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Abstract

In this paper, we consider the problem of production optimization under uncertainty ap-
plied to gas lifted well networks. Worst-case and scenario optimization methods are pre-
sented to explicitly handle the uncertainty. We also compare the performance and com-
putation time of the presented methods with nominal and ideal cases using Monte Carlo
simulations. We show that the scenario optimization method is able to reduce the conser-
vativeness, however at the cost of computation time. We also show that the performance
can be improved by parameter adaptation using an extended Kalman filter for combined
state and parameter estimation.
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1. Introduction

In offshore oil and gas production processes, the problem of production optimization
(equivalent to RTO) seeks to optimize some economic objective while satisfying process
constraints. The models used in RTO are typically obtained either from fundamental
knowledge of the system or from experimental data or a combination of both. However,
lack of knowledge, model simplification and sparsity of experimental data (from well
tests) makes the models used in production optimization to be inherently uncertain.

A significant amount of work on production optimization can be found in the literature.
However, most of these considers a deterministic problem and the uncertainty is simply
ignored. A few works that do consider the problem of optimization under uncertainty only
considers static models, Hanssen and Foss (2015). In our recent paper, Krishnamoorthy
et al. (2016), we considered the problem of gas lift optimization under uncertainty using
dynamic models. We proposed the use of scenario-based optimization to provide a robust
feasible solution whilst reducing the conservativeness from the worst-case optimization.
The performance of scenario optimization was demonstrated using a simulation example,
however, the computational times were not considered. In this paper, we give a more
thorough comparison of nominal, worst-case and scenario optimization in terms of per-
formance and computation time using Monte-Carlo simulations. Additionally, the plant
model considered in our earlier work did not include pressure coupling in the well models
and perfect state feedback of all the states was also assumed. This is rarely the case in the
real applications. Therefore in this paper, we also extend the work by including pressure
coupling in the well models and an Extended Kalman filter (EKF) for state feedback. In
addition, we also show that the performance can be further improved by implementing an
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augmented Kalman filter for combined state and parameter estimation.

2. Problem statement

In this work, we consider a production network consisting of two gas lifted wells con-
nected to a common riser manifold which produces to an offshore separator. The objec-
tive of the production optimization problem is then to find the optimal gas lift injection
rate for each well such that the total oil production is maximized while satisfying the gas
capacity constraints. Note that the common riser manifold introduces pressure coupling
between the wells. This implies that any change made in one well also has an effect on the
other well. The separator is assumed to be at a constant pressure. The dynamic model of
a gas lifted well network was developed based on physical knowledge of the system. The
dynamics are introduced in the form of mass holdups in each well and in the riser. The
densities, pressures, flow rates in each well and riser are described by algebraic equations.
Detailed information about the model can be found in Krishnamoorthy et al. (2016). The
production network model can be expressed as a semi explicit index-1 DAE system of the
form

i:f(xaz7u7p) (1)
g(x,z,u,p) =0 pew (2)

where, x and z denote the differential and algebraic states respectively, u represents the
control inputs, p represents the uncertain parameters belonging to a compact set /. In this
work, we assume that the gas-oil ratio (GOR) is the uncertain parameter and we assume
that the expected value E(GOR) and the variance ¢ for each well is known a-priori, i.e.
pi € {Eo(GOR;) £ 0;} Vi € 4, where the subscript i denotes any individual well from a
setof A ={1,---,n,} wells.

3. Daily Production Optimization

Before we can formulate the production optimization problem, the infinite dimensional
problem is first discretized into a finite dimensional problem which is divided into N
equally spaced sampling intervals. We use a third order direct collocation method for
polynomial approximation of the system in Eq.(1) and the discretized system dynamics
at any time instant k can be expressed as F(ik,xok,ik,ﬁk,p) = 0, where X, and Z; are the
discretized differential and algebraic state vectors containing the three collocation points
of the states at each sampling interval k. The vector of initial differential states at each
interval given by x';, ensures state continuity by forcing the last collocation point of any
given time interval X; 3 to be equal to the initial condition of the consecutive time interval
Xi+1,0- Uy denotes the vector of control inputs which is assumed to be piecewise constant
in each interval. A detailed explanation on how the system is discretized into a nonlinear
programming problem using direct collocation can be found in Krishnamoorthy et al.
(2016).

