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Abstract

Cascading failure consists of complicated se-
quences of dependent failures and can cause large
blackouts. The emerging risk analysis, simula-
tion, and modeling of cascading blackouts are
briefly surveyed, and key references are sug-
gested.
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Introduction

The main mechanism for the rare and costly
widespread blackouts of bulk power transmission
systems is cascading failure. Cascading failure

can be defined as a sequence of dependent events
that successively weaken the power system (IEEE
PES CAMS Task Force on Cascading Failure
2008). The events and their dependencies are
very varied and include outages or failures of
many different parts of the power system and
a whole range of possible physical, cyber, and
human interactions. The events and dependen-
cies tend to be rare or complicated, since the
common and straightforward failures tend to be
already mitigated by engineering design or oper-
ating practice.

Examples of a small initial outage cascad-
ing into a complicated sequence of dependent
outages are the August 10, 1996, blackout of
the Northwest United States that disconnected
power to about 7.5 million customers (Kosterev
et al. 1999) and the August 14, 2003 blackout
of about 50 million customers in Northeastern
United States and Canada (US-Canada Power
System Outage Task Force 2004). Although such
extreme events are rare, the direct costs run to
billions of dollars and the disruption to society
is substantial. Large blackouts also have a strong
effect on shaping the way power systems are
regulated and the reputation of the power in-
dustry. Moreover, some blackouts involve social
disruptions that can multiply the economic dam-
age. The hardship to people and possible deaths
underscore the engineer’s responsibility to work
to avoid blackouts.

Itis useful when analyzing cascading failure to
consider cascading events of all sizes, including
the short cascades that do not lead to interruption
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of power to customers and cascades that in-
volve events in other infrastructures, especially
since loss of electricity can significantly impair
other essential or economically important infras-
tructures. Note that in the context of interact-
ing infrastructures, the term “cascading failure”
sometimes has the more restrictive definition of
events cascading between infrastructures (Rinaldi
et al. 2001).

Blackout Risk

Cascading failure is a sequence of dependent
events that successively weaken the power sys-
tem. At a given stage in the cascade, the previous
events have weakened the power system so that
further events are more likely. It is this depen-
dence that makes the long series of cascading
events that cause large blackouts likely enough
to pose a substantial risk. (If the events were
independent, then the probability of a large num-
ber of events would be the product of the small
probabilities of individual events and would be
vanishingly small.) The statistics for the distribu-
tion of sizes of blackouts have correspondingly
“heavy tails” indicating that blackouts of all sizes,
including large blackouts, can occur. Large black-
outs are rare, but they are expected to happen
occasionally, and they are not “perfect storms.”

In particular, it has been observed in several
developed countries that the probability distribu-
tion of blackout size has an approximate power
law dependence (Carreras et al. 2004b; Dobson
et al. 2007; Hines et al. 2009). (The power law
is of course limited in extent because every grid
has a largest possible blackout in which the en-
tire grid blacks out.) The power law region can
be explained using ideas from complex systems
theory. The main idea is that over the long term,
the power grid reliability is shaped by the engi-
neering responses to blackouts and the slow load
growth and tends to evolve towards the power law
distribution of blackout size (Dobson et al. 2007,
Ren et al. 2008).

Blackout risk can be defined as the prod-
uct of blackout probability and blackout cost.
One simple assumption is that blackout cost is
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roughly proportional to blackout size, although
larger blackouts may well have costs (especially
indirect costs) that increase faster than linearly. In
the case of the power law dependence, the larger
blackouts can become rarer at a similar rate as
costs increase, and then the risk of large black-
outs is comparable to or even exceeding the risk
of small blackouts. Mitigation of blackout risk
should consider both small and large blackouts,
because mitigating the small blackouts that are
easiest to analyze may inadvertently increase the
risk of large blackouts (Newman et al. 2011).

Approaches to quantify blackout risk are chal-
lenging and emerging, but there are also valuable
approaches to mitigating blackout risk that do
not quantify the blackout risk. The n-1 criterion
that requires the power system to survive any sin-
gle component failure has the effect of reducing
cascading failures. The individual mechanisms
of dependence in cascades (overloads, protection
failures, voltage collapse, transient stability, lack
of situational awareness, human error, etc.) can
be addressed individually by specialized analyses
or simulations or by training and procedures.
Credible initiating outages can be sampled and
simulated, and those resulting in cascading can
be mitigated (Hardiman et al. 2004). This can be
thought of as a “defense in depth” approach in
which mitigating a subset of credible contingen-
cies is likely to mitigate other possible contin-
gencies not studied. Moreover, when blackouts
occur, a postmortem analysis of that particular se-
quence of events leads to lessons learned that can
be implemented to mitigate the risk of some sim-
ilar blackouts (US-Canada Power System Outage
Task Force 2004).

Simulation and Models

There are many simulations of cascading
blackouts using Monte Carlo and other methods,
for example, Hardiman et al. (2004), Carreras
et al. (2004a), Chen et al. (2005), Kirschen et al.
(2004), Anghel et al. (2007), and Bienstock
and Mattia (2007). All these simulations
select and approximate a modest subset of the
many physical and engineering mechanisms of
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cascading failure, such as line overloads, voltage
collapse, and protection failures. In addition,
operator actions or the effects of engineering the
network may also be crudely represented. Some
of the simulations give a set of credible cascades,
and others approximately estimate blackout risk.

Except for describing the initial outages,
where there is a wealth of useful knowledge,
much of standard risk analysis and modeling does
not easily apply to cascading failure in power
systems because of the variety of dependencies
and mechanisms, the combinatorial explosion of
rare possibilities, and the heavy-tailed probability
distributions. However, progress has been made
in probabilistic models of cascading (Chen et al.
2006; Dobson 2012; Rahnamay-Naeini et al.
2012).

The goal of high-level probabilistic models is
to capture salient features of the cascade without
detailed models of the interactions and dependen-
cies. They provide insight into cascading failure
data and simulations, and parameters of the high-
level models can serve as metrics of cascading.

Branching process models are transient
Markov probabilistic models in which, after
some initial outages, the outages are produced
in successive generations. Each outage in each
generation (a ‘“parent” outage) produces a
probabilistic number of outages (“children”
outages) in the next generation according to an
offspring probability distribution. The children
failures then become parents to produce the next
generation and so on, until there is a generation
with zero children and the cascade stops. As
might be expected, a key parameter describing
the cascading is its average propagation, which
is the average number of children outages
per parent outage. Branching processes have
traditionally been applied to many cascading
processes outside of risk analysis (Harris), but
they have recently been validated and applied to
estimate the distribution of the total number of
outages from utility outage data (Dobson 2012).
A probabilistic model that tracks the cascade as
it progresses in time through lumped grid states
is presented in Rahnamay-Naeini et al. (2012).

There is an extensive complex networks liter-
ature on cascading in abstract networks that is
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largely motivated by idealized models of propa-
gation of failures in the Internet. The way that
failures propagate only along the network links
is not realistic for power systems, which satisfy
Kirchhoff’s laws so that many types of failures
propagate differently. For example, line over-
loads tend to propagate along cutsets of the net-
work. However, the high-level qualitative results
of phase transitions in the complex networks
have provided inspiration for similar effects to
be discovered in power system models (Dobson
et al. 2007). There is also a possible research
opportunity to elaborate the complex network
models to incorporate some of the realities of
power system and then validate them.

Summary and Future Directions

One challenge for simulation is what selection
of phenomena to model and in how much detail
in order to get useful engineering results. Faster
simulations would help to ease the requirements
of sampling appropriately from all the sources
of uncertainty. Better metrics of cascading in
addition to average propagation need to be de-
veloped and extracted from real and simulated
data in order to better quantify and understand
blackout risk. There are many new ideas emerg-
ing to analyze and simulate cascading failure,
and the next step is to validate and improve
these new approaches by comparing them with
observed blackout data. Overall, there is an excit-
ing challenge to build on the more deterministic
approaches to mitigate cascading failure and find
ways to more directly quantify and mitigate cas-
cading blackout risk by coordinated analysis of
real data, simulation, and probabilistic models.

Cross-References

Hybrid Dynamical Systems, Feedback Con-
trol of

Lyapunov Methods in Power System Stability
Power System Voltage Stability

Small Signal Stability in Electric Power
Systems


http://dx.doi.org/10.1007/978-1-4471-5058-9_271
http://dx.doi.org/10.1007/978-1-4471-5058-9_266
http://dx.doi.org/10.1007/978-1-4471-5058-9_263
http://dx.doi.org/10.1007/978-1-4471-5058-9_260

108

Bibliography

Anghel M, Werley KA, Motter AE (2007) Stochastic
model for power grid dynamics. In: 40th Hawaii inter-
national conference on system sciences, Hawaii, Jan
2007

Bienstock D, Mattia S (2007) Using mixed-integer pro-
gramming to solve power grid blackout problems.
Discret Optim 4(1):115-141

Carreras BA, Lynch VE, Dobson I, Newman DE (2004a)
Complex dynamics of blackouts in power transmission
systems. Chaos 14(3):643-652

Carreras BA, Newman DE, Dobson I, Poole AB (2004b)
Evidence for self-organized criticality in a time series
of electric power system blackouts. IEEE Trans Cir-
cuits Syst Part 1 51(9):1733-1740

Chen J, Thorp JS, Dobson I (2005) Cascading dynamics
and mitigation assessment in power system distur-
bances via a hidden failure model. Int J Electr Power
Energy Syst 27(4):318-326

Chen Q, Jiang C, Qiu W, McCalley JD (2006) Probability
models for estimating the probabilities of cascading
outages in high-voltage transmission network. IEEE
Trans Power Syst 21(3): 1423-1431

Dobson I, Carreras BA, Newman DE (2005) A loading-
dependent model of probabilistic cascading failure.
Probab Eng Inf Sci 19(1):15-32

Dobson I, Carreras BA, Lynch VE, Newman DE (2007)
Complex systems analysis of series of blackouts: cas-
cading failure, critical points, and self-organization.
Chaos 17:026103

Dobson I (2012) Estimating the propagation and extent
of cascading line outages from utility data with a
branching process, IEEE Trans Power Systems 27(4):
2146-215

Hardiman RC, Kumbale MT, Makarov YV (2004) An
advanced tool for analyzing multiple cascading fail-
ures. In: Eighth international conference on probabil-
ity methods applied to power systems, Ames, Sept
2004

