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Abstract

Control structure selection deals with selecting
what to control (outputs), what to measure and
what to manipulate (inputs), and also how to split
the controller in a hierarchical and decentralized
manner. The most important issue is probably
the selection of the controlled variables (outputs),
CV = Hy, where y are the available mea-
surements and H is a degree of freedom that is
seldom treated in a systematic manner by control
engineers. This entry discusses how to find H
for both for the upper (slower) economic layer
and the lower (faster) regulatory layer in the
control hierarchy. Each layer may be split in a
decentralized fashion. Systematic approaches for
input/output (I0) selection are presented.
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Introduction

Consider the generalized controller design prob-
lem in Fig.1 where P denotes the generalized
plant model. Here, the objective is to design the
controller K, which, based on the sensed outputs
v, computes the inputs (MVs) u such that the
variables z are kept small, in spite of variations in
the variables w, which include disturbances (d),
varying setpoints/references (CV) and measure-
ment noise (n),

w = [d, CVg,n]

The variables z, which should be kept small,
typically include the control error for the selected
controlled variables (CV) plus the plant inputs
(w),

z =[CV — CVi;y]

The variables v, which are the inputs to the
controller, include all known variables, including
measured outputs (ypn), measured disturbances
(dn) and setpoints,

V = [Ym; dm; CVy].
The cost function for designing the optimal con-

troller K is usually the weighted control error,

(weighted) (weighted)

exogenous outputs

exogenous inputs
u

[)

Control Structure Selection, Fig. 1 General formu-
lation for designing the controller K. The plant P is
controlled by manipulating u, and is disturbed by the
signals w. The controller uses the measurements v, and the
control objective is to keep the outputs (weighted control
error) z as small as possible

u
control signals

"
sensed outputs
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J = |[W’z||. The reason for using a prime on J

(I, is to distinguish it from the economic cost

J which we later use for selecting the controlled

variables (CV).

Notice that it is assumed in Fig. 1 that we know
what to measure (v), manipulate (u), and, most
importantly, which variables in z we would like to
keep at setpoints (CV), that is, we have assumed a
given control structure. The term “control struc-
ture selection” (CSS) and its synonym “control
structure design” (CSD) is associated with the
overall control philosophy for the system with
emphasis on the structural decisions which are
a prerequisite for the controller design problem
in Fig. 1:

1. Selection of controlled variables
“outputs,” included in z in Fig. 1)

2. Selection of manipulated variables (MVs,
“inputs,” u in Fig. 1)

3. Selection of measurements y (included in v in
Fig. 1)

4. Selection of control configuration (structure
of overall controller K that interconnects the
controlled, manipulated and measured vari-
ables; structure of K in Fig. 1)

5. Selection of type of controller K (PID, MPC,
LQG, H-infinity, etc.) and objective function
(norm) used to design and analyze it.
Decisions 2 and 3 (selection of u and y) are

sometimes referred to as the input/output (I0)
selection problem. In practice, the controller (K)
is usually divided into several layers, operating on
different time scales (see Fig.2), which implies
that we in addition to selecting the (primary)
controlled variables (CV; = CV) must also
select the (secondary) variables that interconnect
the layers (CV>).

Control structure selection includes all the
structural decisions that the engineer needs to
make when designing a control system, but
it does not involve the actual design of each
individual controller block. Thus, it involves the
decisions necessary to make a block diagram
(Fig. 1; used by control engineers) or process
& instrumentation diagram (used by process
engineers) for the entire plant, and provides
the starting point for a detailed controller
design.

(CVs,
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Control Structure Selection, Fig. 2 Typical control hi-
erarchy, as illustrated for a process plant

The term “plantwide control,” which is a syn-
onym for “control structure selection,” is used
in the field of process control. Control structure
selection is particularly important for process
control because of the complexity of large pro-
cessing plants, but it applies to all control applica-
tions, including vehicle control, aircraft control,
robotics, power systems, biological systems, so-
cial systems, and so on.

It may be argued that control structure selec-
tion is more important than the controller design
itself. Yet, control structure selection is hardly
covered in most control courses. This is probably
related to the complexity of the problem, which
requires the knowledge from several engineering
fields. In the mathematical sense, the control
structure selection problem is a formidable com-
binatorial problem which involves a large number
of discrete decision variables.

Control Structure Selection

Overall Objectives for Control and
Structure of the Control Layer

The starting point for control system design

is to define clearly the operational objectives.

There are usually two main objectives for

control:

1. Longer-term economic operation (minimize
economic cost J subject to satisfying opera-
tional constraints)

2. Stability and short-term regulatory control
The first objective is related to “making the sys-
tem operate as intended,” where economics are
an important issue. Traditionally, control engi-
neers have not been much involved in this step.
The second objective is related to “making sure
the system stays operational,” where stability
and robustness are important issues, and this
has traditionally been the main domain of con-
trol engineers. In terms of designing the con-
trol system, the second objective (stabilization)
is usually considered first. An example is bicy-
cle riding; we first need to learn how to sta-
bilize the bicycle (regulation), before trying to
use it for something useful (optimal operation),
like riding to work and selecting the shortest
path.

