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Abstract: This work introduces a simple method to estimate state variables and identify
parameters of a nonlinear dynamic Greitzer compressor model. The observer is based upon an
Extended Kalman Filter, which estimates the dynamic states as well as a subset of parameters.
In a Monte-Carlo-fashioned approach, the remaining set of parameters are then identified by
minimizing an objective function representing the error between the measured variables and
their estimates. The developments are demonstrated in numerical simulations.
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1. INTRODUCTION

The problem of combined state estimation and parameter
identification in dynamic systems can be solved by many
methodologies. These include particle filters, but also the
widely utilized augmented (extended) Kalman filter. Nev-
ertheless, this work should also be seen in the context of
the wide field of system identification (Ljung, 1999). In
many engineering applications it is often not possible to
determine the values of model parameters exactly. This
holds for models that have been derived from first princi-
ples, but also for empirically derived models. Furthermore,
parameters may change over operating time of a technical
system. Hence, determination of these parameters is cru-
cial to obtain an accurate representation of the system in
model-based controllers and observers.

There are many publications, which address the topic of
combined state and parameter estimation and identifica-
tion. Pure state estimation for linear dynamic systems is
mostly solved by applying Luenberger-style observers and
Kalman filters. For nonlinear systems, the principles of
Luenberger observers and Kalman filters can be utilized
by steady linearization of the system dynamics around
the present operating point. Furthermore, extensive re-
search efforts have led to the development of nonlinear
state-observers solving the problem for specific classes of
nonlinear systems (Arcak and Kokotovic, 2001; Rajamani,
1998; Raghavan and Hedrick, 1994; Esfandiari and Khalil,
1992). For all of the aforementioned methods, observability
or at least detectability must be ensured, may it be in the
linear case as introduced by Kalman or the nonlinear case,
as e.g. described in Marino and Tomei (1995).
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In an early work on the topic of combined state and param-
eter estimation, Cox (1964) describes a real-time approach
for discrete-time linear systems. In Schön (2006), combined
state and parameter estimation for differential-algebraic
equations is presented. The author utilizes marginal parti-
cle filters and sequential Monte-Carlo-simulations to solve
the estimation problem. An algorithm for linear systems
in observer canonical form, where parameters denote en-
tries in the system matrix A and the input matrix B is
presented in Ding (2014).

Parameter identification and estimation for nonlinear sys-
tems is often solved my means of least-squares comparison
of measured data and model candidates. Development of
frameworks for parameter estimation in nonlinear systems
by synchronization of measured data and a candidate
model is introduced in Creveling (2008) and Abarbanel
et al. (2009). Instead of using least squares, the authors
utilize conditional Lyapunov exponents as a measure to
determine the coupling between data and model. Rao
et al. (2008) present a real-time algorithm for simultaneous
estimation of parameters and identification of anomaly
patterns using escort probabilities. A least-squares sup-
port vector machine approach for parameter identification
of dynamical system is introduced in Mehrkanoon et al.
(2012). The authors claim that the method is applicable
for both time invariant and time-varying dynamics.

A standard way for combined state and parameter estima-
tion is the implementation of extended Kalman filters by
augmenting the dynamics of the original system with pa-
rameter dynamics. Again, observability has to be ensured,
now for the augmented system dynamics. In this paper, we
present a simple approach for combined state estimation
and parameter identification for nonlinear systems in the
case if this augmentation of the dynamic system leads to
an unobservable system. The drawback of the method’s



simplicity is the rather high computational cost, since one
simulation has to be conducted for each parameter com-
bination. However, the big advantage is that the method
can be applied offline, if measurements are available that
satisfy properties of persistence of excitation. Without this
property, it might not be possible to reconstruct parame-
ters from the measurement data at all.

The remainder of this paper is structured as follows: In
Section 2 we introduce the methodology. Section 3 presents
the case study, where at first the mathematical model is
introduced, followed by simulation results. The paper is
concluded in Section 4.

2. METHODOLOGY

The combined estimation of state variables and parameters
utilizing augmented (extended) Kalman filters is quite
mature and can be considered a standard way to solve
problems of this kind. However, it only works for systems
that provide full observability after introducing the param-
eters as new state variables and for given output functions.
In some cases it might be enough to rely on detectability,
i.e. that all unobservable modes are stable. In the following
we only consider full observability as a criterion.

We consider state space models in the form

ẋ = f (x, u) + w(t),

y = h(x) + v(t),

where we assume that h(x) is a linear function that can be
expressed in the well-known linear output relation Cx with
output matrix C. Furthermore, w(t) and v(t) represent
process and measurement noises, with their covariance
matrices Q = cov{w(t)wT (t)} and R = cov{v(t)vT (t)}.
No covariance is considered between w(t) and v(t).