Harris TE (1989) Theory of branching processes. Dover,
New York

Hines P, Apt J, Talukdar S (2009) Large blackouts in North
America: historical trends and policy implications.
Energy Policy 37(12):5249-5259

IEEE PES CAMS Task Force on Cascading Failure (2008)
Initial review of methods for cascading failure analy-
sis in electric power transmission systems. In: IEEE
power and energy society general meeting, Pittsburgh,
July 2008

Kirschen DS, Strbac G (2004) Why investments do not
prevent blackouts. Electr J 17(2):29-36

Kirschen DS, Jawayeera D, Nedic DP, Allan RN (2004)
A probabilistic indicator of system stress. IEEE Trans
Power Syst 19(3):1650-1657

Kosterev D, Taylor C, Mittelstadt W (1999) Model vali-
dation for the August 10, 1996 WSCC system outage.
IEEE Trans Power Syst 14:967-979

Cash Management

Newman DE, Carreras BA, Lynch VE, Dobson I (2011)
Exploring complex systems aspects of blackout risk
and mitigation. IEEE Trans Reliab 60(1): 134—-143

Rahnamay-Naeini M, Wang Z, Ghani N, Mammoli A,
Hayat M.M (2014) Stochastic Analysis of Cascading-
Failure Dynamics in Power Grids, to appear in IEEE
Transactions on Power Systems

Ren H, Dobson I, Carreras BA (2008) Long-term effect
of the n-1 criterion on cascading line outages in an
evolving power transmission grid. IEEE Trans Power
Syst 23(3):1217-1225

Rinaldi SM, Peerenboom JP, Kelly TK (2001) Identifying,
understanding, and analyzing critical infrastructure
interdependencies. IEEE Control Syst Mag 21:11-25

US-Canada Power System Outage Task Force (2004)
Final report on the August 14, 2003 blackout in the
United States and Canada

Cash Management

Abel Cadenillas
University of Alberta, Edmonton, AB, Canada

Abstract

Cash on hand (or cash held in highly liquid form
in a bank account) is needed for routine busi-
ness and personal transactions. The problem of
determining the right amount of cash to hold in-
volves balancing liquidity against investment op-
portunity costs. This entry traces solutions using
both discrete-time and continuous-time stochas-
tic models.

Keywords

Brownian motion; Inventory theory; Stochastic
impulse control

Definition

A firm needs to keep cash, either in the form
of cash on hand or as a bank deposit, to meet
its daily transaction requirements. Daily inflows
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and outflows of cash are random. There is a finite
target for the cash balance, which could be zero in
some cases. The firm wants to select a policy that
minimizes the expected total discounted cost for
being far away from the target during some time
horizon. This time horizon is usually infinity.
The firm has an incentive to keep the cash level
low, because each unit of positive cash leads to
a holding cost since cash has alternative uses
like dividends or investments in earning assets.
The firm has an incentive to keep the cash level
high, because penalty costs are generated as a
result of delays in meeting demands for cash.
The firm can increase its cash balance by raising
new capital or by selling some earnings assets,
and it can reduce its cash balance by paying
dividends or investing in earning assets. This
control of the cash balance generates fixed and
proportional transaction costs. Thus, there is a
cost when the cash balance is different from its
target, and there is also a cost for increasing
or reducing the cash reserve. The objective of
the manager is to minimize the expected total
discounted cost.

Hasbrouck (2007), Madhavan and Smidt
(1993), and Manaster and Mann (1996) study
inventories of stocks that are similar to the cash
management problem.

The Solution

The qualitative form of optimal policies of the
cash management problem in discrete time was
studied by Eppen and Fama (1968, 1969), Girgis
(1968), and Neave (1970). However, their solu-
tions were incomplete.

Many of the difficulties that they and other
researchers encountered in a discrete-time frame-
work disappeared when it was assumed that de-
cisions were made continuously in time and that
demand is generated by a Brownian motion with
drift. Vial (1972) formulated the cash manage-
ment problem in continuous time with fixed and
proportional transaction costs, linear holding and
penalty costs, and demand for cash generated
by a Brownian motion with drift. Under very
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strong assumptions, Vial (1972) proved that if an
optimal policy exists, then it is of a simple form
(a, a, B, b).

This means that the cash balance should
be increased to level o when it reaches
level a and should be reduced to level B
when it reaches level b. Constantinides (1976)
assumed that an optimal policy exists and
it is of a simple form, and determined the
above levels and discussed the properties
of the optimal solution. Constantinides and
Richard (1978) proved the main assumptions of
Vial (1972) and therefore obtained rigorously
a solution for the cash management prob-
lem.

Constantinides and Richard (1978) applied
the theory of stochastic impulse control devel-
oped by Bensoussan and Lions (1973, 1975,
1982). He used a Brownian motion W to model
the uncertainty in the inventory. Formally, he
considered a probability space (2, F, P) to-
gether with a filtration (F;) generated by a one-
dimensional Brownian motion . He considered
X; := inventorylevelattime ¢, and assumed
that X is an adapted stochastic process given
by

t t 0
X, =x—/ /LdS—/ Odm+21{fi<[}si‘
0 0

i=l1

Here, ;v > 01is the drift of the demand and o >
0 is the volatility of the demand. Furthermore, t;
is the time of the i-th intervention and §&; is the
intensity of the i-th intervention.

A stochastic impulse control is a pair

((): (62))

== (T()stlv‘ch"'vtnv"';gOs 519529--'9§n7"')5

where
H=0<T <D< <1 <---
is an increasing sequence of stopping times and

(&,) is a sequence of random variables such that
each §, : Q@ — R is measurable with respect
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to F,. We assume &, = 0. The management (the
controller) decides to act at time

X+ =X, +&.

We note that & and X can also take negative
values. The management wants to select the pair

((): (62))

that minimizes the functional J defined by

S ((t): (En)) := E [/0 e f(X,)dt

(o]

+ Z e_)wng(é-n)l{rn<oo} s

n=1

where
f(x) = max (hx, —px)
and
C+ctE ifE>0
g(§) = ¢ min(C, D) if§ =0
D—dg ifE<0

Furthermore, A > 0,C,c,D,d € (0,00),
and i, p € (0,00). Here, f represents the run-
ning cost incurred by deviating from the aimed
cash level 0, C represents the fixed cost per
intervention when the management pushes the
cash level upwards, D represents the fixed cost
per intervention when the management pushes
the cash level downwards, ¢ represents the pro-
portional cost per intervention when the manage-
ment pushes the cash level upwards, d represents
the proportional cost per intervention when the
management pushes the cash level downwards,
and A is the discount rate.

The results of Constantinides were comple-
mented, extended, or improved by Cadenillas
et al. (2010), Cadenillas and Zapatero (1999),
Feng and Muthuraman (2010), Harrison et al.
(1983), and Ormeci et al. (2008).
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Abstract

The design of feedback control systems in indus-
try is probably accomplished using frequency-
response (FR) methods more often than any other.
Frequency-response design is popular primarily
because it provides good designs in the face of
uncertainty in the plant model (G(s) in Fig. 1).
For example, for systems with poorly known
or changing high-frequency resonances, we can
temper the feedback design to alleviate the effects
of those uncertainties. Currently, this tempering is
carried out more easily using FR design than with
any other method. The method is most effective
for systems that are stable in open loop; however,
it can also be applied to systems with instabilities.
This section will introduce the reader to methods
of design (i.e., finding D(s) in Fig. 1) using lead
and lag compensation. It will also cover the use
of FR design to reduce steady-state errors and
to improve robustness to uncertainties in high-
frequency dynamics.

Keywords

Amplitude stabilization; Bandwidth; Bode plot;
Crossover frequency; Frequency response; Gain;
Gain stabilization; Gain margin; Notch filter;
Phase; Phase margin; Stability

Introduction

Finding an appropriate compensation (D(s) in
Fig. 1) using frequency response is probably the
easiest of all feedback control design methods.
Designs are achievable starting with the FR
plots of both magnitude and phase of G(s) then
selecting D(s) to achieve certain values of the
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gain and/or phase margins and system bandwidth
or error characteristics. This section will cover
the design process for finding an appropriate
D(s).

Design Specifications

As discussed in Section X, the gain margin
(GM) is the factor by which the gain can be
raised before instability results. The phase
margin (PM) is the amount by which the
phase of D(jw)G(jw) exceeds —180° when
|D(jw)G( jw)| = 1, the crossover frequency.
Performance requirements for control systems
are often partially specified in terms of PM and/or
GM. For example, a typical specification might
include the requirement that PM > 50° and GM
> 5. It can be shown that the PM tends to
correlate well with the damping ratio, ¢, of the
closed-loop roots. In fact, it is shown in Franklin
et al. (2010), that

PM
100

I

¢

for many systems; however, the actual resulting
damping and/or response overshoot of the final
closed-loop system will need to be verified if they
are specified as well as the PM. A PM of 50°
would tend to yield a ¢ of 0.5 for the closed-loop
roots, which is a modestly damped system. The
GM does not generally correlate directly with the
damping ratio, but is a measure of the degree of
stability and is a useful secondary specification to
ensure stability.

Another design specification is the band-
width, which was defined in Section X. The
bandwidth is a direct measure of the frequency
at which the closed-loop system starts to fail in
following the input command. It is also a measure
of the speed of response of a closed-loop system.
Generally speaking, it correlates well with the
step response rise time of the system.

In some cases, the steady-state error must
be less than a certain amount. As discussed in
Franklin et al. (2010), the steady-state error is
a direct function of the low-frequency gain of
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Classical Frequency-Domain Design Methods, Fig. 1 Feedback system showing compensation, D(s) (Source:
Franklin et al. (2010, p-249), Reprinted by permission of Pearson Education, Inc., Upper Saddle River, NJ)

the FR magnitude plot. However, increasing the
low-frequency gain typically will raise the en-
tire magnitude plot upward, thus increasing the
magnitude 1 crossover frequency and, therefore,
increasing the speed of response and bandwidth
of the system.

Compensation Design

In some cases, the design of a feedback com-
pensation can be accomplished by using pro-
portional control only, i.e., setting D(s) = K
(see Fig. 1) and selecting a suitable value for K.
This can be accomplished by plotting the mag-
nitude and phase of G(s), looking at |G( jw)|
at the frequency where ZG( jw) = —180°, and
then selecting K so that |KG( jw)| yields the
desired GM. Similarly, if a particular value of
PM is desired, one can find the frequency where
/ZG(jw) = —180° + the desired PM. The value
of |[KG(jw)| at that frequency must equal 1;
therefore, the value of |G( jw)| must equal 1/K.
Note that the | KG( jw)| curve moves vertically
based on the value of K; however the ZKG( jw)
curve is not affected by the value of K. This
characteristic simplifies the design process.