We use the term “economic cost,” because
usually the cost function J can be given a mon-
etary value, but more generally, the cost J could
be any scalar cost. For example, the cost J could
be the “environmental impact” and the economics
could then be given as constraints.

In theory, the optimal strategy is to combine
the control tasks of optimal economic operation
and stabilization/regulation in a single centralized
controller K, which at each time step collects all
the information and computes the optimal input
changes. In practice, simpler controllers are used.
The main reason for this is that in most cases one
can obtain acceptable control performance with
simple structures, where each controller block in-
volves only a few variables. Such control systems
can be designed and tuned with much less effort,
especially when it comes to the modeling and
tuning effort.

So how are large-scale systems controlled in
practise? Usually, the controller K is decomposed
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into several subcontrollers, using two main prin-

ciples

— Decentralized (local) control. This “horizon-
tal decomposition” of the control layer is usu-
ally based on separation in space, for example,
by using local control of individual units.

— Hierarchical (cascade) control. This “vertical
decomposition” is usually based on time scale
separation, as illustrated for a process plant in
Fig.2. The upper three layers in Fig.2 deal
explicitly with economic optimization and are
not considered here. We are concerned with
the two lower control layers, where the main
objective is to track the setpoints specified by
the layer above.

In accordance with the two main objectives for
control, the control layer is in most cases divided
hierarchically in two layers (Fig. 2):

1. A “slow” supervisory (economic) layer

2. A “fast” regulatory (stabilization) layer
Another reason for the separation in two con-

trol layers, is that the tasks of economic opera-
tion and regulation are fundamentally different.
Combining the two objectives in a single cost
function, which is required for designing a single
centralized controller K, is like trying to compare
apples and oranges. For example, how much is
an increased stability margin worth in monitory
units [$]? Only if there is a reasonable benefit in
combining the two layers, for example, because
there is limited time scale separation between
the tasks of regulation and optimal economics,
should one consider combining them into a single
controller.

Control Structure Selection, Table 1 Important notation

u = [uy; up] = set of all available physical plant inputs
u; = inputs used directly by supervisory control layer
u, = inputs used by regulatory layer

ym = set of all measured outputs

y = [ym; u] = combined set of measurements and inputs
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Notation and Matrices H; and H; for
Controlled Variable Selection

The most important notation is summarized in
Table 1 and Fig.3. To distinguish between the
two control layers, we use “1” for the upper
supervisory (economic) layer and “2” for the
regulatory layer, which is “secondary” in terms
of its place in the control hierarchy.

There is often limited possibility to select the
input set (u) as it is usually constrained by the

Optimizer
(RTO)

CV,

Supervisory
controller
(MPC)
_____ [

I i

— ————————————

controller
(PID) H,

[
: Regulatory
|
|

TGS oo Physical
| ~L4=*7inputs (u)
I

PROCESS |V = [Ym Ul

Stabilized process
nY

Control Structure Selection, Fig. 3 Block diagram of
a typical control hierarchy, emphasizing the selection of
controlled variables for supervisory (economic) control
(CV; = Hyy) and regulatory control (CV, = Hypy)

y2 = controlled outputs in regulatory layer (subset or combination of y); dim(y,) = dim(uy)

CV; = H; y = controlled variables in supervisory layer; dim(CV;) = dim(u)

CV, = [y2;u;] = Hpy = controlled variables in regulatory layer; dim(CV,) = dim(u)

MV, = CVy = [yas; u;] = manipulated variables in supervisory layer; dim(MV;) = dim(u)

MV, = u, = manipulated variables in regulatory layer; dim(MV,) = dim(u,) < dim(u)
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plant design. However, there may be a possibility
to add inputs or to move some to another location,
for example, to avoid saturation or to reduce the
time delay and thus improve the input-output
controllability.

There is much more flexibility in terms of out-
put selection, and the most important structural
decision is related to the selection of controlled
variables in the two control layers, as given by
the decision matrices H; and H, (see Fig. 3).

CV1 = Hly
CVy = Hyy

Note from the definition in Table 1 that y =
[Ym; u]. Thus, y includes, in addition to the can-
didate measured outputs (yy,), also the physical
inputs u. This allows for the possibility of select-
ing an input u as a “controlled” variable, which
means that this input is kept constant (or, more
precisely, the input is left “unused” for control in
this layer).

