and there
are no analytical solution to the inverse Laplace transforms of ∇edu(s) and
∇edy(s), and they must be evaluated numerically. For example, to evaluate the
gradient of iaedu in (22) for pid control when considering a unit step
disturbance (du = 1/s), we first obtain the time response of ∇edy(t) by
performing an impulse response simulation of a state space realization of the
following system,

∇edu(s) = −GS(s) GS(s)
(

1/s 1/s2 1
)T

. (28)

Typical numerical results for ∇edu are shown in the lower plot of Figure 4. The
gradient of the iae is then calculated by evaluating the iae integral (22) using
numerical integration techniques like the trapezoidal method.

In many cases, |e(t)| and sign
{

e(t)
}
∇e(t) are not continuous on the whole

time range. For example, e(t) will have a discrete jump for step setpoint
changes. For our assumptions to be valid in such cases, the integration must be
split up into subintervals which are continuous. Violating this assumption will
result in an inaccuracy in the calculation of the gradient at the time step of the
discontinuity. However, by using very small integration steps in the time
response simulations, this inaccuracy is negligible. Therefore, the integration
has not been split up into subintervals for the case study in Section 4.4.

A simple pseudo code for the gradient calculation is shown in Algorithm 3

in Appendix A. Notice that the error responses from the cost function are
reused (shown as inputs).

Because the gradient is evaluated by time domain simulations, the method is
limited to processes that gives proper gradient transfer functions. If the gradient
transfer functions are not proper, a small filter can be added to the process,
controller or the gradient transfer function to make it proper. However, this will
introduce small inaccuracies.

To obtain the gradient of the cost function (20), 2np simulations are needed
for evaluating (25) and (26), and 2 simulations are needed to evaluate the error
(23) and (24) , resulting in a total of 2(1 + np) simulations. This is the same
number of simulations needed for the one-sided forward finite differences
approximation in (16), but the accuracy is much better.

10

Gradient type Cost function Optimal parameters number of
Cost-function Constraints J(p?) kp ki kd iterations

exact exact 2.0598 0.5227 0.5327 0.2172 13

fin.dif. exact 2.1400 0.5204 0.4852 0.1812 16

exact fin.dif. 2.0598 0.5227 0.5327 0.2172 13

fin.dif. fin.dif. 2.9274 0.3018 0.3644 0.2312 11

Table 1: Comparison of optimal solutions when using different combinations of
gradients for the problem given in (33)–(36).

4.3 Constraint gradients

The gradient of the robustness constraints, cs(p) and ct(p), can expressed as
(See Appendix C)

∇cs(jω; p) = ∇|S(jω)| = 1∣∣S(jω)
∣∣< {S∗(jω)∇S(jω)

}
for all ω in Ω (29)

∇ct(jω; p) = ∇|T(jω)| = 1∣∣T(jω)
∣∣< {T∗(jω)∇T(jω)

}
for all ω in Ω (30)

The asterisk (∗) is used to indicate the complex conjugate. By using the chain
rule, we can rewrite the constraint gradient as an explicit function of ∇K(jω)
(as we did with the cost function gradient),

∇S(jω) = −GS(jω) S(jω) ∇K(jω) (31)

∇T(jω) = ∇
(
1− S(jω)

)
= −∇S(jω) (32)

The gradients of the constraints is then evaluated at each frequency point ω in
Ω. The constraint gradients are algebraic functions of p, and can also be found
using automatic differentiation. However, due to the fixed structure of the
gradients they are more easily obtained by multiplication of the known transfer
function and ∇K(jω). A pseudo code for the gradient calculation is show in
Algorithm 4 in Appendix A.

4.4 Case study

The exact gradients were implemented and computed for pid control of the
design problem given in (12)–(14), with a foptd process

G(s) =
e−s

s + 1
. (33)

11

To make the system proper, we also added a fist-order filter to the controller

K(s) = Kpid(s)
1

τf s + 1
, with τf = 0.001. (34)

To ensure robust controllers, the sensitivity peaks are required to be small with

Mub
s

= Mub
t

= 1.3. (35)

This problem has the following normalization factors

IAE◦dy = 1.56, IAE◦du = 1.42, (36)

and the optimization algorithm was started with controller parameters

p0 =
(

0.2 0.02 0.3
)T

. (37)

This case study was selected because it is a problem that looks simple, but
can be surprisingly hard to solve. One reason for this is that the optimal
solution has two equal Ms peaks (Figures 2 and 3), and can therefore exhibit
cyclic behavior between the iterations when using a single Mst ≤ Mub

constraint. Actually, if it was not for the filter, the optimal problem solution
would have an infinite number of equal peaks.