In more typical cases, proportional feedback
alone is not sufficient. There is a need for a
certain damping (i.e., PM) and/or speed of re-
sponse (i.e., bandwidth) and there is no value of
K that will meet the specifications. Therefore,
some increased damping from the compensation
is required. Likewise, a certain steady-state error
requirement and its resulting low-frequency gain
will cause the | D( jw)G( jw)| to be greater than
desired for an acceptable PM, so more phase
lead is required from the compensation. This is

typically accomplished by lead compensation.
A phase increase (or lead) is accomplished by
placing a zero in D(s). However, that alone
would cause an undesirable high-frequency gain
which would amplify noise; therefore, a first-
order pole is added in the denominator at frequen-
cies substantially higher than the zero break point
of the compensator. Thus, the phase lead still
occurs, but the amplification at high frequencies
is limited. The resulting lead compensation has a
transfer function of

Ts+1

D(s)=K——,
(5) oaTs + 1

a<l, (1)

where 1/« is the ratio between the pole/zero
break-point frequencies. Figure 2 shows the fre-
quency response of this lead compensation. The
maximum amount of phase lead supplied is de-
pendent on the ratio of the pole to zero and is
shown in Fig. 3 as a function of that ratio.

For example, a lead compensator with a

zero at s = —2 (T = 0.5) and a pole at
s =—10 (@7 = 0.1) (and thus @ = 1) would
yield the maximum phase lead of ¢n.x = 40°.

Note from the figure that we could increase the
phase lead almost up to 90° using higher values
of the lead ratio, 1/«; however, Fig. 2 shows that
increasing values of 1/« also produces higher
amplifications at higher frequencies. Thus, our
task is to select a value of 1/« that is a good
compromise between an acceptable PM and
acceptable noise sensitivity at high frequencies.
Usually the compromise suggests that a lead
compensation should contribute a maximum
of 70° to the phase. If a greater phase lead is
needed, then a double-lead compensation would
be suggested, where
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Classical
Frequency-Domain
Design Methods, Fig. 2
Lead-compensation
frequency response with
l/a =10, K =1
(Source: Franklin et al.

(2010, p-349), Reprinted D)l
by permission of Pearson
Education, Inc.)

£D(s)

Ts+1)
aTs + 1) '

Even if a system had negligible amounts of
noise present, the pole must exist at some point
because of the impossibility of building a pure
differentiator. No physical system — mechanical
or electrical or digital — responds with infinite
amplitude at infinite frequencies, so there will be
a limit in the frequency range (or bandwidth) for
which derivative information (or phase lead) can
be provided.

As an example of designing a lead compen-
sator, let us design compensation for a DC motor
with the transfer function

D(s)=K(

1
Glo) = s(s+1)°
We wish to obtain a steady-state error of less than
0.1 for a unit-ramp input and we desire a system
bandwidth greater than 3rad/sec. Furthermore,
we desire a PM of 45°. To accomplish the error
requirement, Franklin et al. shows that

1

B K @

egs = lim s
s—0
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and if R(s) = 1/s? for a unit ramp, Eq.(2)
reduces to

1 1
s+ D[/ +DIf ~ DO

lim
s—0

€55 =

Therefore, we find that D(0), the steady-state
gain of the compensation, cannot be less than 10
if it is to meet the error criterion, so we pick
K = 10. The frequency response of KG(s) in
Fig.4 shows that the PM 20° if no phase
lead is added by compensation. If it were pos-
sible to simply add phase without affecting the
magnitude, we would need an additional phase
of only 25° at the KG(s) crossover frequency
of w 3rad/sec. However, maintaining the
same low-frequency gain and adding a compen-
sator zero will increase the crossover frequency;
hence, more than a 25° phase contribution will
be required from the lead compensation. To be
safe, we will design the lead compensator so
that it supplies a maximum phase lead of 40°.
Figure 3 shows that 1/« 5 will accomplish
that goal. We will derive the greatest benefit from
the compensation if the maximum phase lead
from the compensator occurs at the crossover fre-
quency. With some trial and error, we determine



114 Classical Frequency-Domain Design Methods

Classical 4
Frequency-Domain 90° | k(N ] |
Design Methodes, Fig. 3 g 1
Maximum phase increase L 7/#
for lead compensation 2 60° | / ;
(Source: Franklin et al. & — S i
(2010, p-350), Reprinted g T
by permission of Pearson E 30 T
Education, Inc.) 3
b= I -
09
1 2 4 6810 20 4060 100
Vo
& 4
200 | l S
| :
100 40
———(5)G(5)
KG(s)
= 20
5 \
=
2 10 \ 20
=
o0 - Lead zero
E —
v
2 N N [ - S e
N
1 1 L >
0.1 02 1 2
 (rad/sec)
\Lead pole
—00° f— —
— \
~120° TSRk -
3 N
T —150° F— S \1.
g : N
—180° : —— ——
T M =20 5%
—240°

0.1 02 1 2 10
 (rad/sec)

Classical Frequency-Domain Design Methods, Fig. 4 Frequency response for lead-compensation design (Source:
Franklin et al. (2010, p-352), Reprinted by permission of Pearson Education, Inc.)



Classical Frequency-Domain Design Methods

that placing the zero at @ = 2rad/sec and the
pole at @ = 10rad/sec causes the maximum
phase lead to be at the crossover frequency. The
compensation, therefore, is

241
s/10 + 1

The frequency-response characteristics of
L(s) = D(s)G(s) in Fig.4 can be seen to yield
a PM of 53°, which satisfies the PM and steady-
state error design goals. In addition, the crossover
frequency of 5 rad/sec will also yield a bandwidth
greater than 3 rad/sec, as desired.

Lag compensation is the same form as the
lead compensation in Eq. (1) except that o« > 1.
Therefore, the pole is at a lower frequency than
the zero and it produces higher gain at lower
frequencies. The compensation is used primar-
ily to reduce steady-state errors by raising the
low-frequency gain but without increasing the
crossover frequency and speed of response. This
can be accomplished by placing the pole and zero
of the lag compensation well below the crossover
frequency. Alternatively, lag compensation can
also be used to improve the PM by keeping the
low frequency gain the same, but reducing the
gain near crossover, thus reducing the crossover
frequency. That will usually improve the PM
since the phase of the uncompensated system
typically is higher at lower frequencies.

Systems being controlled often have high-
frequency dynamic phenomena, such as
mechanical resonances, that could have an
impact on the stability of a system. In very-
high-performance designs, these high-frequency
dynamics are included in the plant model,
and a compensator is designed with a specific
knowledge of those dynamics. However, a more
robust approach for designing with uncertain
high-frequency dynamics is to keep the high-
frequency gain low, just as we did for sensor-
noise reduction. The reason for this can be
seen from the gain—frequency relationship of
a typical system, shown in Fig.5. The only
way instability can result from high-frequency
dynamics is if an unknown high-frequency
resonance causes the magnitude to rise above 1.
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High frequency

|L(s)|

Classical Frequency-Domain Design Methods, Fig. 5
Effect of high-frequency plant uncertainty (Source:
Franklin et al. (2010, p-372), Reprinted by permission of
Pearson Education, Inc.)

Conversely, if all unknown high-frequency
phenomena are guaranteed to remain below a
magnitude of 1, stability can be guaranteed.
The likelihood of an unknown resonance in
the plant G rising above 1 can be reduced if
the nominal high-frequency loop gain (L) is
lowered by the addition of extra poles in D(s).
When the stability of a system with resonances
is assured by tailoring the high-frequency
magnitude never to exceed 1, we refer to this
process as amplitude or gain stabilization.
Of course, if the resonance characteristics are
known exactly and remain the same under all
conditions, a specially tailored compensation,
such as a notch filter at the resonant frequency,
can be used to tailor the phase for stability even
though the amplitude does exceed magnitude 1
as explained in Franklin et al. (2010). Design
of a notch filter is more easily carried out using
root locus or state-space design methods, all of
which are discussed in Franklin et al. (2010). This
method of stabilization is referred to as phase
stabilization. A drawback to phase stabilization
is that the resonance information is often not
available with adequate precision or varies with
time; therefore, the method is more susceptible
to errors in the plant model used in the design.
Thus, we see that sensitivity to plant uncertainty
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and sensor noise are both reduced by sufficiently
low gain at high-frequency.

Summary and Future Directions

Before the common use of computers in design,
frequency-response design was the only widely
used method. While it is still the most widely
used method for routine designs, complex sys-
tems and their design are being carried out using
a multitude of methods. This section introduces
just one of many possible methods.
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Abstract

Robust control theory has introduced several

new and challenging problems for researchers.
Some of these problems have been solved by
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innovative approaches and led to the development
of new and efficient algorithms. However,
some of the other problems in robust control
theory had attracted significant amount of
research, but none of the proposed algorithms
were efficient, namely, had execution time
bounded by a polynomial of the “problem
size.” Several important problems in robust
control theory are either of decision type or
of computation/approximation type, and one
would like to have an algorithm which can be
used to answer all or most of the possible cases
and can be executed on a classical computer in
reasonable amount of time. There is a branch
of theoretical computer science, called theory
of computation, which can be used to study the
difficulty of problems in robust control theory.
In the following, classical computer system,
algorithm, efficient algorithm, unsolvability,
tractability, NP-hardness, and NP-completeness
will be introduced in a more rigorous fashion,
with applications to problems from robust control
theory.