In general, H; and H; are “full” matrices,
allowing for measurement combinations as con-
trolled variables. However, for simplicity, espe-
cially in the regulatory layer, we often pefer to
control individual measurements, that is, H, is
usually a “selection matrix,” where each row
in H, contains one l-element (to identify the
selected variable) with the remaining elements set
to 0. In this case, we can write CV, = Hyy =
[y2;ui], where y, denotes the actual controlled
variables in the regulatory layer, whereas u; de-
notes the “unused” inputs (u;), which are left
as degrees of freedom for the supervisory layer.
Note that this indirectly determines the inputs u;
used in the regulatory layer to control y,, because
u, is what remains in the set u after selecting u;.
To have a simple control structure, with as few
regulatory loops as possible, it is desirable that
H; is selected such that there are many inputs (u;)
left “unused” in the regulatory layer.

Example. Assume there are three candidate out-
put measurements (temperatures T) and two in-
puts (flowrates q),

Ym = [TaTbTC] , U= [qa qb]

Control Structure Selection

and we have by definition y = [yp; u]. Then the
choice

H,=[01000;0000 1]

means that we have selected CV, = Hyy =
[Tv; qb]. Thus, u; = qp is an unused input for
regulatory control, and in the regulatory layer we
close one loop, using u, = q, to control y, = Tp.
If we instead select

H,=[10000; 00100]

then we have CV, = [T,; T¢]. None of these are
inputs, so u; is an empty set in this case. This
means that we need to close two regulatory loops,
using u; = [qa; qp] to control y, = [T,; T¢].

Supervisory Control Layer and
Selection of Economic Controlled
Variables (CV;)

Some objectives for the supervisory control layer
are given in Table 2. The main structural issue
for the supervisory control layer, and probably
the most important decision in the design of any
control system, is the selection of the primary
(economic) controlled variable CV;. In many
cases, a good engineer can make a reasonable
choice based on process insight and experience.
However, the control engineer must realize that
this is a critical decision. The main rules and
issues for selecting CV are

CViRule 1. Control active constraints (almost

always)

* Active constraints may often be identified
by engineering insight, but more generally
requires optimization based on a detailed
model.

For example, consider the problem of min-
imizing the driving time between two cities
(cost J = T). There is a single input (u =
fuel flow f[l/s]) and the optimal solution
is often constrained. When driving a fast
car, the active constraint may be the speed
limit (C'Vy = v [km/ h] with setpoint VU,
e.g, Unax = 100km/h). When driving
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Control Structure Selection, Table 2 Objectives of supervisory control layer

O1. Control primary “economic” variables CV; at setpoint using as degrees of freedom MV, which includes the
setpoints to the regulatory layer (y»s = CVy) as well as any “unused” degrees of freedom (u;)

02. Switch controlled variables (CV;) depending on operating region, for example, because of change in active
constraints

O3. Supervise the regulatory layer, for example, to avoid input saturation (u;), which may destabilize the system
0O4. Coordinate control loops (multivariable control) and reduce effect of interactions (decoupling)
05. Provide feedforward action from measured disturbances

06. Make use of additional inputs, for example, to improve the dynamic performance (usually combined with input
midranging control) or to extend the steady-state operating range (split range control)

O7. Make use of extra measurements, for example, to estimate the primary variables CV,

an old car, the active constraint maybe the
maximum fuel flow (CV; = f][l/s] with
setpoint fiuax). The latter corresponds to
an input constraint (Wpmax = fmax) Which
is trivial to implement (“full gas”); the
former corresponds to an output constraint
(Vmax = Vmax) which requires a controller
(“cruise control”).

e For“hard” output constraints, which can-
not be violated at any time, we need to
introduce a backoff (safety margin) to guar-
antee feasibility. The backoff is defined as
the difference between the optimal value
and the actual setpoint, for example, we
need to back off from the speed limit be-
cause of the possibility for measurement
error and imperfect control

CVis = CV{max — backoff

For example, to avoid exceeding the
speed limit of 100km/h, we may set
backoff=5km/h, and use a setpoint
vy = 95 km/h rather than 100 km/h.

CV Rule 2. For the remaining unconstrained

degrees of freedom, look for “self-optimizing”

variables which when held constant, indirectly

lead to close-to-optimal operation, in spite of
disturbances.

» Self-optimizing variables (CV; = H,y) are
variables which when kept constant, indi-
rectly (through the action of the feedback
control system) lead to close-to optimal
adjustment of the inputs (u) when there are
disturbances (d).

* Anideal self-optimizing variable is the gra-
dient of the cost function with respect to the
unconstrained input. CV; = dJ/du = J,

* More generally, since we rarely can mea-
sure the gradient J,,, we select CV; = Hyy.
The selection of a good H; is a nontrivial
task, but some quantitative approaches are
given below.

For example, consider again the problem of
driving between two cities, but assume that the
objective is to minimize the total fuel, J =V
[liters]., Here, driving at maximum speed will
consume too much fuel, and driving too slow
is also nonoptimal. This is an unconstrained
optimization problem, and identifying a good
C V1 is not obvious. One option is to maintain
a constant speed (CV, = v), but the optimal
value of v may vary depending on the slope
of the road. A more “self-optimizing” option,
could be to keep a constant fuel rate (CV, =
f11/s]), which will imply that we drive slower
uphill and faster downhill. More generally,
one can control combinations, CVy = Hy
where Hy is a “full” matrix.