In order to apply an EKF, the nonlinear state equations
˙̂x = f (x̂, u) are linearized in order to obtain the Jacobian

A =
∂fi
∂x̂j

∣∣∣∣
x̂s

. (1)

Thereby it is important to keep the linearization points x̂s
variable, such that the Jacobian can be updated subject
to the current operating point of the process, hence A =
A (x̂s). This state- and hence time-varying Jacobian is then
used to solve the differential matrix Riccati equation and
calculate the time-varying Kalman feedback gain K(t)

Ṗ (t) = A(t)P (t) + P (t)AT (t)−K(t)CP (t) +Q,

K(t) = P (t)CTR−1

to track the real process and estimate the unmeasurable
state variables. In case of parameter estimation, the pa-
rameter dynamics ˙̂p are included as new state variables in
a quasi-stationary fashion

˙̂x = f (x̂, p̂, u) ,

˙̂p = 0.

This implies that the Jacobian (1) will increase from ini-
tially A(n×n) to A((n+ρ)×(n+ρ)), where n is the dimension
of the system and ρ represents the number of parame-
ters. In addition, the output matrix will have to become
adapted accordingly. This is typically done by adding zeros
to the respective entries in the new state variables p̂, since

these are not measurable, hence Cext =
[
C 0(n×ρ)

]
. Ulti-

mately, the observer dynamics for the augmented system

with x̂ext = [x̂ p̂]
T

are given as

˙̂xext = fext (x̂ext, u) +K(t) (y − Cextx̂ext) . (2)

2.1 Observability

Observability is defined as a measure indicating the recon-
struction of unmeasurable internal states of a system by
only using external outputs. It must thereby hold that the
well-known observability matrix linking the output matrix
C and the system matrix A has full rank. In addition, there
exist observability measures particularly for nonlinear sys-
tems, as e.g. stated in Marino and Tomei (1995). It is likely
that systems initially providing full observability might
lose this property by adding the full set of parameters P
as additional state variables. Nevertheless, by only adding
a subset Ps ∈ P, the full observability property might
still hold. It is essential to test for the maximum allowable
subset Ps for which full observability is still ensured. Full
observability should hold for all admissible and feasible
operating points x̂s, meaning that even in the case of a
state- and hence time-varying Jacobian the observability
matrix should still have full rank.

2.2 Determination of unobservable parameters

Determination of the real values of the unobservable pa-
rameters p̂ui

∈ Pu = P \ Ps is achieved in a Monte-
Carlo-fashioned approach. By defining bounds for feasible
parameter values p̂ui

and p̂ui
and increments between

these bounds, we run simulations for all feasible param-
eter combinations. Ultimately, by minimizing an objective
function, one can find the real values for the unobservable
parameters. Since y is the only information available from
the real plant, a feasible objective function that can be
used in this context is the difference between the measure-
ments and their respective estimates, and hence

minimize
Pu

J = ‖y − Cextx̂ext‖1 =

tsim∑
t=0

|y − Cextx̂ext| (3)

subject to (2),

p̂ui
≤ p̂ui

≤ p̂ui
,

where we chose the 1-norm as objective function in (3),
since it provides steeper gradients for small estimation
errors compared to e.g. the 2-norm. However, other norms,
combinations of norms and functions of norms might be
applicable too, depending on the system at hand.

In order to estimate and identify parameters, some models
require persistent excitation until the parameters have
converged. This is often achieved by sinusoidal reference
signals. Other systems naturally provide persistent ex-
citation since some operating points lead to limit cycle
oscillations of state variables. In this work we only con-
sider systems that have cyclic and oscillatory response,
either caused by the dynamics themselves or sinusoidal
excitation.

2.3 Algorithm

Algorithm 1 is held very basic and generically describes
the single steps that are required to run the simulations.



Algorithm 1 Identification Algorithm

1: Initialization
- Design the extended Kalman filter (EKF)
- Find Ps for which the model is still fully observ-

able
- Define lower as well as upper bounds and incre-

ments between these bounds for all p̂ui ∈ Pu
- Choose tuning matrices Q and R for the EKF
- If necessary: Pre-filter noisy measurements

2: Loop
- Define one for-loop for each p̂ui ∈ Pu
- Run one simulation for all each feasible combina-

tion within Pu
- Compute the value of the objective function (3)

and stack values
3: Evaluation

- Find parameter combination that gives the small-
est norm → candidates for real parameter values

- Re-run simulation with minimizing parameter
combination

4: Verification
- Oscillations in estimates of the EKF? → Parame-

ter combination most likely not optimal
- Change bounds and / or increments for p̂ui

- Re-tune EKF and / or potentially change the
objective function

- Continue at step 2

3. CASE STUDY

Here, we present a case study for which the methodology
proposed in Section 2 delivers satisfactory results, even
in the presence of added measurement noise. This is
demonstrated with numerical simulations.