Keywords

Approximation complexity; Computational com-
plexity; NP-complete; NP-hard; Unsolvability

Introduction

The term algorithm is used to refer to differ-
ent notions which are all somewhat consistent
with our intuitive understanding. This ambiguity
may sometimes generate significant confusion,
and therefore, a rigorous definition is of extreme
importance. One commonly accepted “intuitive”
definition is a set of rules that a person can per-
form with paper and pencil. However, there are
“algorithms” which involve random number gen-
eration, for example, finding a primitive root in
Z, (Knuth 1997). Based on this observation, one
may ask whether a random number generation-
based set of rules should be also considered
as an algorithm, provided that it will terminate
after finitely many steps for all instances of the


http://dx.doi.org/10.1007/978-1-4471-5058-9_236
http://dx.doi.org/10.1007/978-1-4471-5058-9_239
http://dx.doi.org/10.1007/978-1-4471-5058-9_238
http://dx.doi.org/10.1007/978-1-4471-5058-9_240

Computational Complexity Issues in Robust Control

problem or for a significant majority of the cases.
In a similar fashion, one may ask whether any
real number, including irrational ones which can-
not be represented on a digital computer with-
out an approximation error, should be allowed
as an input to an algorithm and, furthermore,
should all calculations be limited to algebraic
functions only or should exact calculation of non-
algebraic functions, e.g., trigonometric functions,
the gamma function, etc., be acceptable in an
algorithm. Although all of these seem acceptable
with respect to our intuitive understanding of the
algorithm, from a rigorous point of view, they
are different notions. In the context of robust
control theory, as well as many other engineer-
ing disciplines, there is a separate and widely
accepted definition of algorithm, which is based
on today’s digital computers, more precisely the
Turing machine (Turing 1936). Alan M. Turing
defined a “hypothetical computation machine”
to formally define the notions of algorithm and
computability. A Turing machine is, in principle,
quite similar to today’s digital computers widely
used in many engineering applications. The engi-
neering community seems to widely accept the
use of current digital computers and Turing’s
definitions of algorithm and computability.

However, depending on new scientific, engi-
neering, and technological developments, supe-
rior computation machines may be constructed.
For example, there is no guarantee that quantum
computing research will not lead to superior com-
putation machines (Chen et al. 2006; Kaye et al.
2007). In the future, the engineering community
may feel the need to revise formal definitions
of algorithm, computability, tractability, etc., if
such superior computation machines can be con-
structed and used for scientific/engineering appli-
cations.

Turing Machines and Unsolvability

Turing machine is basically a mathematical
model of a simplified computation device. The
original definition involves a tape-like device
for memory. For an easy-to-read introduction
to the Turing machine model, see Garey and
Johnson (1979) and Papadimitriou (1995), and
for more details, see Hopcroft et al. (2001),
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Lewis and Papadimitriou (1998), and Sipser
(2006). Despite this being a quite simple
and low-performance “hardware” compared to
today’s engineering standards, the following
two observations justify their use in the study
of computational complexity of engineering
problems. Anything which can be solved on
today’s current digital computers can be solved
on a Turing machine. Furthermore, a polynomial-
time algorithm on today’s digital computers will
correspond to again a polynomial-time algorithm
on the original Turing machine, and vice versa.
A widely accepted definition for an algorithm
is a Turing machine with a program, which is
guaranteed to terminate after finitely many steps.

For some mathematical and engineering prob-
lems, it can be shown that there can be no algo-
rithm which can handle all possible cases. Such
problems are called unsolvable. The condition
“all cases” may be considered too tough, and
one may argue that such negative results have
only theoretical importance and have no practi-
cal implications. But such results do imply that
we should concentrate our efforts on alterna-
tive research directions, like the development of
algorithms only for cases which appear more
frequently in real scientific/engineering applica-
tions, without asking the algorithm to work for
the remaining cases as well.

Here is a famous unsolvable mathematical
problem: Hilbert’s tenth problem is basically
the development of an algorithm for testing
whether a Diophantine equation has an integer
solution. However, in 1970, Matijasevich
showed that there can be no such algorithm
(Matiyasevich 1993). Therefore, we say that
the problem of checking whether a Diophantine
equation has an integer solution is unsolvable.

Several unsolvability results for dynamical
systems can be proved by using the Post
correspondence problem (Davis 1985) and the
embedding of free semigroups into matrices.
For example, the problem of checking the
stability of saturated linear dynamical systems
is proved to be undecidable (Blondel et al. 2001),
meaning that no general stability test algorithm
can be developed for such systems. A similar
unsolvability result is reported in Blondel and
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Tsitsiklis (2000a) for boundedness of switching
systems of the type

xtk+1)= Af(k)x(k),

where f is assumed to be an arbitrary and un-
known function from N into {0,1}. A closely
related asymptotic stability problem is equivalent
to testing whether the joint spectral radius (JSR)
(Rota and Strang 1960) of a set of matrices is less
than one. For a quite long period of time, there
was a conjecture called the finiteness conjecture
(FC) (Lagarias and Wang 1995), which was gen-
erally believed or hoped to be true, at least for
a group of researchers. FC may be interpreted
as “For asymptotic stability of x(k + 1) =
Ariyx (k) type switching systems, it is enough
to consider periodic switchings only.” There was
no known counterexample, and the truth of this
conjecture would imply existence of an algorithm
for the abovementioned JSR problem. However,
it was shown in Bousch and Mairesse (2002)
that FC is not true (see Blondel et al. (2003) for
a simplified proof). There are numerous known
computationally very valuable procedures related
to JSR approximation, for example, see Blon-
del and Nesterov (2005) and references therein.
However, the development of an algorithm to test
whether JSR is less than one remains as an open
problem.

For further results on unsolvability and un-
solved problems in robust control, see Blondel
et al. (1999), Blondel and Megretski (2004), and
references therein.

Tractability, NP-Hardness, and
NP-Completeness

The engineering community is interested in not
only solution algorithms but algorithms which
are fast even in the worst case and if not on the
average. Sometimes, this speed requirement may
be relaxed to being fast for most of the cases
and sometimes to only a significant percentage
of the cases. Currently, the theory of computa-
tion is developed around the idea of algorithms
which are polynomial time even in the worst case,
namely, execution time bounded by a polynomial
of the problem size (Garey and Johnson 1979;
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Papadimitriou 1995). Such algorithms are also
called efficient, and associated problems are clas-
sified as tractable. The term problem size means
number of bits used in a suitable encoding of
the problem (Garey and Johnson 1979; Papadim-
itriou 1995).

One may argue that this worst-case approach
of being always polynomial time is a quite con-
servative requirement. In reality, a practicing en-
gineer may consider being polynomial time on
the average quite satisfactory for many appli-
cations. The same may be true for algorithms
which are polynomial time for most of the cases.
However, the existing computational complex-
ity theory is developed around this idea of be-
ing polynomial time even in the worst case.
Therefore, many of the computational complex-
ity results proved in the literature do not imply
the impossibility of algorithms which are nei-
ther polynomial time on the average nor poly-
nomial time for most of the cases. Note that
despite not being efficient, such algorithms may
be considered quite valuable by a practicing en-
gineer. Tractability and efficiency can be defined
in several different ways, but the abovementioned
polynomial-time solvability even in the worst-
case approach is widely adopted by the engineer-
ing community.

NP-hardness and NP-completeness are origi-
nally defined to express the inherent difficulty of
decision-type problems, not for approximation-
type problems. Although approximation com-
plexity is an important and active research area in
the theory of computation (Papadimitriou 1995),
most of the classical results are on decision-type
problems. Many robust control-related problems
can be formulated as “Check whether y < 1,”
which is a decision-type problem. Approximate
value of y may not be always good enough to
“solve” the problem, i.e., to decide about robust
stability. For certain other engineering applica-
tions for which approximate values of optimiza-
tion problems are good enough to “solve” the
problem, the complexity of a decision problem
may not be very relevant. For example, in a
minimum effort control problem, usually there
may be no point in computing the exact value of
the minimum, because good approximations will
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be just fine for most cases. However, for a robust
control problem, a result like y = 0.99 + 0.02
may be not enough to decide about robust sta-
bility, although the approximation error is about
2 % only. Basically, both the conservativeness of
the current tractability definition and the differ-
ences between decision- and approximation-type
problems should be always kept in mind when
interpreting computational complexity results re-
ported here as well as in the literature.

In this subsection, and in the next one, we
will consider decision problems only. The class
P corresponds to decision problems which can
be solved by a Turing machine with a suitable
program in polynomial time (Garey and Johnson
1979). This is interpreted as decision problems
which have polynomial-time solution algorithms.
The definition of the class NP is more technical
and involves nondeterministic Turing machines
(Garey and Johnson 1979). It may be interpreted
as the class of decision problems for which the
truth of the problem can be verified in polynomial
time. It is currently unknown whether P and NP
are equal or not. This is a major open problem,
and the importance of it in the theory of computa-
tion is comparable to the importance of Riemann
hypothesis in number theory.

A problem is NP-complete if it is NP and
every NP problem polynomially reduces to it
(Garey and Johnson 1979). For an NP-complete
problem, being in P is equivalent to P = NP.
There are literally hundreds of such problems,
and it is generally argued that since after sev-
eral years of research nobody was able to de-
velop a polynomial-time algorithm for these NP-
complete problems, there is probably no such
algorithm, and most likely P # NP. Although
current evidence is more toward P # NP, this
does not constitute a formal proof, and the history
of mathematics and science is full of surprising
discoveries.

A problem (not necessarily NP) is called NP-
hard if and only if there is an NP-complete
problem which is polynomial time reducible to
it (Garey and Johnson 1979). Being NP-hard is
sometimes called being intractable and means
that unless P = NP, which is considered to
be very unlikely by a group of researchers, no
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polynomial-time solution algorithm can be de-
veloped. All NP-complete problems are also NP-
hard, but they are only as “hard” as any other
problem in the set of NP-complete problems.
The first known NP-complete problem is
SATISFIABILITY (Cook 1971). In this problem,
there is a single Boolean equation with several
variables, and we would like to test whether
there is an assignment to these variables which
make the Boolean expression true. This important
discovery enabled proofs of NP-completeness
or NP-hardness of several other problems by
using simple polynomial reduction techniques
only (Garey and Johnson 1979). Among these,
quadratic programming is an important one and
led to the discovery of several other complexity
results in robust control theory. The quadratic
programming (QP) can be defined as

g = min x7 QOx +¢Tx,
Ax<b

more precisely testing whether ¢ < 1 or not
(decision version). When the matrix Q is positive
definite, convex optimization techniques can be
used; however, the general version of the problem
is NP-hard.