CV Rule 3. For the unconstrained degrees of

freedom, one should never control a variable
that reaches its maximum or minimum value at
the optimum, for example, never try to control
directly the cost J. Violation of this rule gives
either infeasibility (if attempting to control J
at a lower value than J,;,) or nonuniqueness
(if attempting to control J at higher value than
Jmin)-

Assume again that we want to minimize the

total fuel needed to drive between two cities,

= V [l ]. Then one should avoid fixing the
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total fuel, CVy = V [l ], or, alternatively, avoid
fixing the fuel consumption(“gas mileage”) in
liters pr.km (CVy = f [l/km]). Attempting to
control the fuel consumption[l/km] below the
car’s minimum value is obviously not possible
(infeasible). Alternatively, attempting to control
the fuel consumption above its minimum value
has two possible solutions; driving slower or
faster than the optimum. Note that the policy of
controlling the fuel rate f [lI/s] at a fixed value
will never become infeasible.

For CV/-Rule 2, it is always possible to find
good variable combinations (i.e., H; is a “full”
matrix), at least locally, but whether or not it is
possible to find good individual variables (H;
is a selection matrix), is not obvious. To help
identify potential “self-optimizing” variables
(CV; = ¢) ,the following requirements may be
used:

Requirement 1. The optimal value of c is insen-
sitive to disturbances, that is, dcyy/dd = H;F
is small. Here F = dy,,/dd is the optimal
sensitivity matrix (see below).

Requirement 2. The variable c is easy to measure
and control accurately

Requirement 3. The value of c is sensitive to
changes in the manipulated variable, u; that
is, the gain, G = HGY, from u to c is
large (so that even a large error in controlled
variable, c, results in only a small variation in
u.) Equivalently, the optimum should be “flat”
with respect to the variable, c. Here G¥ =
dy/du is the measurement gain matrix (see
below).

Requirement 4. For cases with two or more
controlled variables c, the selected variables
should not be closely correlated.

All four requirements should be satisfied.
For example, for the operation of a marathon
runner, the heart rate may be a good “self-
optimizing” controlled variable ¢ (to keep at
constant setpoint). Let us check this against
the four requirements. The optimal heart
rate is weakly dependent on the disturbances
(requirement 1) and the heart rate is easy to
measure (requirement 2). The heart rate is quite
sensitive to changes in power input (requirement
3). Requirement 4 does not apply since this is

Control Structure Selection

a problem with only one unconstrained input
(the power). In summary, the heart rate is a good
candidate.

Regions and switching. If the optimal active
constraints vary depending on the disturbances,
new controlled variables (CV ) must be identified
(offline) for each active constraint region, and on-
line switching is required to maintain optimality.
In practise, it is easy to identify when to switch
when one reaches a constraint. It is less obvious
when to switch out of a constraint, but actually
one simply has to monitor the value of the un-
constrained CVs from the neighbouring regions
and switch out of the constraint region when the
unconstrained CV reaches its setpoint.

In general, one would like to simplify the
control structure and reduce need for switching.
This may require using a suboptimal CV; in
some regions of active constraints. In this case,
the setpoint for CV; may not be its nominally
optimal value (which is the normal choice), but
rather a “robust setpoint” (with backoff) which
reduces the loss when we are outside the nominal
constraint region.

Structure of supervisory layer. The supervi-
sory layer may either be centralized, e.g., using
model predictive control (MPC), or decomposed
into simpler subcontrollers using standard ele-
ments, like decentralized control (PID), cascade
control, selectors, decouplers, feedforward ele-
ments, ratio control, split range control, and input
midrange control (also known as input resetting,
valve position control or habituating control). In
theory, the performance is better with the central-
ized approach (e.g., MPC), but the difference can
be small when designed by a good engineer. The
main reasons for using simpler elements is that
(1) the system can be implemented in the existing
“basic” control system, (2) it can be implemented
with little model information, and (3) it can be
build up gradually. However, such systems can
quickly become complicated and difficult to un-
derstand for other than the engineer who designed
it. Therefore, model-based centralized solutions
(MPC) are often preferred because the design is
more systematic and easier to modify.
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Quantitative Approach for Selecting
Economic Controlled Variables, CV;

A quantitative approach for selecting economic
controlled variables is to consider the effect of the
choice CV; = H;y on the economic cost J] when
disturbances d occur. One should also include
noise/errors (nY) related to the measurements and
inputs.

