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Abstract: In this paper we investigate optimal pid control of a double integrating plus delay
process and compare with the simc rules. What makes the double integrating process special
is that derivative action is actually necessary for stabilization. In control, there is generally a
trade-off between performance and robustness, so there does not exist a single optimal controller.
However, for a given robustness level (here defined in terms of the Ms-value) we can find the
optimal controller which minimizes the performance J (here defined as the integrated absolute
error (iae)-value for disturbances). Interestingly, the simc pid controller is almost identical to
the optimal pid controller. This can be seen by comparing the pareto-optimal curve for J as a
function of Ms, with the curve found by varying the simc tuning parameter τc.
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1. INTRODUCTION

In this paper we investigate optimal pid control of a double
integrating plus delay process,

G(s) =
k′′e−θs

s2
(1)

where k′′ is the process gain and θ is the time delay. We
will mostly consider the serial (or cascade) pid form,

Kpid(s) =
kc(τis+ 1)(τds+ 1)

τis
, (2)

where kc, τi and τd are the controller gain, integral time
and derivative time. However, we will also compare with
the more general parallel (ideal) form, which can have
complex zeroes. For other notation, see Figure 1.

What makes the double integrating process special, is that
derivative action is actually necessary for stabilization.
Because the feedback system is unstable with proportional
only controllers, traditional tuning methods like Ziegler
and Nichols (1942) cannot be applied.

The simc method for pid controller tuning (Skogestad,
2003) has already found wide industrial usage. The simc
rules are analytically derived, and from a first or second
order process we can easily find the pi and pid controller
setting, respectively. Even though the rule was originally
derived mainly with simplicity in mind, recent studies have
found that the resulting settings are very close to optimal
(Grimholt and Skogestad, 2012, 2013). For the double
integrating process, the simc rule gives the following pid
settings for the serial form in (2):

kc =
1

k′′
1

4(τc + θ)2
, τi = 4(τc+θ), τd = 4(τc+θ). (3)

The simc rule has one tuning parameter τc which can be
used to trade off between performance (favoured by small
τc) and robustness (favoured by large τc). For most pro-
cesses, the recommended value for “tight control” (good

performance subject to acceptable robustness) is τc = θ,
but, as we will see, a value closer to 1.5θ may be better for
the double integrating process.

There are many industrial and mechanical systems that
have double integrating behaviour. Furthermore, the dou-
ble integrating process is a special case of second-order
processes

G(s) =
ke−θs

(τ1s+ 1)(τ2s+ 1)
, (4)

with
k′′ = k/(τ1τ2). (5)

The original simc pid tunings for a second-order process
are (Skogestad, 2003)

kc =
1

k

τ1
(τc + θ)

, (6)

τi = min{τ1, 4(τc + θ)}, τd = τ2.

The simc rule in (6) does not apply to double integrating
processes, but by considering the simc rule for double inte-
grating process in (3), we can generalize (6) to get a single
simc pid-rule which covers all second-order processes:

kc =
1

k

τ1
(τc + θ)

τ2
τd
, (7)

τi = min{τ1, 4(τc + θ)}, τd = min{τ2, 4(τc + θ)}.
For processes with τ1 > τ2 > 4(τc + θ) these settings are
identical to those for the double integrating process in (3).
Thus, a second-order process with large time constants τ1
and τ2, may be represented as a double integrating process.

It is generally difficult to achieve good performance for
a double integrating process if the time delay θ is large,
especially for disturbances at the input (du) which result
in ramp deviations at the output (y). Because a ramp
increases with t2, the achievable iae of the output increases
proportionally with θ3 (Skogestad, 2003) for a double inte-
grating process, resulting in poor performance for double
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Table 1. Reference and optimal pid controllers for double integrating processes (k′′ = 1 and
θ = 1) with Ms = 1.59.

kc τi τd iaedy iaedu J Ms Mt 1/gml gm dm

Optimal controller for output disturbance 0.02 ∞ 24.13 4.15 ∞ ∞ 1.59 1.09 ∞ 3.20 2.07
Optimal controller for input disturbance 0.04 10.12 10.12 6.28 288.56 1.257 1.59 1.71 5.79 4.02 1.80
Optimal pid combined (minimize J) 0.04 10.74 10.79 5.80 303.68 1.225 1.59 1.61 6.72 3.76 1.78

iaedy and iaedu are for a unit step disturbance on output (y) and input (u), respectively.