A related problem is linear programming (LP)

¢ = min ch,
Ax<b

which is used in certain robust control problems
(Dahleh and Diaz-Bobillo 1994) and has a quite
interesting status. Simplex method (Dantzig
1963) is a very popular computational technique
for LP and is known to have polynomial-time
complexity on the “average” (Smale 1983).
However, there are examples where the simplex
method requires exponentially growing number
of steps with the problem size (Klee and
Minty 1972). In 1979, Khachiyan proposed
the ellipsoid algorithm for LP, which was the
first known polynomial-time approximation
algorithm (Schrijver 1998). Because of the nature
of the problem, one can answer the decision
version of LP in polynomial time by using
the ellipsoid algorithm for approximation and
stopping when the error is below a certain level.
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But all of these results are for standard Turing
machines with input parameters restricted to
rational numbers. An interesting open problem is
whether LP admits a polynomial algorithm in the
real number model of computation.

Complexity of Certain Robust Control
Problems
There are several computational complexity re-
sults for robust control problems (see Blondel and
Tsitsiklis (2000b) for a more detailed survey).
Here we summarize some of the key results on
interval matrices and structured singular values.
Kharitonov theorem is about robust Hurwitz
stability of polynomials with coefficients
restricted to intervals (Kharitonov 1978). The
problem is known to have a surprisingly simple
solution; however, the matrix version of the
problem has a quite different nature. If we have a
matrix family

A={AeR” :a;; < A;; < Bij.
i,j=1....n}, (1

where «; ;, B;; are given constants for i, j =

1,...,n, then it is called an interval matrix. Such

matrices do occur in descriptions of uncertain

dynamical systems. The following two stability
problems about interval matrices are known to be

NP-hard:

Interval Matrix Problem 1 (IMP1): Decide
whether a given interval matrix, A, is robust
Hur- witz stable or not. Namely, check
whether all members of A are Hurwitz-stable
matrices, i.e., all eigenvalues are in open left
half plane.

Interval Matrix Problem 2 (IMP2): Decide
whether a given interval matrix, 4, has a
Hurwitz-stable matrix or not. Namely, check
whether there exists at least one matrix in 4
which is Hurwitz stable.

For a proof of NP-hardness of IMP1, see Pol-
jak and Rohn (1993) and Nemirovskii (1993),
and for a proof of IMP2, see Blondel and
Tsitsiklis (1997).

Another important problem is related to
structured singular values (SSV) and linear
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fractional transformations (LFT), which
are mainly used to study systems which
have component-level uncertainties (Packard
and Doyle 1993). Basically, bounds on the
component-level uncertainties are given, and
we would like to check whether the system
is robustly stable or not. This is known to be
NP-hard.

Structured Singular Value Problem (SSVP):
Given a matrix M and uncertainty structure
A, check whether the structured singular value
pa(M) < 1.

This is proved to be NP-hard for real, and mixed,

uncertainty structures (Braatz et al. 1994), as well

as for complex uncertainties with no repetitions

(Toker and Ozbay 1996, 1998).

Approximation Complexity

Decision version of QP is NP-hard, but approx-
imation of QP is quite “difficult” as well. An
approximation is called a p-approximation if
the absolute value of the error is bounded by
W times the absolute value of max—min of the
function. The following is a classical result on
QP (Bellare and Rogaway 1995): Unless P =
NP, QP does not admit a polynomial-time -
approximation algorithm even for © < 1/3.
This is sometimes informally stated as “QP is
NP-hard to approximate.” Much work is needed
toward similar results on robustness margin and
related optimization problems of the classical
robust control theory.

An interesting case is the complex structured
singular value computation with no repeated un-
certainties. There is a convex relaxation of the
problem, the standard upper bound &, which is
known to result in quite tight approximations for
most cases of the original problem (Packard and
Doyle 1993). However, despite strong numerical
evidence, a formal proof of “good approximation
for most cases” result is not available. We also do
not have much theoretical information about how
hard it is to approximate the complex structured
singular value. For example, it is not known
whether it admits a polynomial-time approxima-
tion algorithm with error bounded by, say, 5 %.
In summary, much work needs to be done in these
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directions for many other robust control problems
whose decision versions are NP-hard.

Summary and Future Directions

The study of the “Is P % NP?” question turned
out to be a quite difficult one. Researchers agree
that really new and innovative tools are needed
to study this problem. On one other extreme, one
can question whether we can really say some-
thing about this problem within the Zermelo-
Fraenkel (ZF) set theory or will it have a status
similar to axiom of choice (AC) and the contin-
uum hypothesis (CH) where we can neither refute
nor provide a proof (Aaronson 1995). Therefore,
the question may be indeed much deeper than we
thought, and standard axioms of today’s mathe-
matics may not be enough to provide an answer.
As for any such problem, we can still hope that
in the future, new “self-evident” axioms may be
discovered, and with the help of them, we may
provide an answer.

All of the complexity results mentioned here
are with respect to the standard Turing machine
which is a simplified model of today’s digital
computers. Depending on the progress in science,
engineering, and technology, if superior compu-
tation machines can be constructed, then some
of the abovementioned problems can be solved
much faster on these devices, and current re-
sults/problems of the theory of computation may
no longer be of great importance or relevance for
engineering and scientific applications. In such a
case, one may also need to revise definitions of
the terms algorithm, tractable, etc., according to
these new devices.

Currently, there are several NP-hardness
results about robust control problems, mostly
NP-hardness of decision problems about
robustness. However, much work is needed on
the approximation complexity and conservatism
of various convex relaxations of these problems.
Even if a robust stability problem is NP-hard, a
polynomial-time algorithm to estimate robustness
margin with, say, 5% error is not ruled out
with the NP-hardness of the decision version
of the problem. Indeed, a polynomial-time
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and 5 % error-bounded result will be of great
importance for practicing engineers. Therefore,
such directions should also be studied, and
various meaningful alternatives, like being
polynomial time on the average or for most
of cases or anything which makes sense for a
practicing engineer, should be considered as an
alternative direction.

In summary, computational complexity the-
ory guides research on the development of algo-
rithms, indicating which directions are dead ends
and which directions are worth to investigate.
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Abstract

Computer-aided control system design (CACSD)
encompasses a broad range of Methods and
tools and technologies for system modelling,
control system synthesis and tuning, dynamic
system analysis and simulation, as well as
validation and verification. The domain of
CACSD enlarged progressively over decades
from simple collections of algorithms and
programs for control system analysis and
synthesis to comprehensive tool sets and user-
friendly environments supporting all aspects
of developing and deploying advanced control
systems in various application fields. This entry
gives a brief introduction to CACSD and reviews
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the evolution of key concepts and technologies
underlying the CACSD domain. Several
cornerstone achievements in developing reliable
numerical algorithms; implementing robust
numerical software; and developing sophisticated
integrated modelling, simulation, and design
environments are highlighted.
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CACSD; Modelling; Numerical analysis; Simu-
lation; Software tools

Introduction

To design a control system for a plant, a typical
computer-aided control system design (CACSD)
work flow comprises several interlaced activities.

Model building is often a necessary first step
consisting in developing suitable mathematical
models to accurately describe the plant dynami-
cal behavior. High-fidelity physical plant models
obtained, for example, by using the first prin-
ciples of modelling, primarily serve for anal-
ysis and validation purposes using appropriate
simulation techniques. These dynamic models
are usually defined by a set of ordinary differ-
ential equations (ODEs), differential algebraic
equation (DAES), or partial differential equations
(PDEs). However, for control system synthesis
purposes simpler models are required, which are
derived by simplifying high-fidelity models (e.g.,
by linearization, discretization, or model reduc-
tion) or directly determined in a specific form
from input-output measurement data using sys-
tem identification techniques. Frequently used
synthesis models are continuous or discrete-time
linear time-invariant (LTT) models describing the
nominal behavior of the plant in a specific oper-
ating point. The more accurate linear parameter
varying (LPV) models may serve to account for
uncertainties due to various performed approxi-
mations, nonlinearities, or varying model param-
eters.

Simulation of dynamical systems is a closely
related activity to modelling and is concerned
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with performing virtual experiments on a given
plant model to analyze and predict the dynamic
behavior of a physical plant. Often, modelling
and simulation are closely connected parts of
dedicated environments, where specific classes of
models can be built and appropriate simulation
methods can be employed. Simulation is also a
powerful tool for the validation of mathematical
models and their approximations. In the context
of CACSD, simulation is frequently used as a
control system tuning-aid, as, for example, in an
optimization-based tuning approach using time-
domain performance criteria.

System analysis and synthesis are concerned
with the investigation of properties of the un-
derlying synthesis model and in the determi-
nation of a control system which fulfills basic
requirements for the closed-loop controlled plant,
such as stability or various time or frequency re-
sponse requirements. The analysis also serves to
check existence conditions for the solvability of
synthesis problems, according to established de-
sign methodologies. An important synthesis goal
is the guarantee of the performance robustness.
To achieve this goal, robust control synthesis
methodologies often employ optimization-based
parameter tuning in conjunction with worst-case
analysis techniques. A rich collection of reliable
numerical algorithms are available to perform
such analysis and synthesis tasks. These algo-
rithms form the core of CACSD and their devel-
opment represented one of the main motivations
for CACSD-related research.

Performance robustness assessment of the
resulting closed-loop control system is a key
aspect of the verification and validation activ-
ity. For a reliable assessment, simulation-based
worst-case analysis represents, often, the only
way to prove the performance robustness of the
synthesized control system in the presence of
parametric uncertainties and variabilities.

Development of CACSD Tools
The development of CACSD tools for system

analysis and synthesis started around 1960,
immediately after general-purpose digital
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computers, and new programming languages
became available for research and development
purposes. In what follows, we give a historical
survey of these developments in the main
CACSD areas.

Modelling and Simulation Tools

Among the first developments were modelling
and simulation tools for continuous-time systems
described by differential equations based on ded-
icated simulation languages. Over 40 continuous-
system simulation languages had been developed
as of 1974 (Nilsen and Karplus 1974), which
evolved out of attempts at digitally emulating the
behavior of widely used analog computers before
1960. A notable development in this period was
the CSSL standard (Augustin et al. 1967), which
defined a system as an interconnection of blocks
corresponding to operators which emulated the
main analog simulation blocks and implied the
integration of the underlying ODEs using suitable
numerical methods. For many years, the ACSL
preprocessor to Fortran (Mitchel and Gauthier
1976) was one of the most successful implemen-
tations of the CSSL standard.