3.1 Mathematical Model

We use a two-state Greitzer compressor model in combina-
tion with a close-coupled valve (CCV). A nonlinear state-
estimation approach for the model has been described in
Backi et al. (2013). The following dimensionless equations
hold for the compressor with the CCV, where the state
variables have been transformed to the origin as equilib-
rium point (Gravdahl and Egeland, 1997)

ψ̇ =
1

B
(φ− Φ (ψ)) ,

φ̇ = B (Ψc (φ)− ψ − u) .
(4)

The input u denotes the pressure drop across the CCV,

Φ (ψ) = γ
(

sgn(ψ + ψ0)
√
|ψ + ψ0| −

√
ψ0

)
describes the throttle characteristics and

Ψc (φ) = −k3φ3 − k2φ2 − k1φ,
indicates the compressor characteristics.

The variable φ represents the non-dimensional mass flow(
φ = ṁ

ρ UAc

)
, whereas ψ defines the non-dimensional pres-

sure
(
ψ = p

0.5 ρ U2

)
. Note furthermore that sgn (0) = 0,

that time has been normalized by the Helmholtz frequency,
thus τ = t ωH , and that the pressure drop across the CCV
typically only provides positive pressure differences, mean-
ing that u ≥ 0. This is based on the fact that the CCV

should be fully opened in the equilibrium point. However,
it can be operated as an initially throttled valve, which will
lower the performance of the overall compression system.

For the parameters, it holds that B = U
2as

√
Vp

AcLc
> 0,

where U is the compressor blade tip speed, as is the speed
of sound, Vp is the plenum volume, Ac is the flow area
and Lc is the length of ducts and compressor. It holds

furthermore that k1 = 3Hφ0

2W 2

(
φ0

W − 2
)

, k2 = 3H
2W 2

(
φ0

W − 1
)

and k3 = H
2W 3 with H > 0, W > 0 and φ0 > 0.

The operating point ψ0 can be calculated via the compres-
sor characteristics in initial coordinates (before transfor-
mation to the origin)

ψ0(φ0)=ψ0c +H

[
1 +

3

2

(
φ0
W
− 1

)
− 1

2

(
φ0
W
− 1

)3
]

(5)

and the throttle gain via γ = φ0√
ψ0

. Be advised that certain

operating points (ψ0, φ0) lead to a limit cycle (surge).

We set ψ = x1, φ = x2 and express the parameters k1,
k2 and k3 in terms of H and W , reducing the number
of parameters by one. Ultimately, the system (4) can be
rewritten as

ẋ1 =
1

B

[
x2 − γ

(
sgn(x1 + ψ0)

√
|x1 + ψ0| −

√
ψ0

)]
,

ẋ2 = B

[
− H

2W 3
x32 −

3H

2W 2

(
φ0
W
− 1

)
x22

− 3Hφ0
2W 2

(
φ0
W
− 2

)
x2 − x1 − u

]
,

(6)

where ψ0 is defined in (5). The only state assumed mea-
surable is the pressure, hence y = x1 and C = [1 0].

3.2 Observer Design

The observer will now be designed subject to the model
(6). The parameters that are assumed unknown or un-
certain are H, W and B. Hence the extended observer
dynamics are

˙̂x1 =
1

B̂

[
x̂2 − γ

(
sgn(x̂1 + ψ̂0)

√∣∣∣x̂1 + ψ̂0

∣∣∣−√ψ̂0

)]
,

˙̂x2 = B̂

[
− Ĥ

2Ŵ 3
x̂32 −

3Ĥ

2Ŵ 2

(
φ0

Ŵ
− 1

)
x̂22

− 3Ĥφ0

2Ŵ 2

(
φ0

Ŵ
− 2

)
x̂2 − x̂1 − u

]
,

˙̂
H = 0,

˙̂
W = 0,

˙̂
B = 0,

(7)

where ψ̂0 is defined in (5), but now with the estimates Ĥ

and Ŵ . The Jacobian for the observer dynamics (7) is

A =


−γ sgn(x̂1 + ψ̂0)

2B̂

√∣∣∣x̂1 + ψ̂0

∣∣∣
1

B̂
A13 A14 A15

−B̂ A22 A23 A24 A25

0(3×5)



∣∣∣∣∣∣∣∣∣∣∣
x̂s

, (8)



where the entries Aij are listed in Appendix A for com-
pleteness. Checking the observability condition, we see
that the above system is not fully observable for the full set
P = {Ĥ, Ŵ , B̂}, yet by defining Ps = {Ĥ}, hence Pu =

{Ŵ , B̂}, we gain full observability with Cext = [1 0 0].
The Jacobian (8) reduces to the upper left 3–by–3 matrix.