K(s) Σ
u

G(s)

du

Σ

dy

y

−1 Σ n

Σ
e(ys = 0)

Fig. 1. Block diagram of the feedback control system. We
do not consider setpoint changes (ys) or noise (n).

integrating processes with a large delay. Thus, in practice,
cascade control is used for control of double integrating
processes whenever possible, which results in control of
two integrating processes (for which iae only increases
with θ2). For example, for mechanical systems, the process
from u = force (acceleration) to y = position is a double
integrating process, but by measuring and controlling also
y2 = velocity, we instead get two integrating processes.
Rao and Bernstein (2001) study control of a double in-
tegrator with input saturation. They mostly assume full
state feedback, which requires two measurements, similar
to the use of cascade control. However, in this paper we
consider the case where only the output y is measured and
the process is double integrating.

Because many important industrial processes can be clas-
sified as double integrating, we want in this paper to
investigate optimal pid control and the optimality of simc
for this type of processes. Optimality is generally difficult
to define as there are many issues to consider, including:

• Output performance
• Stability robustness
• Input usage
• Noise sensitivity

This may be considered a multiobjective optimization
problem, but we consider only the main dimension of the
trade-off space, namely high versus low controller gain.
High controller gain favours good output performance,
whereas low controller gain favours the three other ob-
jectives listed above. We can then simplify and say that
there are two main objectives:

(1) Performance (here measured in terms of iae)
(2) Robustness (here measured in terms of Ms-value)

Pareto optimality applies to multiobjective problems, and
implies that no further improvement can be made in
objective 1 without sacrificing objective 2. The idea is
then to find the Pareto optimal controller, and compare
with the simc tuning.

The paper is structured as follows. First the evaluation
criteria and the optimization problem are defined. Then

the optimal trade-off between performance and robustness
is found and compared with simc. Following this, is a small
comparison between serial and parallel pid controller. The
paper ends with a time domain comparison between the
different controllers, and a discussion.

2. EVALUATION CRITERIA

2.1 Performance

In this paper we choose to quantify performance terms of
the integral absolute error (iae),

iae =

∫ ∞
0

∣∣y(t)− ys(t)
∣∣dt. (8)

To balance the servo/regulatory trade-off, we choose as
the performance index a weighted average of iae for a
step input disturbance du and step output dy,

J(p) = 0.5

(
iaedy(p)

iae◦dy
+

iaedu(p)

iae◦du

)
(9)

where iae◦dy and iae◦du are weighting factors, and p is the
controller parameters. In this paper, we select the two
weighting factors as the optimal iae values when using
pid control, for input and output disturbances, separately
(as recommended by Boyd and Barratt (1991)). To ensure
robust reference pid controllers, they are required to have
Ms = 1.59, and the weighting factors are iae◦dy = 4.15 and

iae◦du = 288.56 (see Table 1).

As seen from Table 1, the optimal pid controller for
combined input and output disturbances (J) favours in-
put disturbances, and is almost identical to the optimal
controller when only considering input disturbance (du).
Therefore, it would be sufficient for double integrating
plus delay process to only consider input disturbances.
Nevertheless, to keep this analysis similar to other studies
we have conducted on optimal controller tuning (Grimholt
and Skogestad, 2012, 2013), we have chosen to include both
input and output disturbances in the cost function.

2.2 Robustness for design: Ms

In this paper, we quantify robustness in terms of Ms,
defined as

Ms = max
ω

∣∣S(jω)
∣∣ =
∥∥S(jω)

∥∥
∞ , (10)

where‖·‖∞ is the H∞ norm (maximum peak as a function
of frequency), and the sensitivity transfer functions are
defined as

S(s) = 1/(1+G(s)K(s)) and T (s) = 1− S(s). (11)

In robustness terms, Ms is the inverse of the closest
distance from the loop function L(s) = G(s)K(s) to
the critical point, -1, in a Nyquist plot (see Figure 2).
Originally, we considered using the largest peak of S
and T , denoted Mst, as the robustness criterion, but as
discussed later we decided to use Ms.
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Fig. 2. Nyquist plot of the optimal pid controller for the
control of double integration process (1) with k′′ = 1
and θ = 1 and robustness Mub

s = 1.59 (Table 1). The
robustness constraint Mub

s and the gain margins are
marked.
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Fig. 3. Bode plot of the optimal pid controller for the
control of double integration process (1) with k′′ = 1
and θ = 1 and robustness Mub

s = 1.59 (Table 1). The
gain margins are marked.

