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Abstract

Feedback control is an efficient and economical solution to prevent slugging flow regimes in offshore oil production. For
this, a choke valve at the topside platform is used as the manipulated variable to control the pressure or the flow rate
in the pipeline. The primary challenge for anti-slug controllers is robustness. The lack of robustness is due to changes
in inflow conditions, the process nonlinearity, and modeling errors. In particular, the nonlinearity combined with an
inverse response behavior makes the control of the topside pressure more difficult. We have conducted nonlinear and
linear analysis and evaluated four control designs experimentally with both subsea and topside pressures. The control
designs are 1) feedback linearization with measured outputs, 2) gain-scheduling IMC (internal model control) based on
identified model, 3) PI control with an adaptive gain based on a static gain model, and 4) state feedback with state
estimation by a nonlinear high-gain observer. We compared the robustness of these controllers regarding tolerance to
time delay, change of the operating point and inflow disturbances. All the controllers could handle 30% step changes
(disturbances) in inflow rates and remained stable. The gain-scheduling controller was more robust against time delay
than the other controllers. By applying the high-gain observer, the stabilization was achieved in an acceptable range
when only the topside pressure was available. However, the observer diverges when using a subsea pressure measurement
which from a controllability point of view should be the easiest controlled variable. Nevertheless, this result agrees with
the observability theory.
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1. Introduction

In offshore oil production, a multi-phase mixture of
oil, gas and water is transported from the producing oil
wells at the seabed to the topside facilities through subsea
pipelines and risers. Under certain inflow conditions (i.e.5

low inflow rates and low pressure), slugging flow regimes
occur in the pipeline-riser systems. Such flow regimes
are characterized by severe flow and pressure oscillations.
These flow conditions cause numerous operational prob-
lems in oil production, e.g., poor separation, overflow of10

inlet separators and unwanted gas flaring [1].
The conventional solution to mitigate slugging flow is

to reduce the opening of the topside choke valve (chok-
ing), but this increases the back-pressure on the produc-
ing oil wells and decreases the production rate. Therefore,15

a solution that guarantees stable flow together with the
maximum possible production rate is desirable.

Feedback control has been shown to be an effective
strategy to eliminate slugging [2, 3, 4]. The topside choke
valve is usually used as the control input to regulate pres-20

sure at a given pressure setpoint. Such a system is referred
to as “anti-slug control” aiming to stabilize the flow under
operating conditions that, without control, would lead to
slugging [5]. Usually, a subsea pressure measurement is
used as the controlled variable. The subsea pressure sen-25

sor can be installed at the riser base (Prb) or upstream
towards the pipeline inlet (Pin). Controlling the pressure
measured from the riser top (Prt) is an alternative which
is simpler from a practical point of view.

Although the control structures used for this purpose30

are simple, the existing anti-slug controllers are not robust
in practice over long periods of operation. The robust-
ness issues are mainly due to varying inflow conditions,
i.e. pressure, inflow rate and GOR (gas/oil ratio). “The
slugging potential and flow regime change over time. For35

example, the production engineers may add a new well
to the manifold at the pipeline inlet, or they may close or
open an incoming well stream for the production optimiza-
tion reason. By adding a well, the total inflow rate may
increases such that there will be no need for the slug con-40

trol anymore. Then, one year later, the GOR may change,
or the flow rate may increase or decrease. As a result, the
system will experience a very different type of slugging.
Therefore, it is not possible to develop a slug controller
that can be left alone to handle all kinds of flow regimes,45

unfortunately. Changes in the operating conditions will re-
quire tight follow-up from someone who understands both
multiphase flow and feedback control to update the con-
troller settings. Such issues are not explained in the public
domain literature. Most papers either present simulations50

or success stories”[6].
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The nonlinearity of the process is a problem for a lin-
ear controller because the process gain changes drastically
at different operating conditions, and the controller needs
to be re-tuned. The nonlinearity of the process can be55

counteracted by nonlinear model-based controllers or by
a gain-scheduling of linear controllers. Also, the effective
time delay caused by long flowlines is another problematic
factor for stabilizing control.

The primary objective of our research is to design ro-60

bust anti-slug control systems. A robust controller requires
less frequent re-tuning. The focus of this article is on non-
linear control solutions to counteract the process nonlin-
earity. First, we design a feedback linearization controller
based on a mechanistic model . This controller uses two65

measured outputs (Prb and Prt). Another approach, in
which the mechanistic model is not directly used for the
control design, is to identify an unstable model of the sys-
tem by a closed-loop step test. We use the identified model
for an IMC (internal model control) design to control the70

inlet pressure (Pin). We construct gain-scheduling using
three IMC controllers to cover a wide operational range.
Next, we consider adaptive PI control where the adapta-
tion is based on a simple model for the static nonlinearity
of the process. Here, the controlled variable of the feed-75

back is the inlet pressure (Pin), and the static process gain
is updated from the valve opening value (Z) and the top-
side pressure (Prt) which are always available.

Stabilizing control using only the topside pressure mea-
surement (Prt) is not robust; this has been investigated80

based on a linear controllability analysis [7]. If only the
topside pressure measurement is available, a conventional
control solution is to design an observer to estimate the
states of the system including the subsea pressure, and
then use these estimates for control [8, 9]. Although we85

know that the observer and the state feedback design can-
not be generalized for all control application, we will in-
vestigate if this solution can recover some stabilizability
and robustness when no subsea measurement is available.

Some of the results provided in the paper have been90

partially presented in [10]. In this article, we add a system
analysis and the adaptive control design, and we discuss
the results in detail.

This article is organized as follows. A mechanistic
model for the severe slugging flow is introduced in Sec-95

tion 2, and the model is used for analysis in Section 3.
The four control designs are presented in Section 4. The
experimental results are shown in Section 5 and discussed
in Section 6. Finally, the main remarks and conclusions
are summarized in Section 7.100

2. First Principle Model

We have developed a dynamic model for riser slugging
based on mass and momentum balances [5]. This model
is able to capture the main dynamics of the slugging flow
regime, and it is of good fit with the detailed commercial105

simulator OLGA R© [11] and experiments. The model is
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Figure 1: Schematic presentation of the system

described by only four ODEs with soft nonlinear functions
which make it suitable for controller design.