The error response (obtained with a simulation length of 25 time units) and
and cost function sensitivity was found by fixed step integration (with number
of steps nsteps = 104). The problem was solved using Matlab’s fmincon with
the active set algorithm. The optimal error response with sensitivities are shown
in Figure 4. For comparison, the problem was also solved with approximated
gradients using forward finite differences with Matlab’s default perturbation
size of

√
ε (which is supposed to give a good balance between truncation error

and round-off error).
As seen in Table 1, the exact gradients performed better than the

approximated finite differences. The biggest improvement comes from the using
the exact cost function gradients. The large difference in controller parameters
between the two approaches indicates that the optimum is relatively flat, as the
small numerical inaccuracies in the simulations and small truncation errors in
the finite difference approximation gives gradients that falsely satisfy the
tolerances of the algorithm.

As mentioned previously, one dominating factor affecting the accuracy of the
finite difference approximation, is the accuracy of the time reprocess simulation.
To illustrate this, the same design problem was solved with with different
numbers of time steps during the integration. Even with nsteps = 105, the

12

Mub
T

Mub
S

−2 −1 1

−2

−1

1

2

Re L(jω)

Im L(jω)

Figure 2: Nyquist plot of L(jω) for the optimal controller for the problem given
in (33)–(36).

10−2 10−1 100 101 102
10−2

10−1

100

|S(jω)|
|T (jω)|

Mub = 1.3

Frequency, ω

10−2 10−1 100 101 102
10−2

10−1

100 |KS(jω)|

|GS(jω)|

Frequency, ω

Figure 3: Frequency response of the “the gang of four” (S(jω), T(jω), GS(jω),
and KS(jω)) for the optimal controller for the problem given in (33)–(36).

forward finite differences failed to converge to the optimum. On the other hand,
the exact gradient could still converge to the local optimum with nsteps = 500.

The exact gradient converged for most initial guesses that gave a stable
closed-loop system. On the other hand, forward finite differences failed to find
the optimum even when starting very close to the minimum, for example

p0 =
(

1.001p?1 p?2 p?3
)T

.

With central finite differences, the accuracy was may be increased, but this
requires 2(1 + 2np) step simulations.

13

0

0.5

1 edy

edu

−1

0

1
∂e
∂kp

∂e
∂k

i

∂e
∂k

d dy

0 5 10 15 20 25

−1

0

1
∂e
∂kp

∂e
∂k

i

∂e
∂k

d
du

Time, t

Figure 4: Optimal error response and corresponding error sensitivities for the
problem given in (33)–(36).

5 Extensions to other fixed order controllers

As stated previously, the method is easily extended to other linear fixed-order
controllers, as it only requires changing the expression for the parameter
sensitivity ∇K(s) in (27). Here we will give the ∇K(s) for three other
controllers: the serial pid controller, the pidf controller, and the Smith predictor.

5.1 Serial PID controller

For the serial pid controller,

Kserial
pid

(s) = kc
(τis + 1)(τds + 1)

τis
, (38)

14

the controller sensitivities are (elements in ∇Kserial
pid

(s))

∂Kserial
pid

(s)
∂kc

=
(τis + 1)(τds + 1)

τis
, (39)

∂Kserial
pid

(s)
∂τi

= −kc
(τds + 1)

τ2
i s

, (40)

∂Kserial
pid

(s)
∂τd

= kc
(τis + 1)

τi
. (41)

Note the serial controller sensitivities must be updated during iterations,
whereas they are constant for the parallel pid controller Kpid(s), see (27)

5.2 PIDF controller

For a pidf controller, here defined as

Kpidf(s) = Kpid(s)F(s), (42)

where the parameters in the filter F(s) are extra degrees of freedom, the
derivative can be expressed in terms of product rule,

∇Kpidf(s) = F(s)∇Kpid(s) + Kpid(s)∇F(s), (43)

For example, with a first-order filter

F(s) =
1

τf s + 1
we get ∇F(s) =

(
0 0 0 − s

(τf s+1)2

)T
. (44)

Note that this pidf controller with four tuning parameters is the most general
second-order controller K(s), given that the controller must have integral action.