Step S1. Define operational objectives (eco-

nomic cost function J and constraints)

We first quantify the operational objectives
in terms of a scalar cost function J [$/s] that
should be minimized (or equivalently, a scalar
profit function, P = —J, that should be max-
imized). For process control applications, this
is usually easy, and typically we have

J = costfeed + cost utilities (energy)

— value products [$/s]

Note that the economic cost function J is used
to select the controlled variables (CV;), and
another cost function (J'), typically involving
the deviation in CV| from their optimal set-
points CV |, is used for the actual controller
design (e.g., using MPC).

Step S2. Find optimal operation for expected

disturbances
Mathematically, the optimization problem can
be formulated as

minu J (u, x, d)
subject to:

Model equations: dx/dt = f(u,x,d)
Operational constraints: g (u,x,d) < 0

In many cases, the economics are determined
by the steady-state behavior, so we can set
dx/dt = 0. The optimization problem should
be resolved for the expected disturbances (d)
to find the truly optimal operation policy,
Ugpi(d). The nominal solution (dpon) may
be used to obtain the setpoints (CVjis)
for the selected controlled variables. In
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practise, the optimum input u,y (d) cannot
be realized, because of model error and
unknown disturbances d, so we use a feeback
implementation where u is adjusted to keep
the selected variables CV; at their nominally
optimal setpoints.

Together with obtaining the model, the opti-
mization step S2 is often the most time con-
suming step in the entire plantwide control
procedure.

Step S3. Select supervisory (economic) con-
trolled variables, CV ;

CV;-Rule 1: Control Active Constraints

A primary goal for solving the optimization prob-
lem is to find the expected regions of active
constraints, and a constraint is said to be “active”
if g = 0 at the optimum. The optimally active
constraints will vary depending on disturbances
(d) and market conditions (prices).

CV;-Rule 2: Control Self-Optimizing

Variables

After having identified (and controlled) the ac-

tive constraints, one should consider the remain-

ing lower-dimension unconstrained optimization
problem, and for the remaining unconstrained
degrees of freedom one should search for control

“self-optimizing” variables c.

1. “Brute force” approach. Given a set of con-
trolled variables CV; = ¢ = Hjy, one
computes the cost J(c,d) when we keep c
constant (c = c¢; + HnY) for various dis-
turbances (d) and measurement errors (nY).
In practise, this is done by running a large
number of steady-state simulations to try to
cover the expected future operation.

2. “Local” approaches based on a quadratic
approximation of the cost J. Linear models are
used for the effect of uand d on y.

y =Gu+ G

This is discussed in more detail in Alstad et al.
(2009) and references therein. The main local
approaches are:
2A. Maximum gain rule: maximize the min-
imum singular value of G = H;G’.
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2B.

2C.

In other words, the maximum gain rule,
which essentially is a quantitative version
of Requirements 1, 3 and 4 given above,
says that one should control “sensitive”
variables, with a large scaled gain G from
the inputs (u) to ¢ = H;y. This rule is
good for pre-screening and also yields good
insight.

Nullspace method. This method yields op-
timal measurement combinations for the
case with no noise, n¥ = 0. One must first
obtain the optimal measurement sensitivity
matrix F, defined as

F = dy*'/dd.

Each column in F expresses the optimal
change in the y’s when the independent
variable (u) is adjusted so that the sys-
tem remains optimal with respect to the
disturbance d. Usually, it is simplest to
obtain F numerically by optimizing the
model. Alternatively, we can obtain F from
a quadratic approximation of the cost func-
tion
F=G] -G T

Then, assuming that we have at least as
many (independent) measurements y as the
sum of the number of (independent) inputs
(u) and disturbances (d), the optimal is to
select c = Hyy such that

HF=0

Note that H; is a nonsquare matrix, so
HiF = 0 does not require that H; = 0
(which is a trivial uninteresting solution),
but rather that H; is in the nullspace of FT.
Exact local method (loss method). This
extends the nullspace method to include
noise (n¥) and allows for any number of
measurements. The noise and disturbances
are normalized by introducing weighting
matrices Wy, and Wy (which have the ex-
pected magnitudes along the diagonal) and
then the expected loss, L = J — Jou(d),
is minimized by selecting H; to solve the
following problem
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min_H; [[M(Hy)|[
where 2 denotes the Frobenius norm and

M(H)) = L (HG)'H Y, Y
= [FWq Wyy].

Note here that the optimal choice with
Wyy = 0 (no noise) is to choose H; such
that HiF = 0, which is the nullspace
method. For the general case, when H; is a
“full” matrix, this is a convex problem and
the optimal solution is H] = (YY’)™'GYQ
where Q is any nonsingular matrix.