2.1. Summary of the four-state model

Figure 1 shows a schematic presentation of the model.110

The state variables of this model are

• x1 [kg]: mass of gas in pipeline

• x2 [kg]: mass of liquid in pipeline

• x3 [kg]: mass of gas in riser

• x4 [kg]: mass of liquid in riser115

The four state equations of the model are the following
mass balances:

ẋ1 = (wG)in − (wG)rb (1)

ẋ2 = (wL)in − (wL)rb (2)

ẋ3 = (wG)rb − (αm
G
)rt wout (3)

ẋ4 = (wL)rb − [1− (αm
G
)rt]wout (4)

The inflow rates of gas and liquid to the system, (wG)in
and (wL)in, are assumed to be independent disturbances
with known nominal values. The flow rates of gas and
liquid from the pipeline to the riser, (wG)rb and (wL)rb,
are described by virtual valve equations (A.30), (A.33).120

The outlet mixture flow rate, wout, is determined by the
opening percentage of the topside choke valve, Z, which is
the manipulated variable of the control.

Although (1)-(4) seem to be linear, calculation of the
flow rates and the mass fraction (αm

G
)rt involves several125

nonlinear equations (e.g. valve equations and frictions).
See Appendix A for the complete set of the model equa-
tions.

2.2. Model fitting

The four-state model can be partly configured based130

on dimensions and other physical properties (e.g. fluid
properties) to fit it to a given pipeline-rise system. In
addition, four fitting parameters are included in the model
for the purpose of fine-tuning. The fitting procedure is
described in [5]. In this work, the four-state model has135
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Figure 2: Bifurcation diagrams of four-state model (blue) compared
to OLGA model (red) and experiments (green)

been fitted to data from experiments and simulations using
the OLGA simulator. The experimental setup is described
in Section 5.1.

The open-loop system has a stable (non-slug) flow when
Z is smaller than 15%, and it switches to unstable (slug-140

ging) flow conditions for larger valve openings. The bifur-
cation diagram describes steady-state process values and
the minimum and maximum values when the flow is oscil-
latory [7]. This diagram may be obtained experimentally
or from a more detailed model (e.g. OLGA). Such dia-145

grams are used as the reference to fit the model (Figure 2).
In Figure 2, the minimum and maximum values for the

four-state model deviate from those of OLGA and the ex-
periment. These differences are due to measurement noises
and un-modeled dynamics such as hydrodynamic slugging,150

which the four-state model is not able to describe. From a
control point of view, the steady flow (middle line) is more
important, because it represents equilibrium points where
the controlled system operates on.

3. System Analysis155

The desired steady-state (middle line) at the slugging
condition (Z > 15%) is unstable, but it can be stabilized
by using control. The slope of the steady-state line is the
static gain of the system, G = ∂y/∂u = ∂Pin/∂Z. As
the valve opening increases this slope decreases, and the160

gain finally approaches zero. The small process gain makes
control of the system with large valve openings difficult.

3.1. Nonlinearity analysis of the model

Here, we evaluate and compare the nonlinearity of the
process seen from the different outputs and states by a
nonlinearity measure. The present process is open-loop
unstable in the desired region, and a closed-loop nonlinear-
ity measure is required. We apply the optimal closed-loop
nonlinearity measure proposed in [12],

φNOCL
:= inf

L∈G

sup
x0∈β

‖NOCL[x
∗
x0
]−L[x∗

x0
]‖L2

‖NOCL[x∗
x0
]‖L2

(5)

with NOCL[x
∗
x0
] := u

∗
x0

and x
∗
x0

being the solution to the
infinite horizon control problem for the initial condition165

x0. In (5), L[x∗
x0
] represents the output of the optimal

controller applied to the best linear approximation of the
nonlinear process. The nonlinearity measure φNOCL

must
be close to 0 for a linear system.

For this analysis, we have made the inflow rates pressure-
driven which is closer to the reality. For this, we have ap-
plied a linear IPR (Inflow Performance Relationship) as
follows.

win = CPI max(Psour − Pin, 0), (6)

where CPI is the Productivity Index and Psour is the source170

pressure. To implement the nonlinearity measure, we sta-
bilized the process by a H∞ optimal controller [13], then
introduced setpoint changes in two directions (±) to move
the process from the initial state x0. The setpoint change
in the negative direction (towards a lower process gain)175

was obviously more difficult, and more simulations with
the negative setpoint became unstable. The results for
Z = 30% are summarized in Table 1.

All the controlled variables (CVs) are scaled so that
setpoint changes to different CVs make the same change in180

the pressure. For the small setpoint changes (0.1 kPa), the
system remained in the linear region, and the nonlinearity
measure was close to 0. However, for a 1 kPa change, the
nonlinearity measure became around φNOCL

= 0.4 when
the valve opening (Z) is the manipulated variable. It is185

not possible to control Prt, x2 and x3 by manipulating
the valve opening for the large setpoint changes. We will
discuss the reason later in this paper.

Next, we considered the outlet flow rate as a virtual
control input, denoted by w′. Surprisingly, the nonlinear-190

ity measure is close to 0 even for large setpoint changes.

The nonlinearities seen from the valve input to all CVs
are approximately the same, and φNOCL

= 0.4 is quite high
for only a 1 kPa setpoint change. On the contrary, the
process remains approximately linear for all outputs when
the flow rate w′ is the input. This analysis suggests that
the nonlinearity is mostly caused by the valve equation
relating the valve opening to the flow,

wout = Cvf(Z)
√

ρrt∆Pv, (7)

although a linear valve (i.e. f(Z) = Z) has been consid-
ered in the simulations. In (7), ∆Pv is the pressure drop
over the valve, and ρrt is the mixture density.195
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Table 1: Nonlinearity analysis results (larger number indicates higher nonlinearity, and † denotes unstable response).

output

input ∆r Pin Prt wout x1 x2 x3 x4

Z
±0.1 0.039 0.037 0.040 0.039 0.037 0.034 0.038
±1 0.414 † 0.431 0.414 † † 0.404

w′ ±0.1 0.000 0.000 – 0.000 0.000 0.000 0.000
±1 0.003 0.003 – 0.001 0.006 0.006 0.005

3.2. Linear analysis

The steady-state behaviors of Pin and Prt in Figure 2
are very similar; the difference is only a constant offset.
However, the control system using Prt becomes unstable
with large setpoint changes (Table 1). Obviously, only the200

gain magnitude cannot describe all issues related to con-
trol of a dynamic system. Here, we analyze the dynamics
in the frequency domain. Figure 3 shows the response of
the topside pressure to a step change in the valve opening
from 13% to 14%. The response of the four-state model205

is compared to the OLGA model which shows the rele-
vance of the four-state model for our analysis. The inverse
response behavior in the time domain translates to RHP
zeros in the frequency domain. Figure 4 shows the Bode
plot of the transfer function from the valve to Prt. The210

phase is inverted at high frequencies. That is, the gain of
the system is multiplied by -1 at high frequencies. This
happens for the valve openings 20-40% where RHP poles
exist, and their location is close to the RHP zeros. For
Z = 30%, the transfer function of the topside pressure215

Prt has two unstable poles at 0.0816 ± 0.1250i and two
RHP-zeros at 0.13 and 0.4199.