Nevertheless, the Jacobian (8) allows for a pre-investigation

of the parameters Ŵ and B̂. As pointed out before, Ŵ is
not allowed to be zero, the same holds for B̂. Both can be
inferred from (A.1)–(A.2). Investigating the square-roots
in the first two equations in (A.1), we see that the radicand

ψ0c + Ĥα̂ (9)

must be positive. Solving for Ŵ , we can find a lower
bound for Ŵ as a function of ψ0c and φ0, which both

are assumed to be known, and ultimately Ĥ, which is
estimated by the EKF. The radicand of the other square-

root
∣∣∣x̂1 + ψ0c + Ĥα̂

∣∣∣ is the absolute value of the radicand

(9) plus the estimated state variable x̂1. Unfortunately,
this radicand can become zero in the case if −x̂1 equals
(9). However, knowing the range of the measured variable
x1 and assuming that its estimate x̂1 converges fairly fast
to the measured value, one can still obtain a bound for Ŵ
in the same fashion as for (9).

3.3 Simulations

All simulations were performed in open-loop, meaning
u = 0, with a fixed-step solver of step size 0.01 in MAT-
LAB Simulink. Although the problem is formulated in
continuous-time, evaluation of performance was conducted
in quasi-discrete-time since the system was discretized in a
consistent way using the fixed-step solver. The oscillations
in the state variables x1 and x2 are due to the operating
point in the surge area.

No added noise: As an illustrative example, we present a
noise-free case. As can be seen in Figure 1, the ranges of the
parameters W and B can be narrowed down successfully
until a near optimum is reached. Figure 2 presents the
estimates of the two state variables and the parameter H
for the obtained optimal values of W and B, where the
errors between real value and estimate go to zero.

Added noise to the measurement of x1: In this simulation
case, we added noise to the measurement, which was
band-limited white noise with a sample time of 0.01, a
noise power of 10−5 dB and a seed of [23341]. Figure 3
demonstrates that the ranges of W and B can be narrowed
down successfully. However, the distance to the optimal
point is larger than for the noise-free case, in particular for
B, since W can be obtained correctly. Figure 4 shows the
estimates for x1, x2 and H for the obtained optimal values
of W and B. As can be seen, estimation is not perfect since
there exist small oscillations, especially for Ĥ, which is an
indicator for not having found the best values for W and
/ or B.

Filtered measurement: To demonstrate that pre-filtering
of the noisy measurement is advisable, we implemented
a moving average filter for the noisy measurement intro-
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Fig. 1. Simulations for different ranges of W and B. The
red dots display the obtained minima, whereas the
white / black dots display the real value.
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Fig. 2. Real (blue) and estimated (red) states x1, x2 and
H for the best obtained minima of W and B.

duced above. The filter utilized the respective 30 pre-
vious and subsequent measurement points to calculate
the average. Comparing Figure 5 to the simulations in
Section 3.3.2, it can be seen that the optimal values for
W and B are much closer to the real values. Figure 6
shows the estimation of states and H, which are still in
an acceptable range, even for the poor identified value
of B. In Figure 7 we demonstrate the difference between
the noisy measurement, its filtered representation and the
estimate. Furthermore, the parts of the noise that could
not be filtered are shown in the bottom plot.

4. DISCUSSION

We presented a method for combined state and param-
eter estimation and identification for general nonlinear
systems. The basic idea is to utilize an extended Kalman
filter in combination with a minimizing criterion to identify
unknown parameter values.
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Fig. 3. Simulations for different ranges of W and B. The
red dots display the obtained minima, whereas the
white / black dots display the real value.
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Fig. 4. Real (blue) and estimated (red) states x1, x2 and H
for the best obtained minima of W and B for added
measurement noise.

From the simulation results it can be inferred that pre-
processing of the measurement signals is crucial in order
to increase performance of the proposed method. In par-
ticular, filtering the signal to remove high-frequency parts
of the noise increases performance. In this work, we used
a moving average filter, for which the number of included
data points should be carefully chosen; for large numbers
of data points the amplitude of the filtered signal will not
reach that of the original signal. This holds for many filters
that could be implemented here, such as standard low-pass
filters or the Wiener filter. However, unlike e.g. low-pass
filters, moving average filters do not necessarily introduce
delay to the signal.