A turning point was the development of
graphical user interfaces allowing graphical
block diagram-based modelling. The most
important developments were SystemBuild (Shah
et al. 1985) and SIMULAB (later marketed as
Simulink) (Grace 1991). Both products used
a customizable set of block libraries and were
seamlessly integrated in, respectively, MATRIXx
and MATLAB, two powerful interactive
matrix computation environments (see below).
SystemBuild provided several advanced features
such as event management, code generation, and
DAE-based modelling and simulation. Simulink
excelled from the beginning with its intuitive,
easy-to-use user interface. Recent extensions of
Simulink allow the modelling and simulation of
hybrid systems, code generation for real-time
applications, and various enhancements of the
model building process (e.g., object-oriented
modelling).

The object-oriented paradigm for system mod-
elling was introduced with Dymola (Elmgqvist
1978) to support physical system modelling
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based on interconnections of subsystems. The
underlying modelling language served as the
basis of the first version of Modelica (Elmquist
et al. 1997), a modern equation-based modelling
language which was the result of a coordinated
effort for the unification and standardization of
expertise gained over many years with object-
oriented physical modelling. The latest devel-
opments in this area are comprehensive model
libraries for different application domains such
as mechanical, electrical, electronic, hydraulic,
thermal, control, and electric power systems.
Notable commercial front-ends for Modelica
are Dymola, MapleSim, and SystemModeler,
where the last two are tightly integrated in the
symbolic computation environments Maple and
Mathematica, respectively.

Numerical Software Tools

The computational tools for CACSD rely on
many numerical algorithms whose development
and implementation in computer codes was
the primary motivation of this research area
since its beginnings. The Automatic Synthesis
Program (ASP) developed in 1966 (Kalman and
Englar 1966) was implemented in FAP (Fortran
Assembly Program) and ran only on an IBM
7090-7094 machine. The Fortran II version of
ASP (known as FASP) can be considered to be
the first collection of computational CACSD
tools ported to several mainframe computers.
Interestingly, the linear algebra computations
were covered by only three routines (diagonal
decomposition, inversion, and pseudoinverse),
and no routines were used for eigenvalue or
polynomial roots computation. The main analysis
and synthesis functions covered the sampled-data
discretization (via matrix exponential), minimal
realization, time-varying Riccati equation solu-
tion for quadratic control, filtering, and stability
analysis. The FASP itself performed the required
computational sequences by interpreting simple
commands with parameters. The extensive docu-
mentation containing a detailed description of
algorithmic approaches and many examples
marked the starting point of an intensive
research on algorithms and numerical software,
which culminated in the development of the
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high-performance control and systems library
SLICOT (Benner et al. 1999; Huffel et al.
2004). In what follows, we highlight the main
achievements along this development process.

The direct successor of FASP is the Variable
Dimension Automatic Synthesis Program
(VASP) (implemented in Fortran IV on IBM
360) (White and Lee 1971), while a further
development was ORACLS (Armstrong 1978),
which included several routines from the
newly developed eigenvalue package EISPACK
(Garbow et al. 1977; Smith et al. 1976) as
well as solvers for linear (Lyapunov, Sylvester)
and quadratic (Riccati) matrix equations.
From this point, the mainstream development
of numerical algorithms for linear system
analysis and synthesis closely followed the
development of algorithms and software for
numerical linear algebra. A common feature of all
subsequent developments was the extensive use
of robust linear algebra software with the Basic
Linear Algebra Subprograms (BLAS) (Lawson
et al. 1979) and the Linear Algebra Package
(LINPACK) for solving linear systems (Dongarra
et al. 1979). Several control libraries have been
developed almost simultaneously, relying on the
robust numerical linear algebra core software
formed of BLAS, LINPACK, and EISPACK.
Notable examples are RASP (based partly on
VASP and ORACLYS) (Griibel 1983) — developed
originally by the University of Bochum and later
by the German Aerospace Center (DLR); BIMAS
(Varga and Sima 1985) and BIMASC (Varga and
Davidoviciu 1986) — two Romanian initiatives;
and SLICOT (Boom et al. 1991) — a Benelux
initiative of several universities jointly with the
Numerical Algorithm Group (NAG).

The last development phase was marked
by the availability of the Linear Algebra
Package (LAPACK) (Anderson et al. 1992),
whose declared goal was to make the widely
used EISPACK and LINPACK libraries run
efficiently on shared memory vector and parallel
processors. To minimize the development efforts,
several active research teams from Europe
started, in the framework of the NICONET
project, a concentrated effort to develop a
high-performance numerical software library
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for CACSD as a new significantly extended
version of the original SLICOT. The goals
of the new library were to cover the main
computational needs of CACSD, by relying
exclusively on LAPACK and BLAS, and to
guarantee similar numerical performance as
that of the LAPACK routines. The software
development used rigorous standards for
implementation in Fortran 77, modularization,
testing, and documentation (similar to that used
in LAPACK). The development of the latest
versions of RASP and SLICOT eliminated
practically any duplication of efforts and led to
a library which contained the best software from
RASP, SLICOT, BIMAS, and BIMASC. The
current version of SLICOT is fully maintained by
the NICONET association (http://www.niconet-
ev.info/en/) and serves as basis for implementing
advanced computational functions for CACSD in
interactive environments as MATLAB (http:/
www.mathworks.com), Maple (http://www.
maplesoft.com/products/maple/), Scilab (http://
www.scilab.org/) and Octave (http://www.gnu.
org/software/octave/).

Interactive Tools
Early experiments during 1970-1985 included
the development of several interactive CACSD
tools employing menu-driven interaction,
question-answer  dialogues, or command
languages. The April 1982 special issue of IEEE
Control Systems Magazine was dedicated to
CACSD environments and presented software
summaries of 20 interactive CACSD packages.
This development period was marked by the
establishment of new standards for programming
languages (Fortran 77, C), availability of high-
quality numerical software libraries (BLAS,
EISPACK, LINPACK, ODEPACK), transition
from mainframe computers to minicomputers,
and finally to the nowadays-ubiquitous personal
computers as computing platforms, spectacular
developments in graphical display technolo-
gies, and application of sound programming
paradigms (e.g., strong data typing).

A remarkable event in this period was the
development of MATLAB, a command language-
based interactive matrix laboratory (Moler 1980).


http://www.niconet-ev.info/en/
http://www.niconet-ev.info/en/
http://www.mathworks.com
http://www.mathworks.com
http://www.maplesoft.com/products/maple/
http://www.maplesoft.com/products/maple/
http://www.scilab.org/
http://www.scilab.org/
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/

126

The original version of MATLAB was written
in Fortran 77. It was primarily intended as a
student teaching tool and provided interactive
access to selected subroutines from LINPACK
and EISPACK. The tool circulated for a while
in the public domain, and its high flexibility
was soon recognized. Several CACSD-oriented
commercial clones have been implemented in
the C language, the most important among them
being MATRIXx (Walker et al. 1982) and PC-
MATLAB (Moler et al. 1985).

The period after 1985 until around 2000 can
be seen as a consolidation and expansion period
for many commercial and noncommercial tools.
In an inventory of CACSD-related software
issued by the Benelux Working Group on
Software (WGS) under the auspices of the
IEEE Control Systems Society, there were in
1992 in active development 70 stand-alone
CACSD packages, 21 tools based on or similar
to MATLAB, and 27 modelling/simulation
environments. It is interesting to look more
closely at the evolutions of the two main
players MATRIXx and MATLAB, which
took place under harshly competitive condi-
tions.

MATRIXx with its main components Xmath,
SystemBuild, and AutoCode had over many
years a leading role (especially among industrial
customers), excelling with a rich functionality
in domains such as system identification,
control system synthesis, model reduction,
modelling, simulation, and code generation.
After 2003, MATRIXx (http://www.ni.com/
matrixx/) became a product of the National
Instruments Corporation and complements
its main product family LabView, a visual
programming language-based system design
platform and development environment (http://
www.ni.com/labview).

MATLAB gained broad academic acceptance
by integrating many new methodological devel-
opments in the control field into several control-
related toolboxes. MATLAB also evolved as a
powerful programming language, which allows
easy object-oriented manipulation of different
system descriptions via operator overloading.
At present, the CACSD tools of MATLAB and
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Simulink represent the industrial and academic
standard for CACSD. The existing CACSD
tools are constantly extended and enriched
with new model classes, new computational
algorithms (e.g., structure-exploiting eigenvalue
computations based on SLICOT), dedicated
graphical user interfaces (e.g., tuning of PID
controllers or control-related visualizations),
advanced robust control system synthesis, etc.
Also, many third-party toolboxes contribute to
the wide usage of this tool.

Basic CACSD functionality incorporating
symbolic processing techniques and higher
precision computations is available in the Maple
product MapleSim Control Design Toolbox as
well as in the Mathematica Control Systems
product. Free alternatives to MATLAB are the
MATLAB-like environments Scilab, a French
initiative pioneered by INRIA, and Octave, which
has recently added some CACSD functionality.

Summary and Future Directions

The development and maintenance of integrated
CACSD environments, which provide support
for all aspects of the CACSD cycle such as mod-
elling, design, and simulation, involve sustained,
strongly interdisciplinary efforts. Therefore, the
CACSD tool development activities must rely
on the expertise of many professionals covering
such diverse fields as control system engineering,
programming languages and techniques, man-
machine interaction, numerical methods in linear
algebra and control, optimization, computer
visualization, and model building techniques.
This may explain why currently only a few of
the commercial developments of prior years are
still in use and actively maintained/developed.
Unfortunately, the number of actively developed
noncommercial alternative products is even
lower. The dominance of MATLAB, as a
de facto standard for both industrial and
academic usage of integrated tools covering
all aspects of the broader area of computer-
aided control engineering (CACE), cannot be
overseen.
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The new trends in CACSD are partly
related to handling more complex applications,
involving time-varying (e.g., periodic, multi-
rate sampled-data, and differential algebraic)
linear dynamic systems, nonlinear systems with
many parametric uncertainties, and large-scale
models (e.g., originating from the discretization
of PDEs). To address many computational
aspects of model building (e.g., model reduction
of large order systems), optimization-based
robust controller tuning using multiple-model
approaches, or optimization-based robustness
assessment using global-optimization techniques,
parallel computation techniques allow substantial
savings in computational times and facilitate
addressing computational problems for large-
scale systems. A topic which needs further
research is the exploitation of the benefits of
combining numerical and symbolic computations
(e.g., in model building and manipulation).