Regulatory Control Layer

The main purpose of the regulatory layer is
to “stabilize” the plant, preferably using a
simple control structure (e.g., single-loop PID
controllers) which does not require changes
during operation. “Stabilize” is here used in a
more extended sense to mean that the process
does not “drift” too far away from acceptable
operation when there are disturbances. The
regulatory layer should make it possible to use
a “slow” supervisory control layer that does not
require a detailed model of the high-frequency
dynamics. Therefore, in addition to track the
setpoints given by the supervisory layer (e.g.,
MPC), the regulatory layer may directly control
primary variables (CV;) that require fast and
tight control, like economically important active
constraints.
In general, the design of the regulatory layer
involves the following structural decisions:
1. Selection of controlled outputs y, (among all
candidate measurements yy,).
2. Selection of inputs MV, = u; (a subset of all
available inputs u) to control the outputs y,.
3. Pairing of inputs u, and outputs y, (since
decentralized control is normally used).
Decisions 1 and 2 combined (IO selection) is
equivalent to selecting H, (Fig.3). Note that
we do not “use up” any degrees of freedom in
the regulatory layer because the set points (yss)
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become manipulated variables (MV;) for the
supervisory layer (see Fig. 3). Furthermore, since
the set points are set by the supervisory layer
in a cascade manner, the system eventually
approaches the same steady-state (as defined by
the choice of economic variables CV) regardless
of the choice of controlled variables in the
regulatory layer.

The inputs for the regulatory layer (u,) are
selected as a subset of all the available inputs
(u). For stability reasons, one should avoid input
saturation in the regulatory layer. In particular,
one should avoid using inputs (in the set u,) that
are optimally constrained in some disturbance
region. Otherwise, in order to avoid input satura-
tion, one needs to include a backoff for the input
when entering this operational region, and doing
so will have an economic penalty.

In the regulatory layer, the outputs (y,) are
usually selected as individual measurements and
they are often not important variables in them-
selves. Rather, they are “extra outputs” that are
controlled in order to “stabilize” the system, and
their setpoints (y»s) are changed by the layer
above, to obtain economical optimal operation.
For example, in a distillation column one may
control a temperature somewhere in the middle
of the column (y, = T) in order to “stabilize”
the column profile. Its setpoint (ys = Ts) is
adjusted by the supervisory layer to obtain the
desired product composition (y; = c).

Input-Output (10) Selection for
Regulatory Control (u;, y>)

Finding the truly optimal control structure, in-
cluding selecting inputs and outputs for regu-
latory control, requires finding also the optimal
controller parameters. This is an extremely dif-
ficult mathematical problem, at least if the con-
troller K is decomposed into smaller controllers.
In this section, we consider some approaches
which does not require that the controller param-
eters be found. This is done by making assump-
tions related to achievable control performance
(controllability) or perfect control.
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Before we look at the approaches, note again
that the 10-selection for regulatory control may
be combined into a single decision, by consider-
ing the selection of

CV; = [y2;u1] = Hyy

Here u; denotes the inputs that are not used by the
regulatory control layer. This follows because we
want to use all inputs u for control, so assuming
that the set u is given, “selection of inputs u,”
(decision 2) is by elimination equivalent to “se-
lection of inputs u;.” Note that CV; include all
variables that we keep at desired (constant) values
within the fast time horizon of the regulatory
control layer, including the “unused” inputs u;

Survey by Van de Wal and Jager

Van de Wal and Jager provide an overview of

methods for input-output selection, some of

which include:

1. “Accessibility” based on guaranteeing a
cause—effect relationship between the selected
inputs (up) and outputs (y2). Use of such
measures may eliminate unworkable control
structures.

2. “State controllability and state observability”
to ensure that any unstable modes can be sta-
bilized using the selected inputs and outputs.

3. “Input-output controllability” analysis to en-
sure that y, can be acceptably controlled us-
ing u,. This is based on scaling the system,
and then analysing the transfer matrices Gy(s)
(from u, to y,) and Gy, (from expected dis-
turbances d to y,). Some important control-
lability measures are right half plane zeros
(unstable dynamics of the inverse), condition
number, singular values, relative gain array,
etc. One problem here is that there are many
different measures, and it is not clear which
should be given most emphasis.

4. “Achievable robust performance.” This may
be viewed as a more detailed version of input-
output controllability, where several relevant
issues are combined into a single measure.
However, this requires that the control prob-
lem can actually be formulated clearly, which
may be very difficult, as already mentioned.
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In addition, it requires finding the optimal

robust controller for the given problem, which

may be very difficult.
Most of these methods are useful for analyzing a
given structure (u,, y,) but less suitable for selec-
tion. Also, the list of methods is also incomplete,
as disturbance rejection, which is probably the
most important issue for the regulatory layer, is
hardly considered.

A Systematic Approach for 10-Selection

Based on Minimizing State Drift Caused by
Disturbances

The objectives of the regulatory control layer
are many, and Yelchuru and Skogestad (2013)
list 13 partly conflicting objectives. To have a
truly systematic approach to regulatory control
design, including 10-selection, we would need to
quantify all these partially conflicting objectives
in terms of a scalar cost function J,. We here
consider a fairly general cost function,

Iy = [|[Wx]]|

which may be interpreted as the weighted state
drift. One justification for considering the state
drift, is that the regulatory layer should ensure
that the system, as measured by the weighted
states Wx, does not drift too far away from the
desired state, and thus stays in the “linear region”
when there are disturbances. Note that the cost J,
is used to select controlled variables (CV;) and
not to design the controller (for which the cost
may be the control error, J," = [|[CV,; — CVy])).