5.3 Smith predictor

The Smith predictor (sp) uses an internal model of the process with time delay,
G(s). Let G◦(s) be the process model without delay and assume that a pid

controller is used for the delay process, Kpid(s) = kp + ki/s + kds. The Smith
predictor becomes,

Ksp(s) =
Kpid(s)

1 + Kpid(s)(G◦(s)− G(s))
, (45)

and the gradients are

∇Ksp(s) =
∂Ksp(s)
∂Kpid(s)

∇Kpid =
∇Kpid[

1 + Kpid(s)(G◦(s)− G(s))
]2 . (46)

15

Where ∇Kpid =
(

1 1/s s
)T

is the gradient of the internal pid controller.

6 Discussion

6.1 Input usage and Noise filtering

We have not included a bound on input usage, e.g. by considering the
maximum peak of

∣∣KS(jω)
∣∣ which is‖KS‖∞. For simple cases, input usage can

be reduced by simply making the process more robust by lowering Mst

(Grimholt and Skogestad, 2012). That is, reducing the controller gain will make
the controller more robust and reduce input usage. However, for unstable
processes this will not hold, and increasing the controller gain can actually make
the controller more robust and increase input usage. For such processes, an
additional constraint should be added to limit input usage to a desired levels.

For the parallel pid controller in (8), the gain and thus noise amplification
goes to infinity at high frequencies. To avoid excessive input movements, a
measurement filter may be added as we did in (34). We assume in this paper
that noise amplification is addressed separately after the initial controller design.
Nevertheless, our design formulation could easily be extended to handle noise
filtering more explicitly by using an appropriate constraint, e.g. ‖KS‖∞. This is
treated in a separate paper by Soltesz et al. (2014). If the measurement filter
actually enhances noise-less performance, the note that we are no longer talking
about a pid controller, but a pidf controller with four adjustable parameters.

6.2 Circle constraint

Circle constraints (Åström and Hägglund, 2006) provides an alternative to
constraining S(jω) and T(jω). The idea is to ensure that the loop function
L(jω) = G(s)K(s) is outside given robustness circles in the Nyquist plot. For a
given circle with centre C and radius R, the robustness criteria can be expressed
as ∣∣C− L(jω)

∣∣2 ≥ R2 for all ω in Ω. (47)

For S(s), the centre and radius will be

C = −1 and R = 1/Mub. (48)

For T(s), the centre and radius will be

C = − (Mub)2

(Mub)2 − 1
and R =

Mub

(Mub)2 − 1
. (49)

16

Written in standard form, the constraint becomes,

cl(p) = R2 −
∣∣C− L(jω)

∣∣2 ≤ 0 for all ω in Ω, (50)

with centre C and radius R for the corresponding Mub circle, respectively. The
corresponding gradient is

∇cl(jω) = 2<
{(

C− L(jω)
)∗ ∇L(jω)

}
for all ω in Ω. (51)

The main computational cost is the evaluation of the transfer functions. It
may seen that the circle constraint (51) has an advantage, because you only need
to evaluate L(jω), whereas, both S(jω) and T(jω) must be evaluated for the
constraints (29) and (30) . However, by using the relation S + T = 1 we can
rewrite e.g. T(jω) in terms of S(jω) by T = 1− S. Thus, we only need to
evaluate S(jω) to calculate both cs and ct. Because the mathematical operations
are relatively cheap, the two gradients types are almost equivalent.

6.3 Direct sensitivity calculations

Our method is closely related to the more general direct sensitivity method, as
defined in Biegler (2010), used for optimal control problems, which we applied
in Jahanshahi et al. (2014). However, processes with time delay we cannot use
conventional ODE sensitivity results as the resulting feedback system has
internal delay. To apply the direct sensitivity method to our problem, we set up
the delayed differential equations (DDE) symbolically, found the parameter
sensitivities of the states, and integrated using a integrator for delayed
differential equations (e.g. dde23). Although the direct sensitivity approach
works well on this problem, a lot of work went into setting up the DDE
equations and sensitivities, and integrating them in Matlab. By taking
advantage the fixed structure of the problem and the control system toolbox in
Matlab, it is less work to use the approach presented in this paper.

