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Abstract—In many multiphase pipeline-riser systems, anti-
slug control is necessary to ensure steady and optimal operation.
In this paper, we propose using an L1 adaptive controller as
an augmentation to standard PI control to stabilize the desired
non-slugging flow regime. The L1 adaptive controller is designed
based on a model identified from an experimental closed-loop
step test. The proposed design involves fewer tuning parameters
compared to other adaptive control methods and it does not
need any observer. We have tested the controller by simulations
in both MATLAB and OLGA, and by experiments in a small-
scale laboratory. The results show that the proposed solution can
stabilize the process outside the stability region of the traditional
PI controller.

I. INTRODUCTION

In a gas-liquid pipeline-riser system, slugging occurs if the
liquid column blocks the gas flow. The gas will accumulate
in the pipeline and the pressure will eventually exceed that
of the liquid column in the riser, leading to a blow-out of the
accumulated liquid into the topside separator.

Riser slugging causes several problems in pipeline-riser
systems. The liquid level of the topside separator might
exceed the maximum limit due to the large volume of the
slug. There is a risk of shutting down production completely
if the separator is unable to handle the slug. Another issue
is the danger of equipment damage and stress caused by the
high velocity of the slugs. [1].

Several methods exist to handle slugs, like installing
passive slug-catchers or increasing the size of the topside
separator. These are both expensive and space-demanding
solutions and if slug-flow was not expected when building
the production platform, it might even be impossible to install
them. Another method to suppress the slugs is to reduce the
opening of the topside choke valve. This ”open-loop” solution
requires no control and is simple and inexpensive, but it will
cause a higher backpressure through the production system
and may therefore give large economic losses due to reduced
production. [2].

A third solution is to use closed-loop feedback control
based on measuring for example pressure and adjusting the
valve position. The objective is to extend the region of the
desired non-slug flow regime. The valve will move all the
time, but its average value will be larger and thus give a
lower pressure and higher production. Automatic control of
the topside choke valve was investigated in [3] where they
were able to suppress slugs by using automatic PI control.

Since then, several anti-slug control solutions have been
developed. In 1996, Total presented an anti-slug control
method that enables pipeline operations within the slugging
region [4]. In 1999, in an independent study, ABB installed
a similar anti-slug feedback solution on the Hod-Valhall
platform operated by BP-Amoco [5].

In [2] and [6, Ch. 5], several PI control solutions and
strategies are presented. These include both volumetric flow
control and pressure control and the idea of using a cascaded
control solution combining flow and pressure control. In [6,
Ch. 6], model-based control solutions are presented and it
is shown that a MISO H∞ controller is not limited by
RHP-zeros when both topside pressure and topside flow
measurements are used. An LQG controller [6, Ch. 6] with
an extended Kalman filter is designed, but this solution shows
significantly worse performance than the H∞ controller.
Simple PI control is used in [7] where both the topside choke
valve and a riser base valve are used to stabilize the riser base
pressure.

In [8] an identified model of the unstable system is used
to obtain an IMC (Internal Model Control) design. The IMC
controller is used to obtain tuning parameters for PI and
PID controllers at different operating points. Gain-scheduling
can be implemented based on multiple IMC controllers for
the different operating points. The resulting controllers show
good robustness and are able to stabilize the system at
different operating points.

Non-linear control solutions have also been used for anti-
slug control. In [9], a non-linear state-feedback solution is
proposed. The solution stabilizes the mass in the riser and it
is able to control the process at operating points where the
PI controller is unable to stabilize. It is, however, assumed
that the full state is available for feedback, so a high gain
observer is used. In [10], a feedback linearizing controller is
proposed. This controller is able to stabilize the system at
large valve openings without re-tuning and does not use an
observer. It does, however, use both topside and riser-base
pressure measurements.

More recently, autonomous approaches have been sug-
gested to automatically change the riser base pressure set-
point. A lower setpoint implies a larger valve opening, lower
back pressure, but stabilization becomes more difficult.