The inlet pressure Pin does not have any RHP-zero in
the desired region 20-40%. The same analysis has been
undertaken for the four state variables too. The first state220

x1 behaves similarly to the inlet pressure. The second and
third states x2 and x3 show RHP-zero dynamics similar to
Prt, and both states have small gains. Hence, it is difficult
to control them.

It is worth to point out that the process is open-loop225

stable from the input w′. As a result, from this input to
all outputs, the RHP zeros dynamics are not limiting the
controllability too much.

4. Control Designs

4.1. Feedback-linearizing controller230

The two measurements used by the controller are the
riser base pressure y1 = Prb (riser base pressure) and the
topside pressure y2 = Prt (riser top pressure). We define
the smooth function

F (y) := c
(

1− y2
a

) aα+ y2(1 − α)

bc− (y1 − y2 − Fr)
, (8)
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where a = RTrρl/MG, b = ρlVr and c = gLr/Vr are con-
stant parameters. Fr is the friction in the riser which is
assumed to be constant, and α is the average gas mass
fraction. The virtual control input is

w′ =
win(F (y) + c) +K1(y1 − ȳ1)

F (y) + c
, (9)

where K1 > 0 and win = (wG)in + (wL)in is the constant
inlet flow rate to the system. ȳ1 is the steady-state value
or the setpoint. The final control signal to the valve is

u = sat

(

w′

Cv

√

ρrt(y2 − Ps)

)

, (10)

where Cv and Ps are the choke valve constant and the
separator pressure, respectively. The riser friction function
Fr and the density ρrt are calculated based on the two
pressure measurements y1 and y2 and model parameters.
Derivation details of the control law and a proof for the235

closed-loop stability are described in [14].
It is a well-known fact that flow control removes the

nonlinearity of valves. In the system analysis, we showed
that the process is fairly linear if the outlet flow rate w′

is the control input. In practice, a cascade controller is240

used where flow control is the inner loop, and the outer
loop controls a pressure. However, this requires flow mea-
surement that is often challenging and expensive for the
multiphase flow. The control law described by (9) and (10)
is a virtual flow controller where the flow is estimated by245

the model.

4.1.1. Controllability limitations

When using y1 = Prb for feedback linearization in (9),
the controller counteracts the nonlinearity, and it stabilizes
the process in a wide range of valve opening values. How-250

ever, this requires a large controller gain for large valve
openings. We face two fundamental limitations when con-
trolling Pin or Prb with large valve openings:

Input saturation: The required control action is ex-
pressed as follows.

u = KS(r −Gdd− n)

Using an integral action, we reach the steady-state where
the complementary sensitivity transfer function is T ≈ 1.255

That is KS = G−1T ≈ G−1. Thus, small G translates to
a large KS and leads to large inputs due to measurement
noises or disturbances. In other words, the controller can-
not differentiate between noises and the unstable dynam-
ics; it amplifies the noises, and the control signal becomes260

very aggressive.
Time delay: Time delay causes problems especially

when controlling with a large valve opening because the
unstable poles moves further away from the origin (“faster
instability”). In addition, by increasing the controller gain265

(K) the delay margin of the control loop (θM ) decreases,
because the crossover frequency ωc increases for a large
controller gain (fast control action) and θM = (PM)/ωc.
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Figure 5: Response to step change in setpoint, obtained from ex-
periments where process is stabilized by a proportional controller
Kc0 = −10. This response is only used for model identification.

4.2. Gain-scheduling IMC

It is possible to identify a linear unstable model of the
system from a closed-loop step test (see Figure 5) as de-
scribed by [15]. Here, Pin is the output, and the indentified
model contains two unstable poles and one stable.

G(s) =
b̂1s+ b̂0

s2 − â1s+ â0
=

k′(s+ ϕ)

(s− π1)(s− π2)
(11)

We used the identified model for an IMC design [16]. The
feedback version of the IMC controller becomes

C(s) =
[ 1
k′λ3 ](α2s

2 + α1s+ 1)

s(s+ ϕ)
, (12)

where λ is an adjustable filter time constant. The filter co-
efficients α1 and α2 are calculated by solving the following
system of linear equations:

(

π1
2 π1 1

π2
2 π2 1

)





α2

α1

α0



 =

(

(λπ1 + 1)
3

(λπ2 + 1)
3

)

(13)

We chose α0 = 1 to achieve integral action in the con-270

troller. The closed-loop model identification and the IMC
design for the slugging flow system are presented in [15] in
greater detail.

For a gain-scheduling design, we identified three linear
models from step tests at three different operating points,275

Pin = 26 kPa, Pin = 23 kPa and Pin = 21.5 kPa. Then, we
designed three IMC controllers based on these identified
models. The identified models and the resulting IMC con-
trollers are given in Table 2. Switching (gain-scheduling)
between the three controllers is based on the pressure set-280

point and bump-less transfers between the controllers are
implemented.

Note that we have used the setpoint (ys) rather than
the actual pressure (y) for the gain-scheduling logic be-
cause the setpoint (ys) represents the steady-state that the285

system operates on and, in the case of a setpoint change,
it determines the steady-state we want to approach. Be-
sides, a given setpoint is a deterministic signal that is not
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affected by noise. Thus, the gain-scheduling by setpoint
does not suffer from random switching between controllers.290

4.3. Adaptive PI Control

We consider a PI controller and adapt the proportional
gain at different operating points to counteract the non-
linearity of the system. This can be implemented as a gain-295

scheduling or an adaptive controller. The gain-scheduling
or adaptation is based on the static gain of the system.

The middle line in the bifurcations diagrams (Figure 2)
represents the desired non-slug flow. The slope of this
line ( ∂y

∂u
= ∂P

∂Z
) represents the process gain. We found300

that this curve follows the valve equation (7). Similarly, it
was deduced from the nonlinearity analysis that the static
nonlinearity is mainly caused by the valve equation.