Cross-References

Interactive Environments and Software Tools
for CACSD

Model Building for Control System Synthesis
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Recommended Reading

The historical development of CACSD concepts
and techniques was the subject of several ar-
ticles in reference works Rimvall and Jobling
(1995) and Schmid (2002). A selection of papers
on numerical algorithms underlying the develop-
ment of CACSD appeared in Patel et al. (1994).
The special issue No. 2/2004 of the IEEE Con-
trol Systems Magazine on Numerical Awareness
in Control presents several surveys on different
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aspects of developing numerical algorithms and
software for CACSD.

The main trends over the last three decades
in CACSD-related research can be followed in
the programs/proceedings of the biannual IEEE
Symposia on CACSD from 1981 to 2013 (partly
available at http://ieeexplore.ieee.org) as well as
of the triennial IFAC Symposia on CACSD from
1979 to 2000. Additional information can be
found in several CACSD-focused survey articles
and special issues (e.g., No. 4/1982; No. 2/2000)
of the IEEE Control Systems Magazine.
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Abstract

This entry provides a broad overview of the basic
elements of consensus dynamics. It describes the
classical Perron-Frobenius theorem that provides
the main theoretical tool to study the convergence
properties of such systems. Classes of consensus
models that are treated include simple random
walks on grid-like graphs and in graphs with a
bottleneck, consensus on graphs with intermit-
tently randomly appearing edges between nodes
(gossip models), and models with nodes that
do not modify their state over time (stubborn
agent models). Application to cooperative con-
trol, sensor networks, and socioeconomic models
are mentioned.
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Multi-agent Systems and Consensus

Multi-agent systems constitute one of the fun-
damental paradigms of science and technology
of the present century (Castellano et al. 2009;
Strogatz 2003). The main idea is that of creating
complex dynamical evolutions from the interac-
tions of many simple units. Indeed such collective
behaviors are quite evident in biological and
social systems and were indeed considered in
earlier times. More recently, the digital revolu-
tion and the miniaturization in electronics have
made possible the creation of man-made com-
plex architectures of interconnected simple de-
vices (computers, sensors, cameras). Moreover,
the creation of the Internet has opened a totally
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new form of social and economic aggregation.
This has strongly pushed towards a systematic
and deep study of multi-agent dynamical sys-
tems. Mathematically they typically consist of a
graph where each node possesses a state vari-
able; states are coupled at the dynamical level
through dependences determined by the edges
in the graph. One of the challenging problems
in the field of multi-agent systems is to analyze
the emergence of complex collective phenom-
ena from the interactions of the units which are
typically quite simple. Complexity is typically
the outcome of the topology and the nature of
interconnections.

Consensus dynamics (also known as average
dynamics) (Carli et al. 2008; Jadbabaie et al.
2003) is one of the most popular and simplest
multi-agent dynamics. One convenient way
to introduce it is with the language of social
sciences. Imagine that a number of independent
units possess an information represented by a real
number, for instance, such number can represent
an opinion on a given fact. Units interact and
change their opinion by averaging with the opin-
ions of other units. Under certain assumptions,
this will lead the all community to converge to a
consensus opinion which takes into consideration
all the initial opinion of the agents. In social
sciences, empiric evidences (Galton 1907) have
shown how such aggregate opinion may give a
very good estimation of unknown quantities: such
phenomenon has been proposed in the literature
as wisdom of crowds (Surowiecki 2004).

Consensus Dynamics, Graphs, and
Stochastic Matrices
Mathematically, consensus dynamics are special
linear dynamical systems of type
x(t+1)=Px(@) (1)
where x(¢) € RY and P € RV*V is a stochastic
matrix (e.g., a matrix with nonnegative elements
such that every row sums to 1). V represents the
finite set of units (agents) in the network and
x(t), is to be interpreted has the state (opin-
ion) of agent v at time ¢. Equation (1) implies
that states of agents at time ¢ + 1 are convex
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combinations of the components of x (¢): this mo-
tivates the term averaging dynamics. Stochastic
matrices owe their name to their use in prob-
ability: the term P,, can be interpreted as the
probability of making a jump in the graph from
state v to state w. In this way you construct what
is called a random walk on the graph G.

The network structure is hidden in the nonzero
pattern of P. Indeed we can associate to P a
graph: Gp = (V,Ep) where the set of edges is
given by £p = {(u,v) € VxV | P, > 0}.
Elements in E£p represent the communication
edges among the units: if (u,v) € Ep, it means
that unit « has access to the state of unit v. Denote
by 1 € RY the all 1’s vector. Notice that P1 = 1:
this shows that once the states of units are at
consensus, they will no longer evolve. Will the
dynamics always converge to a consensus point?

Remarkably, some of the key properties of
P responsible for the transient and asymptotic
behavior of the linear system (1) are determined
by the connectivity properties of the underlying
graph Gp. We recall that, given two vertices
u,v € V, apath (of length /) from u to v in Gp is
any sequence of vertices u = uj, up, ..., U4 =
v such that (u;,u;41) € Ep for every i =
1,...,s. Gp is said to be strongly connected if
for any pair of vertices u # v in V there is a
path in Gp connecting u to v. The period of a
node u is defined as the greatest common divisor
of the lengths of all closed paths from u to u. In
the strongly connected graph, all nodes have the
same period, and the graph is called aperiodic if
such a period is 1. If x is a vector, we will use
the notation x* to denote its transpose. If A is
a finite set, |A| denotes the number of elements
in A. The following classical result holds true
(Gantmacher 1959):

Theorem 1 (Perron-Frobenius) Assume that

P e RVY is such that Gp is strongly connected

and aperiodic. Then,

1. 1is an algebraically simple eigenvalue of P.

2. There exists a (unique) probability vector w €
RY (7, > Oforallvand ", m, = 1)whichis
a left eigenvector for P, namely, n* P = m*.

3. All the remaining eigenvalues of P are of
modulus strictly less than 1.
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A straightforward linear algebra consequence
of this result is that P! — 1z* fort — +oo.
This yields

lim x(#) = lim P'x(0) = 1(x*x(0))
t—>+o00 t—>—+o00 2)
(

All agents’ state are thus converging to the
common value 7*x(0), called consensus point
which is a convex combination of the initial states
with weights given by the invariant probability
components.

If 7 is the uniform vector (i.e., m, = |V|7!
for all units v), the common asymptotic value is
simply the arithmetic mean of the initial states:
all agents equally contribute to the final com-
mon state. A special case when this happens
is when P is symmetric. The distributed com-
putation of the arithmetic mean is an impor-
tant step to solve estimation problems for sensor
networks. As a specific example, consider the
situation where there are N sensors deployed
in a certain area and each of them makes a
noisy measurement of a physical quantity x. Let
Y» = X + w, be the measure obtained by
sensor v, where w, is a zero mean Gaussian
noise. It is well known that if noises are inde-
pendent and identically distributed, the optimal
mean square estimator of the quantity x given the
entire set of measurements {y,} is exactly given
by £ = N~'Y", yy. Other fields of application
is in the control of cooperative autonomous ve-
hicles (Fax and Murray 2004; Jadbabaie et al.
2003).

Basic linear algebra allows to study the
rate of convergence to consensus. Indeed,
if Gp is strongly connected and aperiodic,
the matrix P has all its eigenvalues in the
unit ball: 1 is the only eigenvalue with
modulo equal to 1, while all the others have
modulo strictly less than one. If we denote
by p» < 1 the largest modulo of such
eigenvalues (different from 1), we can show
that x () — 1 (sx*x(0)) converges exponentially
to 0 as p5. In the following, we will briefly
refer to p, as to the second -eigenvalue
of P.
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Examples and Large-Scale Analysis

In this section, we present some classical exam-
ples. Consider a strongly connected graph G =
(V,&). The adjacency matrix of G is a square
matrix Ag € {0,1}V*Y such that (Ag),, = 1
iff (u,v) € £. G is said to be symmetric if Ag is
symmetric. Given a symmetric graph G = (V, &),
we can consider the stochastic matrix P given
by P = d;'(Ag)uw where d, = >, (Ag)u
is the degree of node u. P is called the simple
random walk (SRW) on G: each agent gives the
same weight to the state of its neighbors. Clearly,
Gp = G. A simple check shows that 7, = d,,/|€]
is the invariant probability for P. The consensus
point is given by

7x(0) = €7 Y dux(0),

Each node contributes with its initial state to this
consensus with a weight which is proportional to
the degree of the node. Notice that the SRW P
is symmetric iff the graph is regular, namely, all
units have the same degree.

We now present a number of classical ex-
amples based on families of graphs with larger
and larger number of nodes N. In this setting,
particularly relevant is to understand the behavior
of the second eigenvalue p, as a function of
N. Typically, one considers € > 0 fixed and
solves the equation p) = €. The solution 7 =
(Inp; )" Ine~! will be called the convergence
time: it essentially represents the time needed to
shrink of a factor € the distance to consensus.
Dependence of p, on N will also yield that
will be a function of N. In the sequel, we will
investigate such dependence for SRW’s on certain
classical families of graphs.

Example 1 (SRW on a complete graph) Consider
the complete graph on the set V: Ky =
(V,Vx V) (also self loops are present). The SRW
on Ky is simply given by P = N~'11* where
N = |V|. Clearly, = = N~'1. Eigenvalues of P
are 1 with multiplicity 1 and 0 with multiplicity
N — 1. Therefore, p» = 0. Consensus in this case
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is achieved in just one step: x (1) = N~ '11*x(0)
forallt > 1.

Example 2 (SRW on a cycle graph) Consider the
symmetric cycle graph Cy = (V,£) where V =
{0,...,N—1}and & = {(v,v+ 1), (v + 1,v)}
where sum is mod N. The graph Cy is clearly
strongly connected and is also aperiodic if N is
odd. The corresponding SRW P has eigenvalues

2wk
)Lk=cosL

Therefore, if N is odd, the second eigenvalue is
given by

2 , 1 )
pQZCOSW=1—2n ﬁ—i-o(N )

for N - 40

3)

while the corresponding convergence time is
given by

T = (lnpz_l)_llne_l = N? for N - +o0

Example 3 (SRW on toroidal grids) The toroidal
d-grids C,f is formally obtained as a product
of cycle graphs. The number of nodes is N =
n?. It can be shown that the convergence time
behaves as

= N4 for N - 400
Convergence time exhibits a slower growth in N
as the dimension d of the grid increases: this is
intuitive since the increase in d determines a bet-

ter connectivity of the graph and a consequently
faster diffusion of information.