In [11], a slug detection calculation is performed and a
supervisory system changes between two PID controllers.



One PID controller is designed to stabilize the slug flow
and the other to slowly open the choke valve until slugging
occurs.

In [12], the supervisory system detects oscillations and
decreases the setpoint only if the system is considered stable.
Otherwise the setpoint is increased to the last stable setpoint.
An MRAC (Model Reference Adaptive Control) method that
uses an observer-like reference model is applied. The solution
uses an LQR controller as a baseline stabilizing controller
and the adaptive controller is designed to assist the LQR
controller if the performance degrades.

PI and PID controllers for anti-slug control seems to be
the solution of choice in many real applications due to their
simplicity and performance under nominal conditions, but in
academia the focus is on higher order controllers, like non-
linear and adaptive solutions. In this paper, we propose to
use an L1 adaptive controller [13] with a PI controller as
a baseline controller. The adaptation extends the stabilizable
region enabling operation with larger valve openings.

We consider a system that has a PI controller installed
and tuned for certain operating conditions, but the operating
conditions change such that the PI controller fails. A change
in operating conditions will occur in, e.g. a well that loses
pressure over time. The proposed L1 adaptive controller
depends only on feedback from the riser-base pressure and
does not need an observer. This reduces the number of tuning
parameters. The tuning of the L1 controller is based on a
linear model of the dynamics from the valve opening to the
bottom pressure. The model is identified from the response of
the closed-loop system to an arbitrary small setpoint change.
Once the system is rewritten in the appropriate form, the L1

adaptive controller method is straightforward to implement
by following the guidelines of [13].

This paper is divided into the following sections: Section
II describes the simulation model and experimental setup.
The L1 adaptive control system is derived in Section III.
Section IV contains the results from Matlab and OLGA
simulations and from small-scale lab experiments. In Section
V, the results are discussed and the concluding remarks are
presented.

II. SLUG MODEL AND SYSTEM DESCRIPTION

Several simplified models for pipeline-riser slugging ex-
ist [14]–[17]. In this paper we use the Jahanshahi model
from [17]. The model contains four state variables as follows
• mg,p: Mass of gas in pipeline
• ml,p: Mass of liquid in pipeline
• mg,r: Mass of the gas in riser
• ml,r: Mass of the liquid in riser

The dynamic equations for the states are

ṁg,p = wg,in − wg (1a)
ṁl,p = wl,in − wl (1b)
ṁg,r = wg − αwout (1c)
ṁl,r = wl − (1− α)wout (1d)

Fig. 1. Schematic of a pipeline-riser system.

Fig. 2. The anti-slug experimental lab at NTNU. Figure adapted from [18].

where wg,in and wl,in are the gas and liquid mass inflow
rates respectively. The inflows are considered to be constant,
but could also be implemented as pressure-driven. The gas
mass flow from the pipeline to the riser is denoted by wg
and wl is the liquid mass flow from the pipeline to the riser.
The outflow wout is the total mass flow through the topside
choke valve and α is the gas mass fraction at the top of the
riser. The schematics of a pipeline-riser system is shown in
Fig. 1. The mass outflow, wout, is determined by the topside
choke valve opening percentage, Z ∈ [0, 100].

The model is tuned to fit the small scale anti-slug ex-
perimental lab at the Department of Chemical Engineering
at the Norwegian University of Science and Technology
(NTNU). This particular system enters unstable slugging flow
at Z ≥ 15% valve opening. A simulation model of the lab
has also been implemented in the OLGA simulation software.

III. L1 ADAPTIVE ANTI-SLUG CONTROL

PI and PID controllers have been showed to work well for
anti-slug control. A well-known issue with linear controllers
is that they might not work outside the region of operation
for which they were designed.

In this paper we consider a situation where a PI controller
is installed and tuned for a certain operating condition. We
then decrease the setpoint for the riser-base pressure. This
causes the valve opening to increase and the PI controller will
eventually fail because of the change in operating point. By
augmenting the PI controller with an L1 adaptive controller,



we are able to stabilize the flow at setpoints the PI controller
is unable to.