The details of the static gain model are presented in
Appendix B where the final model is given by (B.14). As-
suming a linear valve (i.e. f(Z) = Z), the model is given
as follow.

G0 = ∆G

(−2 (∆Pv)ss
Zss

)

, (14)

where ∆G depends on the inflow rates and the density:

∆G =
ρ2

G
+ c1∆Prα

m
G

ρ2
G
+ c1∆Pvαm

G

, (15)

where c1 = MG/(RTr), ∆Pr = ρssgLr and αm
G

is the
gas mass fraction calculated from the inflow rates, αm

G
=305

(wG)in /[(wG)in + (wL)in]. The steady state density ρss is
obtained from (B.4).

For the present case study, 0.9 < ∆G < 1.1 on the
operation range of the valve, 5 ≤ Z ≤ 100. Therefore, we
can apply the following approximation:

G0 ≅
−2 (∆Pv)ss

Zss
(16)

Next, we formulate the adaptive controller as follows.

u = Kadubl, (17)

where ubl denotes the baseline control signal and Kad is an
adaptive gain that is equal to 1 when controller operates
in the baseline mode. We consider a PI controller as the
baseline controller:

Kbl(s) = Kc

(

1 +
1

τIs

)

(18)

The baseline PI tuning is obtained by considering the high-
and low-frequency asymptotes of C(s) in (12).

Kc = lim
s→∞

C(s) =
α2

k′λ3
(19)

τI =
Kc

lim
s→0

sC(s)
= α2ϕ (20)

+

−

Kc

(

1 + 1
τIs

)

baseline controller

Kad
ubl

Kad =
(G0)bl
(G0)ad

Z

∆Pv
wG

wL

Pin

G0 = ∆G
−2(∆Pv)ss

Zss

Process

Figure 6: Structure of adaptive PI control where adaptation is based
on ∆Pv and Z. A more accurate model can be applied if flow rates
are available.

The adaptive gain is calculated based on the static gain
model.

Kad =
(G0)bl
(G0)ad

, (21)

where (G0)bl is the static gain at the design point of the
baseline PI controller. That is the operating point where
the closed-loop step test was preformed.310

A block diagram for the adaptive control structure is
shown in Figure 6. The input Z, the output ∆Pv and
the inflow rates (if available) are used to calculate (G0)ad
from (14) or (16). Identical low-pass filters are applied
on these measurements before calculating the static gain.315

The filtering reduces the noise effect on the controller per-
formance, and it allows us to adjust the adaptation speed
by tuning the time constant of the filters.

4.4. State feedback with nonlinear observer

The state variables x which are the masses of gas and320

liquid phases in the pipeline and the riser are not measur-
able, hence, we need to use their estimates x̂ in a state-
feedback controller (Figure 7).

For linear systems, the separation principle allows us
to separate the design into two tasks. First, we design325

a state feedback controller that stabilizes the system and
meets other design specifications. Then an output feed-
back controller is obtained by replacing the state x by its
estimate x̂ provided by observers. However, the separation
principle does not hold in general for nonlinear systems,330

and we have to test this solution for the anti-slug control
by experiments. For this, we designed a Luenberger-type
nonlinear high-gain observer [17].

4.4.1. Control law

As shown in Figure 7, we apply full state feedback by
using the estimated states. In addition, to prevent drift
from the operating point, integral action is added by inte-
grating the setpoint deviation for the estimated inlet pres-
sure (P̂in). The total control action can be expressed as

u(t) = −Kc(x̂(t)− xss) +Ki

t
∫

0

(P̂in(τ) − r)dτ . (22)

6



Table 2: Gain-scheduling design

design point identified model IMC controller gain-scheduling logic

Pin = 26 kPa G1(s) =
−0.015(s+0.26)

s2−0.045s+0.0094 C1(s) =
−16.15(s2+0.016s+0.0012)

s(s+0.26) Pset ≥ 24 kPa

Pin = 23 kPa G2(s) =
−0.0098(s+0.25)
s2−0.040s+0.025 C2(s) =

−42.20(s2+0.052s+0.0047)
s(s+0.25) 24 kPa > Pset > 21.5 kPa

Pin = 21.5 kPa G3(s) =
−0.0056(s+0.27)
s2−0.017s+0.096 C3(s) =

−115.11(s2+0.052s+0.014)
s(s+0.27) Pset ≤ 21.5 kPa

Observer

x̂

er+
−

xss +
−

+
+

P̂in

Process PrtKc

Ki

∫ t

0
edτ

Figure 7: Block diagram of closed-loop system with observer and
state feedback

Here, Kc is a linear optimal controller calculated by solving
the algebraic Riccati equation. Ki is a relatively small
integral gain chosen by trial and error (Ki = 0.01). As
we discussed in the analysis, x2 and x3 are not suitable
variables to control. Consequently, we chose to control a
combination of x1 and x4 in the state feedback. Hence,
the weight matrix for state errors in the Linear Quadratic
Regulator design is on the form

Qlqr = diag([q1, 0, 0, q4]). (23)

4.4.2. Observability335

Differential observability for high-gain observers is de-
fined by Khalil [18] as follows. The system is differentially
observable of order m if we can reconstruct x from the
knowledge of y and u and their m− 1 first derivatives:

x(t) = Φ(t, ȳm−1(t), ūm−1(t)), (24)

with the notation:

ȳm−1(t) =
(

y(t), . . . , y(t)(m−1)
)

(25)

This definition suggests that the states are observable if
they are related to derivatives of the measurements and
inputs. The structure of the model for the high-gain ob-
server in [17, 18] is introduced as a chain of integrators
where the measured state is at the end of the chain (e.g.340

measuring the position and estimating velocity in mechan-
ical systems). The high-gain observer behaves like a differ-
entiator, and the estimate is more accurate with a higher
gain. This is similar to calculating the derivative by the
finite difference by using a smaller step.345

If we consider the structure of the four-state model
with Prt as the measurement, we indeed find a chain of
integrators. The state x3, which is proportional to Prt

in (A.17)-(A.18), is the integral of the gas flow rate at
the riser base, (wG)rb. Also, (wG)rb is related to Pin in350

(A.29) and (A.30). Thus, Prt is related to the integral of
Pin. In the other words, Pin is related to a derivative of
Prt. Therefore, the differential observability condition is
satisfied when measuring the top pressure.