2.3 Robustness for analysis: Gain margin and Delay
margin

In addition to the Ms value, we consider for robustness
analysis the gain margin (gm) and the delay margin (dm),
which have a clear physical meaning. The gm is defined
as the factor by which we can multiply the controller gain
(or more generally, the loop gain) before getting instability.
Actually, as illustrated in Figure 2 and Figure 3, there are
two gain margins in our case. The “normal” gain margin
(gm) is the factor by which we can increase the loop
gain, and the “lower” gain margin (gml) is the factor by
which we can decrease the loop gain. For stability we need
gm > 1 and gml < 1, but for acceptable robustness we
typically want gm > 3 and gml < 0.33. In the Tables, we
show 1/gml (the factor by which the gain can be reduced)
which typically should be larger than 3.

The delay margin is the allowed increase in delay in the
feedback loop, ∆θmax, before we get instability. Note that
θmax = pm/ωc where pm [radians] is the phase margin and
ωc [rad/s] is the gain crossover frequency. In this paper, we
will use the relative delay margin, defined as dm = θmax/θ.

2.4 Optimal Trade-off

The optimal pid controllers are found by solving the
following optimization problem,
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Fig. 4. Trade-off between performance and robustness for
Pareto optimal pid controllers (green curve) and simc
pid (blue curve).

min
p

J(p) = 0.5

(
iaedy(p)

iae◦dy
+

iaedu(p)

iae◦du

)
(12)

subject to: Ms(p) ≤Mub
s (13)

where the controller K(s) is a pid controller. For more
details on how to solve the optimization problem, see
Grimholt and Skogestad (2015). To find the optimal trade-
off between performance (J) and robustness (Ms), the
optimization problem is solved repeatedly with different
upper limits on the robustness (Mub

s ).

3. OPTIMAL PID SETTINGS AND COMPARISON
WITH SIMC

The optimal and simc pid controllers are given in Table 2
for four values of Ms (1.4, 1.59, 1.8 and 2). The Pareto-
optimal trade-off between performance (J = iae) and
robustness (Ms) is shown in Figure 4 (green curve) and
compared with the simc pid-controller (blue curve). The
trade-off curves for the simc controllers were generated by
varying the tuning parameter τc from a large to a small
value. The simc controllers corresponding to three specific
choices are shown by circles:

• τc = 1.5θ (smoother tuning)
• τc = θ (default tight tuning)
• τc = 0.5θ (more aggressive tuning)

For all robustness levels (in terms of Ms), we find that the
simc rule is very close to the optimal. However, for the
normally recommended tuning (τc = θ), Ms is quite high,
being close to Ms = 2. A better value for the simc pid
tuning constant in (3) is τc = 1.5θ which gives Ms = 1.65.

The corresponding optimal and simc pid tuning parame-
ters are shown in Figure 5 as a function of the robustness
Ms. We find that the optimal pid-controller (serial form)
always has τi = τd. The results also show that in the more
robust region (Ms < 1.6), the simc tuning parameters are
almost identical to the optimal pid controller. In the less
robust region with higher performance (Ms > 1.6), the
simc controller gain is slightly higher and the integral and
derivative time slightly smaller than the optimal. However,
as seen from Figure 4, this deviation from the optimal pid
parameters has little effect on performance.
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Table 2. Optimal and simc for double integrating processes (k′′ = 1 and θ = 1) with robustness
Ms = 1.40, 1.59, 1.80, and 2.00.

kck′′θ2 τi/θ τd/θ iaedy/θ iaedu/k
′′θ3 J Ms Mt 1/gml gm dm τc/θ

Optimal pid 0.0209 13.67 13.67 7.25 653.1 2.006 1.40 1.56 6.69 5.14 2.62 –
simc 0.0209 13.84 13.84 7.16 662.7 2.011 1.40 1.55 6.86 5.08 2.62 2.46

Optimal pid 0.0354 10.74 10.79 5.80 303.7 1.225 1.59 1.61 6.72 3.76 1.78 –
simc 0.0356 10.60 10.60 5.88 297.7 1.225 1.59 1.63 6.52 3.80 1.78 1.65

Optimal pid 0.0505 9.37 9.38 4.96 185.7 0.919 1.80 1.66 7.02 2.99 1.32 –
simc 0.0512 8.84 8.84 5.24 172.7 0.931 1.80 1.74 6.23 3.10 1.31 1.21

Optimal pid 0.0625 8.64 8.76 4.46 138.2 0.777 2.00 1.72 7.39 2.55 1.06 –
simc 0.0651 7.84 7.84 4.91 120.5 0.801 2.00 1.86 6.01 2.70 1.05 0.96

iaedy and iaedu are for a unit step disturbance on output (y) and input (u), respectively.
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Fig. 5. Optimal and simc pid tuning parameters as a
function of robustness for control of double integra-
tion process (1) with k′′ = 1 and θ = 1. For both
controllers τi = τd.