Within this framework, the IO-selection prob-
lem for the regulatory layer is then to select the
nonsquare matrix Hy,

CV, = Hyy

where y = [ym;u], such that the cost J, is
minimized. The cause for changes in J, are dis-
turbances d, and we consider the linear model (in
deviation variables)

y =Gu+Gid
x = G*u+ Gid
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where the G-matrices are transfer matrices. Here,
G} gives the effect of the disturbances on the
states with no control, and the idea is to reduce
the disturbance effect by closing the regulatory
control loops. Within the “slow” time scale of
the supervisory layer, we can assume that CV, is
perfectly controlled and thus constant, or CV, =
0 in terms of deviation variables. This gives

CV, = H,Gu + HzGZld =0
and solving with respect to u gives
u=—(HG)" (H:G})d

and we have
X = Pg (Hz) d

where
PX(Hy) = G} — G* (H,G") ™' H,G)

is the disturbance effect for the “partially” con-
trolled system with only the regulatory loops
closed. Note that it is not generally possible to
make P} = 0 because we have more states than
we have available inputs. To have a small “state
drift,” we want J, = ||W P4 d|| to be small, and
to have a simple regulatory control system we
want to close as few regulatory loops as possible.
Assume that we have normalized the disturbances
so that the norm of d is 1, then we can solve the
following problem

For 0,1,2... etc. loops closed solve:
min_H|[M; (Hy) ||
where M, = WP anddim(u2) =

dim (y2) = no. of loops closed.

By comparing the value of ||M; (Hy) || with
different number of loops closed (i.e., with differ-
ent H), we can then decide on an appropriate reg-
ulatory layer structure. For example, assume that
we find that the value of J, is 110 (0 loops closed),
0.2 (1 loop), and 0.02 (2 loops), and assume we
have scaled the disturbances and states such that
a Jo-value less than about 1 is acceptable, then
closing 1 regulatory loop is probably the best
choice.
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In principle, this is straightforward, but there
are three remaining issues: (1) We need to choose
an appropriate norm, (2) we should include
measurement noise to avoid selecting insensitive
measurements and (3) the problem must be
solvable numerically.

Issue 1. The norm of M, should be evalu-
ated in the frequency range between the “slow”
bandwidth of the supervisory control layer (wg;)
and the “fast” bandwidth of the regulatory control
layer (wpy). However, since it is likely that the
system sometimes operates without the supervi-
sory layer, it is reasonable to evaluate the norm
of P} in the frequency range from O (steady state)
to wgy. Since we want H, to be a constant (not
frequency-dependent) matrix, it is reasonable to
choose H, to minimize the norm of M, at the
frequency where ||M;|| is expected to have its
peak. For some mechanical systems, this may
be at some resonance frequency, but for process
control applications it is usually at steady state
(o = 0), that is, we can use the steady-state
gain matrices when computing P}. In terms of
the norm, we use the 2-norm (Frobenius norm),
mainly because it has good numerical proper-
ties, and also because it has the interpretation of
giving the expected variance in x for normally
distributed disturbances.

Issues 2 and 3. If we include also measurement
noise n¥, which we should, then the expected
value of J, is minimized by solving the problem
min_H, |[M,(H;)||, where (Yelchuru and Sko-
gestad 2013)

M, (Hy) = J)2(H,GY) ™' HL Y,

2uu

d
Y, = [Fsz Wn]; F, = Yopt
ad
=G I3 Ty, — G
where Jo, = %{} = 26" WTWG*, 24 2
25 _ x"ywT
WB?{ == 2G W WGdX,

Note that this is the same mathematical prob-
lem as the “exact local method” presented for se-
lecting CV; = H,y for minimizing the economic
cost J, but because of the specific simple form
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for the cost Jy, it is possible to obtain analytical
formulas for the optimal sensitivity, F,. Again,
Wy and W,,,, are diagonal matrices, expressing
the expected magnitude of the disturbances (d)
and noise (for y).