On the other hand, by measuring Pin, we have the op-355

posite situation where we integrate the measured pressure
to calculate Prt and the associated state variables. For
this case, the estimation is sensitive to modeling errors and
disturbances. If an unknown model change or disturbance
occurs, the observer continues to integrate the wrong con-360

ditions, and it will give different states x′ compared to the
nominal states x where there is no disturbance or error.
Since the measured output and the input are the same
y(x′, u) = y(x, u), the states are defined as indistinguish-

able [19]. Hence, the system is not observable from the365

measured output Pin.

4.4.3. High-gain Luenberger observer

When state variables for a state feedback controller are
estimated by an observer, in addition to stabilizing prop-
erties of the controller and the observability of the system,370

another condition must be satisfied. That is the observer
error dynamics converge to the origin exponentially fast
[17, 18]. It is possible to satisfy this requirement by mak-
ing the observer gain sufficiently large. Note that conver-
gence rate of the observer must be considered, not only the375

magnitude of the observer gain. Such high-gain observers
are robust to uncertainties in modeling the nonlinear func-
tions.

The structure of the high-gain observer applied in this
work is similar to the one used in [20]:

˙̂x1 = (wG)in − (wG)rb
˙̂x2 = (wL)in − (wL)rb (26)

˙̂y = f3(x̂) +
1

ǫ
(y − ŷ)

˙̂x4 = (wL)rb − [1− (αm
L
)rt]wout

where 1
ǫ
is the high gain. The observer states are x̂1 (mass

of gas in pipeline), x̂1 (mass of liquid in pipeline), ŷ = P̂rt

(pressure at top of riser) and x̂4 (mass of liquid in riser).
The measured output is y = Prt which is directly related
to x3 (ideal gas law),

Prt = x3RTr/ [MG (Vr − x4/ρL)] . (27)
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The third state equation f3(x̂) is obtained by the partial
derivatives [21].

f3(x̂) =
˙̂
Prt = [∂Prt/∂x̂3] ˙̂x3 + [∂Prt/∂x̂4] ˙̂x4. (28)

5. Experiments

5.1. Experimental setup380

The experiments were carried out in laboratory setup
for anti-slug control at the Chemical Engineering Depart-
ment of NTNU. Figure 8 shows a schematic representa-
tion of the laboratory setup. The pipeline and the riser
are made of flexible pipes with 2 cm inner diameters. The385

length of the pipeline is 4m and it is inclined with a 15◦

angle. The height of the riser is 3m. A buffer tank is used
to simulate the effect of a long pipe with the same volume,
such that the total length of pipe would be about 70m.

The separator pressure after the topside choke valve390

is nominally constant at atmospheric pressure. The feed
into the pipeline is assumed to be at constant flow rates,
4 liter/min of water and 4.5 liter/min of air. With these
boundary conditions, the critical valve opening where the
system switches from stable (non-slug) to oscillatory (slug)395

flow is at Z∗ = 15%.

5.2. Time delay and maximum valve opening

These experiments were performed on a set of descend-
ing pressure setpoints to observe where the system be-
comes unstable. The process is ‘open-loop stable’ for small400

valve opening and large pressure values which are indicated
by the gray background on the figures. The objective is to
operate outside and far from the shaded areas. In practice,
a lower pressure setpoint gives a larger valve opening and
a higher production rate. However, it is more difficult to405

stabilize the flow on low pressure setpoints.
To test the tolerance of the controllers to time delay,

we repeated each experiment for three different values of
time delay: 1 sec, 2 sec and 3 sec.

The feedback linearization controller stabilizes the sys-410

tem up to a 60% valve opening when no time delay is
added (Figure 9). However, with a 2 sec time delay, it is
stable only up to a 25% valve opening.

The feedback linearization design and proof of stabil-
ity were done based on the riser base pressure Prb. We415

tested the controller also with the inlet pressure Pin in ex-
periments. A better performance is obtained by using Pin,
because Pin is affected by noise less than Prb.

The gain-scheduling IMC was able to stabilize the sys-
tem up to a 60% valve opening (Figure 10), if no additional420

time delay is added. With a 2 sec time delay, it is stable
up to a 50% valve opening.

The baseline controller for the adaptive PI was ob-
tained from an IMC design with λ = 24 s which gives
Kc = 11.21 and τI = 607.82 s. Without adaptation, this425

controller gives a maximum valve opening was only 30%.
Figure 11 shows the experimental result of the adaptive

Table 3: Maximum valve opening achieved by different controllers
and different values of additional time delay

additional time delay

Controller CV θ = 0 θ = 1 θ = 2

Gain-scheduling IMC Pin 60% 60% 50%
Adaptive PI Pin 60% 40% 32%
Feedback linearization Pin & Prt 60% 40% 25%
PI without adaptation Pin 40% 40% 25%
Observer/H∞ control Prt 38% 38% 35%
Observer/state feedback Prt 28% 24% 22%

PI controller. This controller was able to stabilize the sys-
tem up to Z = 60% when no time delay was added, and
Z = 32% with a 2 sec added time delay.430

Then, We tested PI control with a fixed tuning (Kc =
16.25, τI = 213.69 s). This tuning was obtained from IMC
design with λ = 15 s. Figure 12 shows that the system is
stable for all given setpoints. However, the controller could
not bring the system to low pressure setpoints. Thus, there435

is an offset between the measurement and the setpoint, and
the maximum valve opening is Z = 40%.

Figure 13 shows the result of using the state feedback
with the nonlinear observer scheme for control. It can sta-
bilize the system up to a 28% valve opening. However,440

with a 2 sec time delay, it is stable only up to a 22% valve
opening. Then, we replaced the state feedback by a ro-
bust H∞ controller where the controlled variable is the
estimated inlet pressure. Substantially better results were
achieved by the H∞ controller as shown in Figure 14.445

Table 3 compares the maximum valve opening achieved
by using the six controllers and applying different values
of the time delay.

5.3. Disturbance rejection

Here, the controllers are tested experimentally for ro-450

bustness against inflow disturbances. Figures 15, 16, 17,
18, and 19 show responses to inflow disturbances for dif-
ferent controllers.

The controller is off initially, and it is turned on after 5
minutes. The liquid flow rate is changed from its nominal455

value (4 liter/min) to 5.5 liter/min at 10 minutes that is
a 30% step change. The air flow rate is changed from its
nominal value (4.5 liter/min) to 6 liter/min at 20 minutes
that is also a 30% step change.