A. 1st order approximation of open-loop transfer function

Consider the transfer function from the valve opening
to the riser bottom pressure for the four state model (1)
linearized about an unstable operating point. In [8] this is
found to be a fourth order transfer function on the form

G(s) =
θ1(s+ θ2)(s+ θ3)

(s2 − θ4s+ θ5)(s2 + θ6s+ θ7)
(2)

It is shown, through a Hankel Singular Value decomposition,
that the stable part of the system has little dynamic contri-
bution. A reduced order model can be derived as

Gol(s) =
b1s+ b0

s2 − a1s+ a0
(3)

with a0, a1 > 0. This model is further reduced to an unstable
first order open-loop model

Ḡol(s) =
b

s− a
(4)

where a > 0 and b < 0. It is shown in [8] that this model is
incorrect, but we will show that the error in this simplification
is handled by the L1 adaptive controller.

B. L1 adaptive controller

The overall system consists of the unstable process, a base-
line PI controller and an adaptive controller that augments the
baseline controller. The states of the system are

x1 =

∫ t

0

y − rp dt (5a)

x2 = y − rp (5b)

where y is the measured output (i.e, the riser-bottom pressure)
and rp is the reference pressure which is assumed constant.
All states are available through measurement or calculation.
The dynamic equations describing this system in open-loop
are

ẋ1 = x2 (6a)
ẋ2 = ay + b(ω(t)u+ θ0(t)y + σ0(t)) (6b)

where a > 0, b is unknown with known sign, ω(t) is a time-
varying uncertainty in the input gain, θ0(t) is a time-varying
initial parameter uncertainty and σ0(t) models a time-varying
initial input disturbance. The control input is

u = um + uad (7)

where um = kpx2 + kix1 with kp, ki > 0 is the baseline PI
controller and uad is the adaptive control signal. Inserting the
baseline controller and adding and subtracting bkix1, bkpx2,
arp and θ0rp gives a system on the form

ẋ1 = x2 (8a)
ẋ2 = amx2 + bkix1 + b(ω(t)uad + (ω − 1)kpx2

+(ω(t)−1)kix1+
a

b
rp+θ0(t)x2 + σ0(t) + θ0y) (8b)

where am = a+ bkp. The system is then cast into the form

ẋ = Amx+Bm(ω(t)uad + θ(t)x2 + σ(t)) (9)

where

Am =

[
0 1
bki am

]
(10)

Bm =

[
0
b

]
(11)

θ(t) = θ0 + (ω(t)− 1)kp (12)

σ(t) = σ0 + (ω(t)− 1)kix1 +
(a
b

+ θ0

)
rp. (13)

Am is Hurwitz because am, bki < 0.

Assumption 1: The unknown parameters and their deriva-
tives are bounded

|θ(t)| ≤ Θ0, |σ(t)| ≤ ∆0, ∀t ≥ 0

|θ̇(t)| ≤ dθ <∞, |σ̇| ≤ dσ <∞, ∀t ≥ 0

Assumption 2: Partial knowledge of the uncertain input
gain

ω ∈ Ω0 ,
[
ωl0, ωu0

]
where 0 < ωl0 < ωu0 are known upper and lower bounds
on ω.

Consider the following predictor system

˙̂x = Amx̂+Bm(ω̂(t)uad + θ̂(t)x̂2 + σ̂(t)) . (14)

Looking at (9) and (11), it is clear that Bmω is not affected
by the PI controller gains kp and ki. The open-loop gain of
the first order approximation in (4) is unknown, but we know
that it is small and that the sign is negative.