The mathematical optimization problem can now be formulated as shown below,
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where, 6; = [Xy, %, 1] is the vector of decision variables, @, is the price of oil, o is
the cost of compressing the gas for gas lift injection, wp, is the oil flow rate, wy,; is the
gas lift rate w), is the produced gas rate and wy,, . is the total gas capacity constraint as
implemented in (3c). Soft constraints using slack variables and an exact penalty function
is implemented for the total capacity constraint to ensure feasibility in the face of noise
and estimation error. p is a tuning parameter that penalizes constraint violations. (3b)
represents the discretized dynamic model equations. In addition, there are upper and
lower bound constraints and rate of change constraints on the differential and algebraic
states and decision variables, which are not shown due to page limitations.

The uncertain parameter p = GOR can take any value from a bounded uncertainty set, % .
When the uncertain parameters are assumed to be at their nominal values, the optimization
problem (3) is solved with GOR; = Eo(GOR;). However, if the true realization of GOR is
higher than the nominal value, then this leads to constraint violations when implemented
as demonstrated in Krishnamoorthy et al. (2016). Robust optimization methods may be
employed to ensure robust feasibility, where all the uncertain parameters are assumed
to simultaneously take their worst-case realization. In this work, since the uncertainty is
simple, the worst-case realization can be easily formulated a-priori without using the min-
max formulation. The worst-case scenario occurs when the GOR of all the wells take their
extreme value, GOR; =Ey(GOR;) + o;. All the parameters taking its worst-case value will
be an unlikely event. Therefore, the solution to the robust optimization problem will most
likely be very conservative and suboptimal as shown in Krishnamoorthy et al. (2016).
Robust optimization does not take into account that

new information will be available in the future. To L P
improve on this, closed-loop or feedback min-max A

. . Dynamic | k> %k
MPC scheme was first introduced in Scokaert and Optimizer EKF
Mayne (1998) and later extended in Lucia et al. .
(2013). The uncertainty is represented as a tree of e
discrete scenarios made up of M discrete models. Ymees
The scenario tree represents how the uncertainty Process

influences state propagation over time and the opti-

mization problem is solved over the entire scenario Figure 1: Block diagram of the im-
tree. Typically, the M different models should be plemented control structure includ-
chosen to cover the entire uncertainty space. A ing the EKF for state estimation.
common way is to select the a combination of val-

ues among the extreme and nominal values of all the uncertainties, (Mart{ et al. (2015)).
For example, the vertices from the boundary and the nominal point as shown in Fig.2
can be chosen to cover the uncertainty space. In order to avoid an exponential growth
of the optimization problem, the branching is stopped after a certain number of samples
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Table 1: The GOR value used in the optimizer for nominal, worst-case and scenario based
approach

Nominal | worst-case scenario-based
GOR well 1 0.1 0.15 0.05 0.05 0.1 0.15 0.15
GOR well 2 0.12 0.13 0.11 0.13 0.12 0.11 0.13

(a) (b)

Figure 2: (a) Uncertainty subspace and the possible models for the scenario tree denoted
by e, (b) Scenario tree with Ng = 1 and M = 5 models = § = 5' = 5 scenarios.

Ngr < N (known as robust horizon). Each path from the root node to the leaf is called a
scenario and the number of scenarios is then given by S = M"k. A typical scenario tree
is shown in Fig.2. To reflect the fact that the optimization problem cannot anticipate the
future, the decision variables that branch at the same node must be equal. This is known
as non-anticipativity or causality constraints. For the scenario tree shown in Fig.2 with
ng = 1, the causality constraints are given by up | = w22 = uz 3 = uz 4 = uy 5 at the first
sample. This is collectively denoted by y, see Lucia et al. (2013) and Krishnamoorthy
et al. (2016). The scenario optimization can then be written as a sum of the optimiza-
tion problem in Eq.(3) for each scenario subject to the constraints in Eq.(3) collectively
denoted by % and the additional causality constraints.

S

S
min {}' J;| Y xju;=0,0; € ;. ¥j€{l, - ,5}} “)
Joj=1 j=1

An Extended Kalman Filter (EKF) was implemented for state feedback. The annulus
pressure, well head pressure, bottom hole pressure, wellhead choke flow rate and gas
inflow rate are all assumed to be measured and used as measurements in the EKF. The
original index-1 DAE system was converted into an explicit ODE system as shown in
Eq.(5) by eliminating all the algebraic variables. The EKF was then implemented using
Eq.(5) as shown in Simon (2006). An NMPC control structure was chosen together with
an EKF for state estimation as shown in Fig.1.