The disturbance rejection tests for those controllers in-460

volving the high-gain observer are performed at Z = 20%,
because we do not expect them to work well at larger valve
openings, while for the other controllers the tests are per-
formed at Z = 30%.

All of the controllers can handle the inflow disturbances465

and remain stable in the experiments. However, responses
for observer-based controllers in Figures 18 and 19 show
oscillations and larger offsets between actual pressure and
the setpoint, compared to the other controllers.
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Figure 9: Feedback linearization controller, CV = Pin, θ = 0 s
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Figure 10: Gain-scheduling IMC, CV = Pin, θ = 0 s
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Figure 13: High-Gain observer/state feedback, CV = Prt, θ = 0 s
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Figure 14: High-Gain observer/H∞ controller, CV = Prt, θ = 0 s
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controller with CV = Pin (control starts at 5 minuets)
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10



0 5 10 15 20 25 30
t [min]

15

20

25

30

35

P
in

 [
kP

a]

inlet pressure (controlled variable)

open-loop stable

open-loop unstable

actual setpoint

0 5 10 15 20 25 30
t [min]

0

20

40

60

80

Z
 [

%
]

valve position (control input)

open-loop unstable

Controller Off

Controller On

open-loop stable

0 5 10 15 20 25 30
t [min]

4

5

6

w
L,

in
, w

G
,in

 [L
/m

in
]

Liquid and gas inflow rates

liquid inflow gas inflow

Figure 17: Response to inflow disturbances for adaptive PI controller
with CV = Pin (control starts at 5 minuets)
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Figure 18: Response to inflow disturbances for High-Gain ob-
server/state feedback with CV = Prt (control starts at 5 minuets)
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observer/H∞ controller with CV = Prt (control starts at 5 minuets)
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Figure 20: High-gain observer in open-loop, ym = Pin, Z = 20%

5.4. Observability test470

As expected from the observability conditions, it was
not possible to stabilize the process when we used the
high-gain observer measuring the inlet pressure Pin. The
observer diverges, and Prt with its related state variables
is not correctly estimated. Consequently, the state feed-475

back cannot stabilize the process. This happens when we
increase the gain of the observer for the supposed robust-
ness of the closed-loop system. Figure 20 shows the result
of the open-loop estimation using a Luenberger observer
with a large gain (ǫ = 10−4), where Pin is the measurement480

used by the observer.
On the other hand, we used a linear Kalman filter with

the Pin measurement, and it was possible to stabilize the
system up to a Z = 40% valve opening (Figure 21).

We also tested ‘slow’ Luenberger observers (ǫ = 1) ex-485

perimentally. It was possible to produce estimates of the
states by measuring either Pin or Prt. Nevertheless, the
closed-loop system was not robust and became unstable
in most of the experimental runs. This observation is in
agreement with the theory that the time-scale separation490

between the observer and the controller is necessary. That
is the observer error dynamics must be faster than the
stabilizing controller dynamics [17]. We summarize the
performance of different observers for the state estimation
in Table 4, and for the state feedback control in Table 5.495

5.5. Observer convergence rate

Real states are not available to investigate the conver-
gence rate of the observer; the subsea pressure is used for
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Figure 21: Linear KF/state feedback, CV = Pin, Z = 40%

this purpose. In Figure 22, we show the initial transient
response of the observer. The topside pressure which is the500

measurement used by the observer converges immediately,
but it takes around 60 s for the subsea pressure to con-
verge. The convergence speed also depends on the system
dynamics that act as a filter for this case. Generally, the
high-gain observers suffer from noise effect, but the esti-505

mates are not affected by the noise for this case because
of the filtering effect of the model.

6. Discussion

6.1. Combined nonlinearity and inverse response

It was not possible to stabilize the flow by control-510

ling Prt applying a linear controller directly. Different PI
tunings have been tried in experiments and OLGA simula-
tions. However, the process is stabilized when Prt is used
to estimate the states by a fast nonlinear observer, and
applying a linear state feedback.515

Table 4: State estimation using different observers

measured variable

Observer Pin Prt

Fast linear observer converges diverges
Fast nonlinear observer diverges converges
Slow nonlinear observer converges converges
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Figure 22: Visual evaluation of observer convergence rate by zooming
on the initial transient response

In numerical simulations for the system analysis, it was
possible to stabilize by controlling the Prt using a robust
H∞ controller only around the operating point where the
process remains linear (∆P = 0.1 kPa); it was unstable
for a larger setpoint change (∆P = 1kPa). This confirms520

that the nonlinearity is an effective factor.
In addition to the nonlinearity, modeling errors and the

measurement noise exist in experiments. Linear controllers
require a good gain margin to be robust against both the
nonlinearity and modeling errors. However, the necessary525

gain margin for the linear controllers is not achievable for
Prt because of RHP-zero dynamics. While both the non-
linearity and the inverse response are problematic for the
control of the topside pressure in experiments, the non-
linear observer counteracts some of the nonlinearities and530

helps for robustness.

6.2. Observability

The linear Kalman Filter works well measuring the
subsea pressure, but the nonlinear high-gain diverges when
using this measurement. The Kalman observability for lin-535

ear systems (rank condition) and the differential observ-
ability do not give the same results for this case. Note the
(linear) Kalman observability is a necessary condition, but
it is not sufficient.

In the case of the linear observer, we assume the correct540

stationary point, and we only deal with the deviations.

Table 5: Closed-loop performance where observers are used as state
estimator for state feedback.

measured variable

State estimator Pin Prt

Fast linear observer robust unstable
Fast nonlinear observer unstable stable
Slow nonlinear observer not robust not robust

Consequently, as shown in Figure 21, the estimation of
the linear observer is less accurate, but it does not fail to
stabilize the system.

6.3. Other remarks545

The inflow rate in real systems is pressure-driven. For
the analysis, we have made the inflow rates pressure-driven
which is closer to the reality. However, the experimental
setup used in this work is not able to simulate the pressure-
driven inflow rates same as in the real systems. Hence, we550

have assumed constant inflow rates for the control designs
and experiments. This issue might have implications on
the final results of experiments.

Large offsets were observed between the measured sub-
sea pressure and the setpoint for the controllers involving555

the high-gain observer. The reason is that the observer has
been designed based on the four-state model with constant
inflow rates. The inflow disturbances are assumed to be
unknown to the control system, and they are not seen by
the observer. This issue may be resolved by augmenting560

the inflow rates to the state vector which requires a differ-
ent observer design.