The unknown parameters ω(t), θ(t) and σ(t) are replaced
by estimates ω̂(t), θ̂(t) and σ̂(t). The adaptation of the
unknown parameters is governed by the projection-based
adaptation laws

˙̂
θ = γProj(θ̂(t),−x̃2pbx2), θ(0) = θ0, (15a)
˙̂ω = γProj(ω̂(t),−x̃2pbuad), ω(0) = ω0, (15b)
˙̂σ = γProj(σ̂(t),−x̃2pb), σ(0) = σ0 (15c)

where x̃2 := x̂2 − x2, γ is the adaptation rate and p is the
solution to the algebraic Lyapunov equation amp+pam = −q
for arbitrary q > 0. We have chosen q = 1 which gives p = 5
in all cases. The projection operator ensures that the unknown
parameters are bounded.

The adaptive control signal is generated as

uad(s) = −kD(s)(η̂(s)− kgre(s)). (16)

Since we are controlling the error dynamics, the
reference re is zero and the term kgre(s) disappears.
η̂ , ω̂(t)uad + θ̂(t)x2 + σ̂(t), k > 0 is a feedback gain and
D(s) is chosen as D(s) = 1

s . Stability proofs for the L1

adaptive controller can be found in [13].



TABLE I
PARAMETERS USED IN MATLAB SIMULATIONS.

Parameter Value Description
kp 7.5 Proportional gain
τi 100 Integral time
ki kp/τi Integral gain
am 1/10 Prediction model natural frequency
b -1/20 Prediction model static gain
γ 20 Adaptation gain
k 1 Feedback gain

IV. RESULTS

The controller is implemented in both a MATLAB and
OLGA simulation model and in the small-scale anti-slug
laboratory test setup at NTNU. The lab operates with water
and air as the liquid and gas phase respectively. The nominal
inflow rate of water and air is approximately 4 l/min and
4.5 l/min respectively. The pressure in the topside separator
is nominally constant at atmospheric pressure. This system
is unstable at a valve opening of Z ≥ 15% and is stabilized
by a PI controller and with the L1 adaptive controller.

It is desirable to operate at lower pressure setpoints be-
cause this increases the production rate from the subsea oil
wells. However, stabilization is more difficult at low pressure
setpoints, which implies large valve openings, because the
process gain decreases and approaches zero.

Disturbances such as changes in the inflow of gas and
liquid are not considered as this would only shift the region
of instability depending on the change. A higher gas flow or
lower liquid flow implies more gas in the system and hence,
a more stable system. The opposite is true for low gas flows
and high liquid flows. The has been tested with the proposed
solution in Matlab with positive results, but is not included
in the paper due to space limitations.

A. Matlab simulations

The parameters used in the MATLAB simulations are
listed in Table I. The prediction model time constant is
chosen as τ = 10 seconds giving a prediction model natural
frequency am = 1/10. The prediction model gain is chosen
as a relatively small, negative value, based on knowledge of
the system.

Fig. 3 shows the result when only using the PI controller.
The system is stable during the first setpoint change, but goes
unstable when the setpoint is further reduced. It is clear that
the PI controller cannot handle the setpoint change and would
need re-tuning or augmentation by an adaptive controller to
work. The L1 controller is activated and Fig. 4 shows the
same setpoint changes as in Fig. 3. Now, the process is
stabilized at the new setpoints.

The adapted parameters are shown in Fig. 5. Here we see
that the estimated gain, ω̂, is reduced whenever the setpoint
is changed. The value of ω̂ is larger or close to one, which
indicates that our initial guess of b was too low. The unknown
disturbance parameter σ̂ is close to −5 after the setpoint
changes. θ̂ is largely affected by measurement noise, causing
it to act as an integrator.
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Fig. 3. Pressure at riser-bottom and valve opening when only using a PI
controller. MATLAB simulation.
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Fig. 4. Pressure at riser-bottom and valve opening when using a PI controller
and a L1 adaptive controller together. MATLAB simulation.
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Fig. 5. The adapted parameters during the MATLAB simulation.

B. OLGA simulations

OLGA is an advanced dynamic multiphase flow simu-
lator [19]. The parameters used in the OLGA simulations
are listed in Table II. We have used the same values for
the prediction model, but due to the slow sampling time,
the adaptation gain, γ, and the feedback gain, k, had to be



TABLE II
PARAMETERS USED IN OLGA SIMULATIONS.