4. PARALLEL VS. SERIAL PID CONTROLLER

The analysis in this paper is for the serial pid controller in
(2). A more general pid controller is the parallel, or ideal,
pid controller which allows for complex zeroes,

Kparallel
pid (s) = k′c

(
1 +

1

τ ′is
+ τ ′ds

)
. (14)

Parallel pid controller parameters (14) can be calculated
from serial pid controller parameters (2) by

f = 1 + τd/τi, k
′
c = kcf, τ

′
i = τif, and τ ′d = τd/f. (15)

From Figure 5, we see that the optimal serial controller
has equal integral and derivative times, which means that
f = 2 and that we are just at the limit to having
complex zeros. This indicates that better performance can
be achieved by allowing for complex zeros by using a
parallel pid controller.
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Fig. 6. Pareto optimal trade-off curves for optimal serial
pid controller (the form used in this paper) and
optimal parallel pid controller.

A comparison of the optimal trade-off curves for serial and
parallel pid controllers is shown in Figure 6. Although
the benefit of using the parallel pid form increases with
increasing robustness, we see that the overall improvement
is quite small. Thus, the serial implementation is sufficient
for double integrating plus delay processes. A selection of
optimal tunings are given in Table 3 with corresponding
gain and delay margins.

5. SIMULATIONS

The responses to setpoint change and input disturbance
for optimal serial, optimal parallel and simc pid controllers
with Ms-value 1.40, 1.59, and 1.80 are shown in Figure 7.
The corresponding tuning parameters are given in Tables 2
and 3.

As expected from the trade-off curves, the responses to the
input disturbance are similar for the three controllers. The
optimal parallel and serial pid controllers have almost the
same peak deviation, but the parallel controller has better
settling time. The simc and optimal pid controllers have
almost identical responses.

6. DISCUSSION

6.1 Comparison with previous work

There is relatively little work on pid control of double inte-
grating processes. Shamsuzzoha and Lee (2008) use imc as
a basis for designing pid controllers with λ (equivalent to
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Table 3. Optimal parallel pid controllers of double integrating processes (k′′ = 1 and θ = 1)
with robustness Ms = 1.40, 1.59, 1.80, and 2.00.

k′ck
′′θ2 τ ′i/θ τ ′d/θ iaedy/θ iaedu/k

′′θ3 J Ms Mt 1/gml gm dm

0.0416 16.39 7.17 7.88 411.6 1.663 1.40 1.64 4.22 4.95 2.63
0.0694 13.39 5.76 6.17 198.4 1.088 1.59 1.64 4.46 3.62 1.80
0.0974 11.98 5.09 5.21 126.1 0.847 1.80 1.63 4.81 2.89 1.34
0.1215 11.28 4.68 4.70 94.7 0.731 2.00 1.68 5.10 2.49 1.08

iaedy and iaedu are for a unit step disturbance on output (y) and input (u), respectively.
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Fig. 7. Step responses to a setpoint step change (t = 0),
and an input disturbance (t = 25) for the optimal
pid, optimal parallel pid, and simc pid controllers
with robustness Ms = 1.4 (top), Ms = 1.59 (middle),
and Ms = 1.8 (bottom).

τc) as the tuning parameter. For the double integrating
process G(s) = e−0.8s/s2 and λ = 1.25 they obtain a
parallel pid controller with k′c = 0.3510, τ ′i = 5.880, and
τ ′d = 2.343. In the more general form the parameters are

k′ck
′′θ2 = 0.2246, τ ′i/θ = 7.35, and τd/θ = 2.93. This con-

troller has poor robustness with Ms= 2.87. In terms of our
iae performance measure, it gives J = 0.69 which is a little

above the optimal J = 0.57 in Figure 6. Shamsuzzoha and
Lee (2008) claim that their pid controller is significantly
better than the simc pid controller, but this is incorrect.
The reason for the error is that they follow Liu et al. (2004)
who failed to use (15) to translate the double integrating
simc-settings (3) from serial to parallel form.