7 Conclusion

In this paper we have successfully applied the exact gradients for a typical
performance (iae) with constrained robustness Mst optimization problem.
Compared to gradients approximated by forward finite difference, the exact
gradients improved the convergence to the true optimal. By taking advantage of
the fixed structure of the problem, the exact gradients were presented in such a
way that they can easily be implemented and extended to other fixed-order
controllers. When the parameter sensitivity of the controller K(s) is found,

17

evaluating the gradient is just a simple process of combining and evaluating
already defined transfer functions. This enables the user to quickly find the
gradients for a linear system for any fixed order controller. The Matlab code
for the optimization problem is available at the home page of Sigurd Skogestad.

Bibliography

S. Alcántara, R. Vilanova, and C. Pedret. PID control in terms of
robustness/performance and servo/regulator trade-offs: A unifying approach
to balanced autotuning. Journal of Process Control, 23(4):527–542, 2013.

V. Alfaro, R. Vilanova, V. Méndez, and J. Lafuente. Performance/robustness
tradeoff analysis of PI/PID servo and regulatory control systems. In Industrial
Technology (ICIT), 2010 IEEE International Conference on, pages 111–116. IEEE,
2010.

Karl Johan Åström and Tore Hägglund. Advanced PID control. ISA-The
Instrumentation, Systems, and Automation Society, 2006.

Karl Johan Åström, Hélène Panagopoulos, and Tore Hägglund. Design of PI
controllers based on non-convex optimization. Automatica, 34(5):585–601, 1998.

Jens G. Balchen. A performance index for feedback control systems based on
the fourier transform of the control deviation. Acta Polytechnica Scandinavia,
Mathematical and computing machinery series, 247(1):3–19, 1958.

Lorenz T. Biegler. Nonlinear programming: concepts, algorithms, and applications to
chemical processes, volume 10. SIAM, 2010.

Olof Garpinger and Tore Hägglund. A software tool for robust PID design. In
Proc. 17th IFAC World Congress, Seoul, Korea, 2008.

Olof Garpinger, Tore Hägglund, and Karl Johan Åström. Performance and
robustness trade-offs in PID control. Journal of Process Control, 24(5):568–577,
2014.

Chriss Grimholt and Sigurd Skogestad. Optimal PI-control and verification of
the SIMC tuning rule. In IFAC conference on Advances in PID control (PID’12).
The International Federation of Automatic Control, March 2012.

Chriss Grimholt and Sigurd Skogestad. Optimal PID-control on first order plus
time delay systems & verification of the SIMC rules. In 10th IFAC International
Symposium on Dynamics and Control of Process Systems, 2013.

18

Chriss Grimholt and Sigurd Skogestad. Improved optimization-based design of
PID controllers using exact gradients. In 12th International Symposium on
Process Systems Engineering and 25th European Symposium on Computer Aided
Process Engineering, volume 37, pages 1751–1757, 2015.

Albert C. Hall. The analysis and synthesis of linear servomechanisms. Technology
Press Massachusetts Institute of Technology, 1943.

Martin Hast, Karl Johan Aström, Bo Bernhardsson, and Stephen Boyd. PID
design by convex-concave optimization. In Proceedings European Control
Conference, pages 4460–4465, 2013.

P. Hazebroek and B. L. Van der Waerden. The optimum tuning of regulators.
Trans. ASME, 72:317–322, 1950.

Mikulas Huba. Performance measures, performance limits and optimal PI
control for the IPDT plant. Journal of Process Control, 23(4):500–515, 2013.

Ari Ingimundarson and Tore Hägglund. Performance comparison between PID
and dead-time compensating controllers. Journal of Process Control, 12(8):
887–895, 2002.

E. Jahanshahi, V. de Oliveira, C. Grimholt, and Skogestad S. A comparison
between internal model control, optimal PIDF and robust controllers for
unstable flow in risers. In 19th World Congress, pages 5752–5759. The
International Federation of Automatic Control, 2014.

Birgitta Kristiansson and Bengt Lennartson. Evaluation and simple tuning of
PID controllers with high-frequency robustness. Journal of Process Control, 16

(2):91–102, 2006.

J. A. Nelder and R. Mead. A simplex method for function minimization. The
Computer Journal, 7(4):308–313, 1965.

G. C. Newton, L. A. Gould, and J. F. Kaiser. Analytical design of linear feedback
controls. John Wiley & Sons, New York, N. Y, 1957.

Hélène Panagopoulos, Karl Johan Åström, and Tore Hägglund. Design of PID
controllers based on constrained optimisation. IEE Proceedings-Control Theory
and Applications, 149(1):32–40, 2002.