The tuning of the EKF has a large impact on the con-
vergence time and hence on the required simulation time
in general. In order to obtain good estimates of the un-
observable parameters p̂u, a certain minimum simulation
time is needed. However, if the proposed method is used in
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Fig. 5. Simulations for different ranges of W and B. The
red dots display the obtained minima, whereas the
white / black dots display the real value.
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Fig. 6. Real (blue) and estimated (red) states x1, x2 and
H for the best obtained minima of W and B for the
filtered measurement signal.

an offline manner with measurements of limited duration,
fast convergence of the EKF is crucial.

The method can also be used if the set Ps is empty, and
hence no (parameter) states are added to the EKF. Never-
theless, the identification of parameters in a dynamic way
is computationally more efficient and reduces the overall
computational cost, since not the full set of parameters P
has to be identified in a Monte-Carlo fashion. Therefore,
the EKF should always utilize the maximum allowable set
of parameters Ps in its formulation.

Like for all dynamic systems, persistence of excitation is
crucial to enable the identification of model parameters.
In the case study presented in this paper, this was not an
issue since the operating point of the compression system
was chosen in the surge area.

Future work includes a generalization of the obtained
results to systems that are not inherently marginally
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Fig. 7. Real and filtered state x1 and residual noise

stable, but are excited by e.g. sinusoidal reference signals.
In addition, the authors are working on improvements for
the algorithm, since the EKF will still give a reasonably
good estimate of the measured state even if the parameters
are not correctly estimated, but in a close region around
the real values. Hence, it is possible that a non-optimal
estimate might give a lower objective function value than
the real value.
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Appendix A. JACOBIAN ENTRIES

A13 = −
γ

2B̂

 sgn
(
x̂1 + ψ0c + Ĥα̂

)
Ĥα̂√∣∣x̂1 + ψ0c + Ĥα̂
∣∣ −

α̂√
ψ0c + Ĥα̂

 ,
A14 = −

γ

2B̂

 sgn
(
x̂1 + ψ0c + Ĥα̂

)
Ĥβ̂√∣∣x̂1 + ψ0c + Ĥα̂
∣∣ −

Ĥβ̂√
ψ0c + Ĥα̂

 ,
A15 = −

1

B̂2

[
x̂2 − γ

(
sgn(x̂1 + ψ̂0)

√∣∣x̂1 + ψ̂0

∣∣−√ψ̂0

)]
,

A22 = B̂

[
−

3Ĥx̂22

2Ŵ 3
−

3Ĥx̂2

2Ŵ 2

(
φ0

Ŵ
− 1

)
−

3Ĥφ0

2Ŵ 2

(
φ0

Ŵ
− 2

)]
,

A23 = B̂

[
−

x̂32

2Ŵ 3
−

3x̂22

2Ŵ 2

(
φ0

Ŵ
− 1

)
−

3φ0x̂2

2Ŵ 2

(
φ0

Ŵ
− 2

)]
,

A24 =
3B̂Ĥx̂2

Ŵ 3

[
x̂22 + φ0x̂2 + φ20

2Ŵ
+

(
φ0

Ŵ
− 1

)
x̂2 +

(
φ0

Ŵ
− 2

)
φ0

]
,

A25 = −
Ĥx̂32

2Ŵ 3
−

3Ĥx̂22

2Ŵ 2

(
φ0

Ŵ
− 1

)
−

3Ĥφ0x̂2

2Ŵ 2

(
φ0

Ŵ
− 2

)
− x̂1 − u,

(A.1)

where

α̂ = −
1

2
+

3

2

φ0

Ŵ
−

1

2

(
φ0

Ŵ
− 1

)3

, β̂ =
3

2

φ0

Ŵ 2

((
φ0

Ŵ
− 1

)2

− 1

)
(A.2)

Appendix B. SIMULATION PARAMETERS

Ac flow area 0.01 m2

B B-Parameter ≈ 0.832

H coefficient 0.18

Lc length of ducts and compressor 3 m

U compressor blade tip speed 80 m s−1

Vp plenum volume 1.5 m3

W coefficient 0.25

as speed of sound 340 m s−1

ψ0 operating point for ψ, respective x1 0.533

φ0 operating point for φ, respective x2 0.3

ψ0c constant of the compressor characteristics 0.3

Kalman Filter tunings

QO = diag
(
10−3, 10−1, 10−1

)
,

RO = 10−1