For the case when H, is a “full” matrix, this
can be reformulated as a convex optimization
problem and an explicit solution is

H! = (YY) 'GY (G (Y.Y))™'6) ™' Jy2

2uu

and from this we can find the optimal value of
J,. It may seem restrictive to assume that H, is a
“full” matrix, because we usually want to control
individual measurements, and then H,should be
a selection matrix, with 1’s and 0’s. Fortunately,
since we in this case want to control as many
measurements (y;) as inputs (u;), we have that
H, is square in the selected set, and the opti-
mal value of J, when H, is a selection matrix
is the same as when H, is a full matrix. The
reason for this is that specifying (controlling) any
linear combination of y,, uniquely determines
the individual y,’s, since dim(u;) = dim(y;).
Thus, we can find the optimal selection matrix
H,, by searching through all the candidate square
sets of y. This can be effectively solved using
the branch and bound approach of Kariwala and
Cao, or alternatively it can be solved as a mixed-
integer problem with a quadratic program (QP) at
each node (Yelchuru and Skogestad 2012). The
approach of Yelchuru and Skogestad can also be
applied to the case where we allow for disjunct
sets of measurement combinations, which may
give a lower J, in some cases.

Comments on the state drift approach.

1. We have assumed that we perfectly control y,
using u,, at least within the bandwidth of the
regulatory control system. Once one has found
a candidate control structure (H;), one should
check that it is possible to achieve acceptable
control. This may be done by analyzing the
input-output controllability of the system y, =
Gouy + Gyg d, based on the transfer matrices
G, = HyGY and Gyq = Hszl. If the control-
lability of this system is not acceptable, then
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one should consider the second-best matrix H,
(with the second-best value of the state drift
J») and so on.

2. The state drift cost drift J, = ||Wx]| is in
principle independent of the economic cost
(J). This is an advantage because we know
that the economically optimal operation (e.g.,
active constraints) may change, whereas we
would like the regulatory layer to remain un-
changed. However, it is also a disadvantage,
because the regulatory layer determines the
initial response to disturbances, and we would
like this initial response to be in the right
direction economically, so that the required
correction from the slower supervisory layer
is as small as possible. Actually, this issue
can be included by extending the state vector
X to include also the economic controlled
variables, CV, which is selected based on the
economic cost J. The weight matrix W may
then be used to adjust the relative weights
of avoiding drift in the internal states x and
economic controlled variables CV.

3. The above steady-state approach does not con-
sider input-output pairing, for which dynamics
are usually the main issue. The main pairing
rule is to “pair close” in order to minimize the
effective time delay between the selected input
and output. For a more detailed approach, de-
centralized input-output controllability must
be considered.

Summary and Future Directions

Control structure design involves the structural
decisions that must be made before designing
the actual controller, and it is in most cases a
much more important step than the controller
design. In spite of this, the theoretical tools for
making the structural decisions are much less
developed than for controller design. This chapter
summarizes some approaches, and it is expected,
or at least hoped, that this important area will
further develop in the years to come.

The most important structural decision is
usually related to selecting the economic con-
trolled variables, CV; = H;y, and the stabilizing
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controlled variables, CV, = H,y. However,
control engineers have traditionally not used
the degrees of freedom in the matrices H; and
H,, and this chapter has summarized some
approaches.

There has been a belief that the use of “ad-
vanced control,” e.g., MPC, makes control struc-
ture design less important. However, this is not
correct because also for MPC must one choose
inputs (MV; = CVy) and outputs (CVy). The
selection of CV| may to some extent be avoided
by use of “Dynamic Real-Time Optimization
(DRTO)” or “Economic MPC,” but these opti-
mizing controllers usually operate on a slower
time scale by sending setpoints to the basic con-
trol layer (MV| = CVy), which means that se-
lecting the variables CV, is critical for achieving
(close to) optimality on the fast time scale.
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Abstract

State controllability and observability are key
properties in linear input—output systems in state-
space form. In the state-space approach, the re-
lation between inputs and outputs is represented
using the state variables of the system. A natural
question is then to what extent it is possible
to manipulate the values of the state vector by
means of an appropriate choice of the input func-
tion. The concepts of controllability, reachability,
and null controllability address this issue. An-
other important question is whether it is possible
to uniquely determine the values of the state
vector from knowledge of the input and output
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signals over a given time interval. This question
is dealt with using the concept of observability.
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Observability; Reachability

Introduction

In the state-space approach to input—output
systems, the relation between input signals
and output signals is represented by means of
two equations. In the continuous-time case, the
first of these equations is a first-order vector
differential equation driven by the input signal
and is often called the state equation. The second
equation is an algebraic equation, often called the
output equation. The unknown in the differential
equation is called the state vector of the system.
Given a particular input signal and initial value
of the state vector, the state equation generates
a unique solution, called the state trajectory of
the system. The output equation determines the
corresponding output signal as a function of this
state trajectory and the input signal. Thus, in the
state space approach, the input—output behavior
of the system is obtained using the state vector as
an intermediate variable.

In the context of input—output systems in state-
space form, the properties of controllability and
observability characterize the interaction between
the input, the state, and the output. In particular,
controllability describes the ability to manipulate
the state vector of the system by applying ap-
propriate input signals. Observability describes
the ability to determine the values of the state
vector from knowledge of the input and output
over a certain time interval. The properties of
controllability and observability are fundamental
properties that play a major role in the analysis
and control of linear input—output systems in
state-space form.