Parameter Value Description
kp 7.5 Proportional gain
τi 100 Integral time
ki kp/τi Integral gain
am 1/10 Prediction model natural frequency
b -1/20 Prediction model static gain
γ 1 Adaptation gain
k 0.5 Feedback gain
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Fig. 6. Pressure at riser-bottom and valve opening when only using a PI
controller. OLGA simulation.

reduced.
The same system is implemented in the oil and gas

simulation software OLGA. The controllers are implemented
in MATLAB, which is connected to OLGA via the OLGA
OPC server. The OLGA OPC server only allows a sampling
time of Ts = 1 second, hence the tuning of the L1 controller
had to be changed slightly.

The results of only using the PI controller is shown in
Fig. 6. It is clear that the PI controller is unable to stabilize
the process when the setpoint moves too far away from the
region of linearization. Fig. 7 shows the result of the same
setpoint changes when the L1 adaptive controller is activated.
The process is stabilized at lower setpoints. Looking at the
adapted parameters in Fig. 8 it is clear that the gain is reduced
when changing setpoints as ω̂ is reduced. σ̂ reduces when the
setpoint changes are initiated and θ̂ converges to a value close
to −5.

C. Laboratory results

The parameters used in the lab experiments are listed in
Table III. The controller was implemented in the small-scale
anti-slug laboratory at NTNU, Fig. 2. Due to measurement
noise, the controller needed some re-tuning. The lab is
actually more stable than the model, and hence, the initial
valve opening was moved to Z = 30%.

As can be seen in Fig. 9, the PI controller is able to control
the process during the first setpoint change, but the process
goes unstable when the second setpoint change is introduced.
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Fig. 7. Pressure at riser-bottom and valve opening when using a PI controller
and a L1 adaptive controller together. OLGA simulation.
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Fig. 8. The adapted parameters during the OLGA simulation.

TABLE III
PARAMETERS USED IN LAB EXPERIMENTS.

Parameter Value Description
kp 7.5 Proportional gain
τi 100 Integral time
ki kp/τi Integral gain
am 1/10 Prediction model natural frequency
b -1/20 Prediction model static gain
γ 10 Adaptation gain
k 1 Feedback gain

The L1 controller is able to stabilize the system at the second
setpoint, as can be seen in Fig. 10. The adapted parameters,
Fig. 11, are very noisy in this case. We believe this is caused
by the measurement noise.

V. CONCLUDING REMARKS

The results show a clear improvement when using the L1

adaptive controller together with a PI controller. In a real
setting, the tuning of the PI controller could of course be
improved, but this can be time consuming and would require
specially trained personnel. We believe that this retuning
is unnecessary or at least less frequent when using the
proposed adaptive method. Instead of replacing the whole
control system with a purely adaptive solution, we augment
the PI controller with the L1 adaptive controller because a
PI controller with satisfactory performance at nominal con-
ditions might be installed already. Our solution is designed
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Fig. 9. Pressure at riser-bottom and valve opening when using a PI
controller. Laboratory experiment.
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Fig. 10. Pressure at riser-bottom and valve opening when using a PI
controller and a L1 adaptive controller together. Laboratory experiment.
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Fig. 11. The adapted parameters during the laboratory experiments.

to maintain this performance when the nominal conditions
changes. The suggested L1 adaptive controller contains fewer
tuning parameters compared to the proposed MRAC with
observer-based reference model of [12].

We have made no qualitative comparison of our solution
with other proposed anti-slug control solutions, but this could
be looked into in the future.

The L1 adaptive controller can utilize fast adaptation by
choosing large adaptation gain, γ. This will increase perfor-
mance according to [13]. In our experiments, the adaptation
gain had to be quite low (1−20). This is thought to be because
of measurement noise and a relatively slow sampling time of
0.1 second.
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