The gain-scheduling IMC controller has a better tol-
erance to the time delay than the other controllers. The
reason is the derivate action of the IMC controller which565

provides a larger phase margin.
Although the feedback linearization controller does not

include integral action, it can track the setpoints and re-
ject the disturbances in the experiments. The bias of the
control signal is calculated by the nonlinear functions of570

the controller, and its accuracy is dependent on the model.
Another drawback of this controller is that tuning of the
linear part of the controller K1 is done by trial and error
which may not give the best result.

7. Conclusion575

The system nonlinearity is a major reason for robust-
ness issues in anti-slug control, and linear controllers re-
quire a good gain margin for the robustness. The static
nonlinearity of the process follows the valve equation. An
adaptive PI controller based on the static gain of the pro-580

cess was successfully applied to counteract the nonlinear-
ity.

A gain-scheduling of linear controllers is well-suited for
anti-slug control when a subsea pressure measurement is
available. Compared to the nonlinear controllers based585

on the mechanistic model, the gain-scheduling controller
is more robust and requires less modeling effort. To use
the mechanistic model for control, many parameters and
physical values of the process are needed to configure the
model.590

If the subsea pressure is not available, we can recover
considerable stabilizability by using a nonlinear high-gain
observer and controlling the estimates. The high-gain ob-
server was tested successfully in combinations with a state

13



feedback controller and a robust H∞ controller. This so-595

lution was applicable for smaller valve openings than what
achieved by control of the subsea pressure. Nevertheless,
the benefit regarding the production rate may not be sig-
nificant by controlling at very large valve openings.

The Kalman observability rank condition is satisfied600

for the subsea pressure output, and a linear Kalman filter
was tested successfully in experiments. However, the non-
linear high-gain observer diverges, because the states are
indistinguishable and the system is not observable from a
differential observability point of view.605
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A. Appendix: Model equations

A.1. Pipeline model

〈ρG〉p = Pin,nomMG/(RTp) (A.1)

〈αL〉p =
〈ρG〉p (wL)in

〈ρG〉p (wL)in + ρL (wG)in
(A.2)

〈h〉 = Kh〈αL〉pDp/cos(θ) (A.3)

〈x2〉 = ρLVp〈αL〉p (A.4)

h = 〈h〉+
(

x2 − 〈x2〉
Ap(1− 〈αL〉p)ρL

)

sin(θ) (A.5)

(ρG)p =
x1

Vp − x2/ρL

(A.6)

Pin = (ρG)pRTp/MG (A.7)

〈UsG〉p =
(wG)in
(ρG)pAp

(A.8)

〈UsL〉p =
(wL)in
ρLAp

(A.9)

〈Um〉p = 〈UsL〉p + 〈UsG〉p (A.10)

〈ρm〉p = 〈αL〉pρL + [1− 〈αL〉p] (ρG)p (A.11)

〈µm〉p = 〈αL〉pµL + [1− 〈αL〉p]µG (A.12)

(NRe)p =
〈ρm〉p〈Um〉pDp

〈µm〉p
(A.13)

λp = 0.0056 + 0.5 (NRe)
−0.32
p (A.14)

(∆Pf )p =
λpρL〈usL〉p2Lp

2Dp
(A.15)

A.2. Riser model

(VG)r = Ar(Lr + Lh)− x4/ρL (A.16)

(ρG)r = x3/(VG)r (A.17)

Prt =
(ρG)r RTr

MG

(A.18)
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〈αL〉r =
x4

Ar(Lr + Lh)ρL

(A.19)

〈ρm〉r =
x3 + x4

Ar(Lr + Lh)
(A.20)

〈UsL〉r =
(wL)in
ρLAr

(A.21)

〈UsG〉r =
(wG)in
(ρG)r Ar

(A.22)

〈Um〉r = 〈UsL〉r + 〈UsG〉r (A.23)

〈µm〉r = 〈αL〉rµL + [1− 〈αL〉r]µG (A.24)

(NRe)r =
〈ρm〉r〈Um〉rDr

〈µm〉r
(A.25)

1√
λr

= −1.8 log10

[

(

ǫ/Dr

3.7

)1.11

+
6.9

(NRe)r

]

(A.26)

(∆Pf )r =
λr〈ρm〉r〈Um〉2r (Lr + Lh)

2Dr
, (A.27)

A.3. Gas flow model at riser base

AG =

{

Ap

(

Dp−h cos θ

Dp

)2

, if h cos θ < Dp

0, if h cos θ ≥ Dp

(A.28)

∆PG = Pin − (∆Pf )p − Prt − 〈ρm〉rgLr − (∆Pf )r (A.29)

(wG)rb =

{

KGAG

√

(ρG)p ∆PG, if h cos θ < Dp

0, if h cos θ ≥ Dp

(A.30)

A.4. Liquid flow model at riser base

(αL)rb = (Ap −AG)/Ap (A.31)

∆PL = Pin− (∆Pf )p+ρLgh−Prt−〈ρm〉rgLr− (∆Pf )r (A.32)

(wL)rb = KL(Ap −AG)
√

ρL∆PL (A.33)

A.5. Outlet boundary conditions

(αL)rt =







〈αL〉r, if (αL)rb ≤ 〈αL〉r;
2〈αL〉r − (αL)rb , if 〈αL〉r < (αL)rb < 2〈αL〉r;
0, if (αL)rb ≥ 2〈αL〉r

(A.34)

ρrt = (αL)rt ρL + [1− (αL)rt] (ρG)r (A.35)

(αm
L
)rt =

(αL)rt ρL

(αL)rt ρL + [1− (αL)rt] (ρG)r
(A.36)

wout = Cvf(z)
√

ρrtmax(Prt − Ps, 0) (A.37)

(wL)out = (αm
L
)rt wout (A.38)

(wG)out = [1− (αm
L
)rt]wout (A.39)

Table A.6: Model parameters and variables675

Symbol Description Unit

Constants

R Universal gas constant J/(kmol.K)
g Gravity m/s2

µL Liquid viscosity Pa.s
µG Gas viscosity Pa.s
ǫ Pipe roughness m
ρL Liquid density kg/m3

MG Gas molecular weight gr
Tp Fluid temperature in pipeline ◦K
Vp Pipe volume m3

Dp Pipe diameter m
Ap Pipe cross section area m2

Lp Pipe length m
Tr Fluid temperature in riser ◦K
Vr Riser volume m3

Dr Riser diameter m
Ar Riser cross section area m2

Lr Riser length m
Lh Length of horizontal section m
Ps Separator pressure bar
(wL)in Inlet liquid mass flow kg/s
(wG)in Inlet gas mass flow kg/s
Kh Coefficient for level of liquid in pipe –
KG Coefficient for riser base gas flow –
KL Coefficient for riser base liquid flow –
Cv Production choke valve constant m2