Danlel E. Rivera, Manfred Morari, and Sigurd Skogestad. Internal model control.
4. PID controller design. Ind. Eng. Chem. Process Des. Dev., 25:252–256, 1986.

Tor Steinar Schei. Automatic tuning of PID controllers based on transfer
function estimation. Automatica, 30(12):1983–1989, 1994.

19

F. G. Shinskey. How good are our controllers in absolute performance and
robustness? Measurement and Control, 23(4):114–121, 1990.

Sigurd Skogestad. Simple analytic rules for model reduction and PID controller
tuning. Journal of process control, 13(4):291–309, 2003.

Kristian Soltesz, Chriss Grimholt, Olof Garpinger, and Sigurd Skogestad.
Simultaneous design of PID controller and measurement filter by
optimization. 2014.

Murray P. Spiegel. Schaum’s outline series: Theory and Problems of Laplace
Transforms. McGraw-Hill Book Company, 1965.

John G. Ziegler and Nathaniel B. Nichols. Optimum settings for automatic
controllers. trans. ASME, 64(11), 1942.

A Pseudo code for the calculation of gradients

Algorithm 1: CostFunction(p)

t← uniform distributed time points
edy(t)← get step response of S(s; p) with time steps t
edu(t)← get step response of GS(s; p) with time steps t
calculate iae for edy and edu using numerical integration
J ← calculate cost function using (10)
return (J, edy(t), edu(t))

Algorithm 2: ConstraintFunction(p)

ω ← logarithmically spaced frequency points in Ω
cs ←

∣∣S(jω)
∣∣−Mub

s

ct ←
∣∣T(jω)

∣∣−Mub
t

c← stack cs and ct into one vector
return (c)

20

Algorithm 3: GradCostFunction(p, edy(t), edu(t))

t← uniform distributed time points
for i← 1 to number of parameters

do


∇edy(t)← get time response of ∇edy(s) from (25) with time steps t
∇edu(t)← get time response of ∇edu(s) from (26) with time steps t
∇iaedy ← numerical integration of (21) using edy and ∇edy(t)
∇iaedu ← numerical integration of (22) using edu and ∇edu(t)
∇J ← calculate from (20)

∇J ← stack the cost function sensitivities into one vector
return (∇J)

Algorithm 4: GradConstraintFunction(p)

ω ← logarithmically spaced frequency points
for i← 1 to number of parameters

do

{
∇cs ← evaluate (29) for frequencies ω
∇ct ← evaluate (30) for frequencies ω

∇c← combine ∇cs and ∇ct pi into a matrix
return (∇c)

B Derivation of the exact sensitivities of the cost function

B.1 Sensitivity of the absolute value

Lemma 1. Let g(t; p), abbreviated as g(t), be a function that depends on time t and
parameters p. The partial derivative of the absolute value of g(t) with respects to the
parameter p is then

∂

∂p
∣∣g(t)∣∣ = sign

{
g(t)

} ∂

∂p

(
g(t)

)
.

Proof. The absolute value can be written as the multiplication of the function
g(t) and its sign, ∣∣g(t)∣∣ = sign

{
g(t)

}
g(t),

where the sign function has the following values

sign
{

g(t)
}
=

{
−1 if g(t) < 0,
1 if g(t) > 0.

21

Using the product rule we get,

∂

∂p

(
sign

{
g(t)

}
g(t)

)
= sign

{
g(t)

} ∂g(t)
∂p

+ g(t)
∂sign

{
g(t)

}
∂p

. (52)

The sign function is piecewise constant and differentiable with the derivative
equal 0 for all values except g(t) = 0, where the derivative is not defined. Hence
the following conclusion is true,

g(t)
∂sign

{
g(t)

}
∂p

= 0,

and the differential of |g(t)| is as stated above.

B.2 Sensitivity of the integrated absolute value

Theorem 1. Let g(t; p), abbreviated as g(t), be a function that depends on the time t
and the parameter p. The differential of the integrated absolute value of g(t) on the
interval from tα to tβ with respects to the parameter p can be written as

d
dp

(∫ tβ

tα

∣∣g(t)∣∣dt
)
=
∫ tβ

tα

sign
{

g(t)
}(

∂g(t)
∂p

)
dt (53)

Proof. If g(t) and its partial derivative ∂g(t)
∂p are continuous wrt. t and p on the

intervals
[
tα, tβ

]
and

[
pα, pβ

]
, and the integration limits are constant, then

using Leibniz’s rule, we can write the the integral

d
dp

(∫ tβ

tα

∣∣g(t)∣∣dt
)
=
∫ tβ

tα

∂
∣∣g(t)∣∣
∂p

dt.