X = fexr(X,0) Y = hekr(X) )

The model used in EKF uses the nominal GOR for the nominal optimization and worst-
case GOR for the worst-case optimization. For the scenario optimization case, the model
used in EKF uses nominal GOR values. The estimation error due to this assumption is
handled using soft constraints as mentioned earlier.
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4. Results and Discussion

The dynamic optimization problem was solved with a prediction horizon of N = 15 and a
sampling time of Ty = Smin. In the case of scenario optimization, a robust horizon of ng =
1 was chosen as shown in Fig.2. To compare the performance of the nominal, worst-case
and scenario optimization methods, we now present a Monte Carlo simulation with 35
simulations. The GOR values used in the nominal, worst-case and scenario optimization
are summarised in Tablel.

For each Monte Carlo
simulation, the true GOR
used in the simulator 5280 1 1 owm
was randomly picked ] 15 W
from the known uniform . E—
distribution {IE(GOR) + o Wonst case
o} and is shown in | 5 =,
Fig.3. Each Monte 5220
Carlo simulation was
run for 75min (15 NMPC 0.15
samples) and the to-
tal accumulated oil over
75min (integrated ob-
jective) is compared. As
a benchmark, the re- 005
sults from the ideal case w020 30 w020 30
. simulation number simulation number
are also plotted, which
corresponds to the case
where we have perfect
information about all
the parameters. The
nominal optimization seems to produce more oil than the ideal case in some simulations,
however the total gas capacity constraints are violated in these simulations which demon-
strates that nominal optimization can lead to infeasibility. The constraint violations for
all the cases plotted in Fig.3 shows that the constraints are violated only in the nominal
optimization case. However, it is important to note that this is not a general conclusion for
scenario optimization. Scenario optimization can be constraint feasible if one of the sce-
narios corresponds to the worst-case scenario, which was the case in this simulation study
(see Table.1). Fig.3 shows that the worst-case and scenario optimization were robust fea-
sible at the cost of conservativeness. However, the scenario optimization was significantly
less conservative than the worst-case optimization. On average, the scenario optimization
produced 9.17 barrels of oil more than the worst-case optimization over the time period of
75min. The average computation time for nominal, worst-case and scenario optimization
are also compared and we see that the improved performance of the scenario optimization
comes at the cost of higher computation time. However, this can be improved by decom-
posing each scenario or a bundle of scenarios into smaller subproblem and solved using
parallel computing as described in Marti et al. (2015). With the reported computation
times and a sampling time of 5 min, real-time implementation may not be an issue for the
application considered.
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Figure 3: Monte Carlo Simulation results each with a simula-
tion time of 75min
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The worst-case and scenario
optimization were shown to
have a certain degree of
conservativeness.  This is
due to the inclusion of the
worst-case realization of all
the parameters in the opti-
mization problem. Using
the model and the measure-

Oil rate [kg/s

A-EKF
— — Scenario EKF

Gas rate [kg/s]

time [hrs]

g -
ments the parameters could B T e = ] M
be estimated online instead 52 i T
of waiting for experimental 2, 8 o Well 2 True

-------- Well 1 Est
well2] T | L Well 2 Est

\
i

data from well tests to up-
date the models. The GOR v “jﬂ o vor u,i] oo
can also be estimated us-

ing an augmented EKF to
improve the performance by
parameter adaptation. The
estimated GOR is then used in the optimization model (Adaptive Optimization). Results
from the scenario optimization are compared with the results from the optimization run
with the estimated GOR. The system was simulated for 5h (60 samples) using a time vary-
ing GOR. Since we use the estimated GOR, we are closer to the true GOR and hence the
computed optimum solution is close to the active constraint. Therefore the spare capacity
that was not utilized by the scenario optimization is fully utilized by estimating the GOR.
This is reflected in the produced oil rate which is higher than the scenario optimization.
This is clearly seen in Fig.4. The results from nominal optimization with parameter esti-
mation using EKF are shown in solid lines, whereas the scenario optimization are shown
in dashed lines. However, note that the solution is not robust feasible when the GOR sud-
denly increases to its worst-case realization. The total gas capacity constraint is violated
dynamically for a short period of time since this is a reactive strategy. The EKF updates
the GOR based on the measurements and the constraints are satisfied after a few samples.
In the case of hard constraints, a combination of robust and adaptive optimization method
may be implemented which could be a future research direction.

welll

Figure 4: Simulation with Augmented EKF
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