Variables

x1 Mass of gas in pipeline kg
x2 Mass of liquid in pipeline kg
x3 Mass of gas in riser kg
x3 Mass of liquid in riser kg
(wG)rb Mass flow rate of gas at riser base kg/s
(wL)rb Mass flow rate of liquid at riser base kg/s
(wG)out Mass flow rate of outlet gas kg/s
(wL)out Mass flow rate of outlet liquid kg/s
wout Mass flow rate of outlet mixture kg/s
ρrt Mixture density at top of riser kg/m3

Prt Pressure at top of riser Pa
(αm

L )rt Liquid mass fraction at top of riser kg/kg
(αL)rt Liquid volume fraction at top of riser m3/m3

(ρG)r Gas density in riser kg/m3

〈αm
L 〉p Average liquid mass fraction in pipe kg/kg

〈αL〉p Average liquid volume fraction in pipe m3/m3

〈ρG〉p Average gas density in pipe kg/m3

Pin,nom Steady-state pressure at pipe inlet Pa
〈x2〉 Average mass of liquid in pipe kg
〈h〉 Average level of liquid at low-point m
h Level of liquid in pipe m
(VG)p Volume of gas in pipe m3

Pin Pressure at inlet of pipe Pa
(

∆Pf

)

p
Friction pressure loss in pipe Pa

λp Friction factor in pipe –
(NRe)p Reynolds number of flow in pipe –

〈ρm〉p Average mixture density in pipe kg/m3

〈µm〉p Average mixture viscosity in pipe Pa.s
〈Um〉p Average mixture velocity in pipe m/s
〈UsG〉p Average superficial vel. of gas in pipe m/s

Continued on next column
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Continued from previous column

Symbol Description Unit

〈UsL〉p Average superficial vel. of liq. in pipe m/s
(VG)r Volume of gas in riser m3

〈αL〉r Average liquid volume fraction in riser m3/m3

〈ρm〉r Average mixture density inside riser kg/m3
(

∆Pf

)

r
Friction pressure loss of riser Pa

λr Friction factor in riser –
(NRe)r Reynolds number of flow in riser –
〈Um〉r Average mixture velocity in riser m/s
〈UsL〉r Average superficial vel. of liquid in riser m/s
〈UsG〉r Average superficial vel. of gas in riser m/s
〈µm〉r Average mixture viscosity in riser Pa.s
∆PG Diff. pressure for riser base gas flow Pa
AG Free area for gas flow at low-point m2

∆PL Diff. pressure for riser base liquid flow Pa
AL Area for liquid flow at riser base m2

(αL)rb Liquid volume fraction at riser base m3/m3

B. Appendix: Static Gain Model

From the valve equation in (7), we get

∆Pv =

(

w2
out

C2
v

)

1

f(Z)2ρrt
. (B.1)

The riser top pressure is

Prt = Ps + (∆P )v , (B.2)

and the steady-state inlet pressure is expressed as follows.

(Pin)ss = Ps + (∆Pv)ss + ρssgLr +∆Pf , (B.3)

where the subscript ’ss’ denotes the steady-state. The mix-
ture density ρrt in (B.1) can be replaced by the steady-
state density ρss obtained by combining (A.2) and (A.35).

ρss =
woutρLρG

(wG)in ρL + (wL)in ρG

(B.4)

The specific volume is on the form

νss =
1

ρss
=

(wL)in
woutρG

+
(wG)in
woutρL

. (B.5)

Note that wout = (wG)in + (wL)in for the steady-state.680

In (B.4) and (B.5), the liquid density ρL is constant
and the gas density ρG depends on the top pressure by
ideal gas law in (A.18). With ∆Pv = Prt − Ps, we get

ρG = c1∆Pv + c0, (B.6)

where c1 = MG/(RTr) and c0 = c1Ps are constants. We
define u = Cvf(z), and calculate the partial derivatives:

∂ρss
∂∆Pv

=
c1ρ

2
ss (wG)in
ρ2

G
wout

(B.7)

∂νss
∂∆Pv

=
−c1 (wG)in
ρ2

G
wout

(B.8)

∂ (∆Pv)ss
∂u

=

(

∂νss
∂ (∆Pv)ss

∂∆Pv

∂u

)

w2
out

u2
+

−2νssw
2
out

u3

(B.9)
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Figure B.23: Simple static model (dashed line) compared to other
models (solid lines)

∂ (∆Pv)ss
∂u

=
−2 (∆Pv)ss

u
(

1 +
c1(wG)

in
wout

u2ρ2
G

) (B.10)

∂ (Pin)ss
∂u

=
∂ (∆Pv)ss

∂u
+ gL

(

∂ρss
∂∆Pv

∂ (∆Pv)ss
∂u

)

(B.11)

By combing (B.7) and (B.11), we get

∂ (Pin)ss
∂u

=
∂ (∆Pv)ss

∂u

(

1 +
gLc1ρ

2
ss (wG)in

ρ2
G
wout

)

. (B.12)

By applying (B.10), we have

∂ (Pin)ss
∂u

=

(

1 +
gLc1ρ

2
ss

(wG)
in

ρ2
G
wout

)

(

1 +
c1(wG)

in
wout

u2ρ2
G

)

−2 (∆Pv)ss
u

, (B.13)

∂ (Pin)ss
∂Z

=

(

ρ2
G
+ c1∆Prα

m
G

ρ2
G
+ c1∆Pvαm

G

) −2 (∆Pv)ss
f(Z)

∂f(Z)

∂Z
,

(B.14)
where ∆Pr = ρssgLr is the riser hydrostatic pressure drop,
and αm

G
is the gas mass fraction:

αm
G

=
(wG)in

(wG)in + (wL)in
(B.15)

The gas mass fraction αm
G

is dependant on the GOR.
Figure B.23 compares the steady-state pressure models in
(B.2) and (B.3) with the full four-state model, the OLGA
model and experiments. Here, we have applied αm

G
=

0.0015, c1 = 0.0121 kg/(kPa.m
3
) and c0 = 1.2514 kg/m

3
.685

The constant friction term ∆Pf in (B.3) was treated as a
tuning parameter, ∆Pf = 6kPa.
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