More recently, Hassaan (2015) has considered optimal pid
control of double integrating processes using the serial
pid structure (which he calls the pd-pi controller). He
considers a variety of performance objectives, including
iae, integrated time absolute error (itae) and integrated
squared error (ise). However, he includes no robustness
requirement, which means that his “optimal” solution
has poor robustness. It would correspond to the largest
Ms-value (where J has its minimum) on our robustness-
performance trade-off plots.

6.2 Criteria for robustness

In this paper, we quantify robustness in terms of Ms,
defined as the peak value of S(s). Actually, we origi-
nally considered using the largest value of Ms and Mt

(Garpinger and Hägglund, 2008),

Mst = max{Ms,Mt}, (16)

where

Mt = max
ω

∣∣T (jω)
∣∣ =
∥∥T (jω)

∥∥
∞ .

For most stable processes, Ms ≥ Mt, but for unstable
process, including the double integrating process, it may
happen that Mt > Ms, and this is why we originally used
the largest value of Ms and Mt (Garpinger and Hägglund,
2008) as the robustness criterion.

As seen from the (Figure 4), performance (J) gets very
poor when Ms approaches about 1.3, and the correspond-
ing value for Mt is a little higher. Thus, there will be
problems when trying to specify too low values for Ms or
Mt. In particular, we encountered this problem with the
simc controller when specifying low values for Mt. For ex-
ample, when specifying Mt = 1.4 and using simc, we had
to increase τc/θ to 32.5 (compared to 2.46 with Ms = 1.4),
resulting in very poor performance with J = 58.9 (com-
pared to 2.85). However, as noted, specifying low values for
Ms was much less of a problem and resulted in reasonable
designs. Also, when we analysed more carefully the results,
we could not see that the lower value for Mt was giving
any benefit in terms of improved upper and lower gain
margins and delay margins. We therefore decided to base
the robustness criterion on Ms only.

6.3 Generalised SIMC - for second-order processes

As noted in the introduction, second-order processes with
sufficiently large time constants (τ2 > 4(τc + θ)) should
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Fig. 8. Trade-off plot for Pareto optimal pid controller,
simc pid in (6) and generalised simc pid controller
in (7) of a almost double integrating second-order
process.
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Fig. 9. Step responses to a setpoint step change (t = 0),
and an input disturbance (t = 25) for the optimal
pid controller, simc rule (6) second-order processes,
and generalised simc (7) for second-order processes,
all with robustness Ms = 1.59.

be approximated as double integrating processes. As an
example, consider the process

G(s) =
40e−s

(20s+ 1)2
. (17)

If we use the original simc rules for a second-order process
in (6) then τd = 20, and the derivative time will be larger
than the integral time in most cases. For example, with
τc = θ = 1, we get τi = 8. However, if we use the
“genarized” rule in (7), which is equivalent to representing
the process as a double integrating process with k′′ =
40/202 = 0.1, then we get τd = τi = 8. To confirm that
this gives better performance, consider the trade-off curve
in Figure 8. We see that the pid controller based on the
double integrating process, that is, using the generalized
simc settings in (7), is almost identical to the optimal pid
controller, whereas the pid controller based on a second-
order process, using the standard simc settings in (6), has
significantly poorer performance for input disturbances.
For output changes (and setpoint changes) the standard
settings in (6) are a little better, but not significantly. This
is also illustrated by the simulations in Figure 9.

7. CONCLUSION

In this paper we have derived optimal pid controller set-
tings for a double integrating the process and compared
the performance versus robustness trade-off with that ob-
tained when varying the tuning parameter τc for the simc-
controller in (3). As seen from Figure 4, the simc controller
has almost identical performance with the optimal, in par-
ticular for more robust designs (with lower value of Ms).
This means that the simple simc pid tuning rules given
in (3) are essentially the optimal. This is quite surprising,
because the double integrating simc rules were originally
derived in a fairly ad hoc manner, aiming more towards
simplicity than optimality.

We also find that for pid tuning, a second-order process (4)
with τ2 > 4(τc+θ) should be approximated as a double in-
tegrating process (1) with gain k′′=k/(τ1τ2). Alternatively
and equivalently, we may use the “generalized” simc rules
in (7).
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