Then using Lemma 1, we obtain the stated expression.

B.3 Obtaining the sensitivities from Laplace

Theorem 2. Let g(t; p) be a linear function that depends on time t and the parameter
p, and G(s; p) its corresponding Laplace transform (abbreviated g(t) and G(s)). Then
the partial derivative of g(t) can be expressed in terms of the inverse Laplace transform
of G(s),

∂g(t)
∂p

= L−1

{
∂G(s)

∂p

}
.

22

Proof. Differentiating the definition of the Laplace transform with respect to the
parameter p we get,

∂G(s)
∂p

=
∂

∂p

∫ ∞

0
e−stg(t)dt.

Assuming that g(t) and ∂g(t)
∂p is continuous on the integration interval, Leibniz’s

rule gives
∂G(s)

∂p
=
∫ ∞

0
e−st ∂g(t)

∂p
dt,

which is equivalent to
∂G(s)

∂p
= L

{
∂g(t)

∂p

}
.

Taking the inverse Laplace on both sides gives the stated expression.

B.4 Sensitivity of S(s) and GS(s)

We have S = (1 + L)−1 where L = GK. Using the chain-rule on the definition of
S, and dropping the argument s for simplicity,

∂S
∂pi

=
∂S
∂L

∂L
∂K

∂K
∂pi

. (54)

We have
∂S
∂L

=
∂

∂L
(1 + L)−1 = −(1 + L)−2 = −S2. (55)

and ∂L
∂K = G Thus,

∂S
∂pi

= −S2G
∂K
∂pi

. (56)

Similarly,
∂GS
∂pi

= G
∂S
∂pi

= −(GS)2 ∂K
∂pi

. (57)

C Derivation of the exact sensitivities for the constraints

C.1 Sensitivity of G(jω)G∗(jω; p) for a specific frequency
point

Lemma 2. Let G(jω; p) be a general transfer function, and G∗(jω; p) its complex
conjugate (abbreviated G(jω) and G∗(jω)). Then the differential of the product of the

23

two with respect to the parameter p is

∂

∂p

(
G(jω) G∗(jω)

)
= 2<

(
G∗(jω) ∂G(jω)

∂p

)
,

where <{ · } is the real part of the argument.

Proof. Write the transfer function out as their the complex numbers

G(jω) = x + jy, (58)
G∗(jω) = x− jy. (59)

The product rule gives

(
x− jy

)∂
(

x + jy
)

∂p
+
(

x + jy
)∂
(

x− jy
)

∂p
,

and becomes

2

(
x

∂x
∂p

+ y
∂y
∂p

)
= 2<

(
G∗(jω)

∂G(jω)

∂p

)
.

C.2 Sensitivity of
∣∣G(jω); p

∣∣ for a specific frequency point

Theorem 3. Let G(jω; p), abbreviated as G(jω) be a general transfer function
evaluated at the frequency jω. The partial derivative of the magnitude of G(jω) with
respects to the parameter p is then

∂|G(jω)|
∂p

=
1

|G(jω)|<
{

G∗(jω)
∂G(jω)

∂p

}
.

Proof. The derivative can be expressed in term of the squared magnitude,

∂|G(jω)|
∂p

=
∂

∂p

√
|G(jω)|2 =

1
2|G(jω)|

∂|G(jω)|2
∂p

.

The squared magnitude can be written as the transfer function multiplied by its
complex conjugate G∗(jω)

|G(jω)|2 = G(jω) G∗(jω).

24

Using the product rule presented in lemma 2, we get

∂|G(jω)|2
∂p

= 2<
{

G∗(jω) ∂G(jω)
∂p

}
.

Some readers might have wondered why the sensitivity of the transfer
function is not written using the chain-rule with

∂
∣∣G(jω)

∣∣2
∂G(jω)

=
∂(G(jω) G(jω)∗)

∂G(jω)
= G∗(jω) + G(jω)

∂G∗(jω)

∂G(jω)
.

This is because the derivative ∂G∗(jω)
∂G(jω)

is non-analytic and do not exist anywhere
(Spiegel, 1965).

25