For a general stochastic matrix (even for SRW
on general graphs), the computation of the second
eigenvalue is not possible in closed form and can
actually be also difficult from a numerical point
of view. It is therefore important to develop tools
for efficient estimation. One of these is based
on the concept of bottleneck: if a graph can be
splitted into two loosely connected parts, then
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consensus dynamics will necessarily exhibit a
slow convergence.

Formally, given a symmetric graph G =
(V,€) and a subset of nodes S < V, define
es as the number of edges with at least one node
in S and egg as the number of edges with both
nodes in S. The bottleneck of S in G is defined
as O(S) = egs/es. Finally, the bottleneck ratio
of G is defined as

®,:= min  D(S)
S:es/e<1/2
where e = |£] is the number of edges in the
graph.

Let P be the SRW on G and let p; be its second
eigenvalue. Then,

Proposition 1 (Cheeger bound Levin et al.
2008)

Example 4 (Graphs with a bottleneck) Consider
two complete graphs with n nodes connected by
just one edge. If S is the set of nodes of one of
the two complete graphs, we obtain

®(S) =

n?+1

Bound (4) implies that the convergence time is at
least of the order of n” in spite of the fact that
in each complete graph convergence would be in
finite time!

Other Models

The systems studied so far are based on the
assumptions that units all behave the same, and
they share a common clock and update their state
in a synchronous fashion. In this section, we
discuss more general models.

Random Consensus Models

Regarding the assumption of synchronicity, it
turns out to be unfeasible in many contexts. For
instance, in the opinion dynamics modeling, it
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is not realistic to assume that all interactions
happen at the same time: agents are embedded in
a physical continuous time, and interactions can
be imagined to take place at random, for instance,
in a pairwise fashion.

One of the most famous random consensus
model is the gossip model. Fix a real number
q € (0,1) and a symmetric graph G = (W, E).
At every time instant ¢, an edge (u,v) € €&
is activated with uniform probability |£|!, and
nodes u# and v exchange their states and produce
a new state according to the equations

xu(t +1) = (1 =g)xu(1) + gx,(2)
Xt + 1) = gx, (1) + (1 = g)x, (1)

The states of the other units remain unchanged.

Will this dynamics lead to a consensus? If
the same edge is activated at every time instant,
clearly consensus will not be achieved. However,
it can be shown that, with probability one, con-
sensus will be reached (Boyd et al. 2006).

Consensus Dynamics with Stubborn

Agents

In this entry, we investigate consensus dynamics
models where some of the agents do not modify
their own state (stubborn agents). These systems
are of interest in socioeconomic models (Ace-
moglu et al. 2013).

Consider a symmetric connected graph G =
(V,E). We assume a splitting V = S U R with
the understanding that agents in S are stubborn
agents not changing their state, while those in
R are regular agents whose state modifies in
time according to a SRW consensus dynamics,
namely,

K+ D) = Y (A t), VueR

*yey

By assembling the state of the regular and of the
stubborn agents in vectors denoted, respectively,
as x®(t) and x5 (¢), dynamics can be recasted in
matrix form as

xRt +1) = QUxR(@) + 0%xS(1)

xSt 4+ 1) = x5(1) )
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It can be proven that Q!! is asymptotically stable
((Q'"" — 0). Henceforth, x®(t) — x™(o0) for
t — 4oo with the limit opinions satisfying the
relation

xR (00) = 0"xR(00) + 0"x%(0)  (6)

If we define E := (I — Q'')~1Q'2, we can write
xR (00) = ExS(0). It is easy to see that Z has
nonnegative elements and that ZS B, = 1 for
all u € R: asymptotic opinions of regular agents
are thus convex combinations of the opinions
of stubborn agents. If all stubborn agents are
in the same state x, then, consensus is reached
by all agents in the point x. However, typically,
consensus is not reached in such a system: we
will discuss an example below.

There is a useful alternative interpretation
of the asymptotic opinions. Interpreting the
graph G as an electrical circuit where edges
are unit resistors, relation (6) can be seen as
a Laplace-type equation on the graph G with
boundary conditions given by assigning the
voltage x°(0) to the stubborn agents. In this
way, x%(oc0) can be interpreted as the vector of
voltages of the regular agents when stubborn
agents have fixed voltage x¥(0). Thanks to
the electrical analogy, we can compute the
asymptotic opinion of the agents by computing
the voltages in the various nodes in the graph. We
propose a concrete application in the following
example.

Example 5 (Stubborn agents in a line graph)
Consider the line graph Ly = (V,€&) where
YV = {1,2,...,N} and where £ = {(u,u +
D,(u+ Lu|u=1,...,N — 1}. Assume that
S ={l,N}and R = V\ S. Consider the graph
as an electrical circuit. Replacing the line with a
single edge connecting 1 and N having resistance
N — 1 and applying Ohm’s law, we obtain that
the current flowing from 1 to N is equal to
® = (N — 1)7'[x5(0) — x(0)]. If we now fix
an arbitrary node v € V and applying again the
same arguments in the part of graph from 1 to v,
we obtain that the voltage at v, x*(00) satisfies
the relation xX(c0) — x7(0) = d(v — 1). We
thus obtain
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v—1

x1(00) = 7 (0) +

[x§ (0) — x7 (0)].

In Acemoglu et al. (2013), further examples
are discussed showing how, because of the
topology of the graph, different asymptotic
configurations may show up. While in graphs
presenting bottlenecks polarization phenomena
can be recorded, in graphs where the con-
vergence rate is low, there will be a typical
asymptotic opinion shared by most of the regular
agents.
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Abstract

A batch process is characterized by the
repetition of time-varying operations of finite
duration. Due to the repetition, there are two
independent “time” variables, namely, the run
time during a batch and the batch counter.
Accordingly, the control and optimization
objectives can be defined for a given batch
or over several batches. This entry describes
the various control and optimization strategies
available for the operation of batch processes.
These include conventional feedback control,
predictive control, iterative learning control, and
run-to-run control on the one hand and model-
based repeated optimization and model-free self-
optimizing schemes on the other.

Keywords

Batch control; Batch process optimization; Dy-
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Introduction

Batch processing is widely used in the manu-
facturing of goods and commodity products, in
particular in the chemical, pharmaceutical, and
food industries. These industries account for sev-
eral billion US dollars in annual sales. Batch
operation differs significantly from continuous
operation. While in continuous operation the pro-
cess is maintained at an economically desirable
operating point, the process evolves continuously
from an initial to a final time in batch processing.
In the chemical industry, for example, since the
design of a continuous plant requires substantial
engineering effort, continuous operation is rarely
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Implementation
aspect

Run-time references
Yref(t) OF Y 0,1]

Control objectives

Run-end references
Zyef

1 Feedback control

2 Predictive control

(run-to-run)

Online
(Within-run) uk([) - yk([) - yl‘[o’t/] uk(t) - Zpred’k(l)
FBC MPC
3 lterative learning control | ‘4 Run-to-run control
Iterative

w [0,2]] — y[0,1/]

ILC with run delay

U(m) = w [0,8] — 2

‘f R2R with run delay |

Control and Optimization of Batch Processes, Fig. 1
Control strategies for batch processes. The strategies are
classified according to the control objectives (horizontal
division) and the implementation aspect (vertical divi-
sion). Each objective can be met either online or iteratively
over several batches depending on the type of measure-
ments available. u; represents the input vector for the

used for low-volume production. Discontinuous
operations can be of the batch or semi-batch type.
In batch operations, the products to be processed
are loaded in a vessel and processed without ma-
terial addition or removal. This operation permits
more flexibility than continuous operation by
allowing adjustment of the operating conditions
and the final time. Additional flexibility is avail-
able in semi-batch operations, where products are
continuously added by adjusting the feed rate
profile. We use the term batch process to include
semi-batch processes.

Batch processes dealing with reaction
and separation operations include reaction,
distillation, absorption, extraction, adsorption,
chromatography, crystallization, drying, fil-
tration, and centrifugation. The operation of
batch processes involves recipes developed in
the laboratory. A sequence of operations is
performed in a prespecified order in specialized
process equipment, yielding a fixed amount
of product. The sequence of tasks to be
carried out on each piece of equipment,
such as heating, cooling, reaction, distillation,
crystallization, and drying, is predefined. The
desired production volume is then achieved by

kth batch, [0, /] the corresponding input trajectories,
Yk (¢) the run-time outputs measured online, and zj the
run-end outputs available at the final time. FBC stands for
“feedback control,” MPC for “model predictive control,”
ILC for “iterative learning control,” and R2R for “run-to-
run control”

repeating the processing steps on a predetermined
schedule.

The main characteristics of batch process op-
erations include the absence of steady state, the
presence of constraints, and the repetitive nature.
These characteristics bring both challenges and
opportunities to the operation of batch processes
(Bonvin 1998). The challenges are related to the
fact that the available models are often poor and
incomplete, especially since they need to repre-
sent a wider range of operating conditions than
in the case of continuous processes. Furthermore,
although product quality must be controlled, this
variable is usually not available online but only
at run end. On the other hand, opportunities
stem from the fact that industrial chemical pro-
cesses are often slow, which facilitates larger
sampling periods and extensive online computa-
tions. In addition, the repetitive nature of batch
processes opens the way to run-to-run process
improvement (Bonvin et al. 2006). More infor-
mation on batch processes and their operation
can be found in Seborg et al. (2004) and Nagy
and Braatz (2003). Next, we will successively
address the control and the optimization of batch
processes.
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Control of Batch Processes

Control of batch processes differs from control
of continuous processes in two main ways. First,
since batch processes have no steady-state oper-
ating point, at least some of the set points are
time-varying profiles. Second, batch processes
are repeated over time and are characterized by
two independent variables, the run time ¢ and

the run counter k. The independent variable k

provides additional degrees of freedom for meet-

ing the control objectives when these objectives

do not necessarily have to be completed in a

single batch but can be distributed over several

successive batches. This situation brings into fo-
cus the concept of run-end outputs, which need
to be controlled but are only available at the
completion of the batch. The most common run-
end output is product quality. Consequently, the
control of batch processes encompasses four dif-

ferent strategies (Fig. 1):

1. Online control of run-time outputs. This con-
trol approach is similar to that used in con-
tinuous processing. However, although some
controlled variables, such as temperature in
isothermal operation, remain constant, the key
process characteristics, such as process gain
and time constants, can vary considerably be-
cause operation occurs along state trajectories
rather than at a steady-state operating point.
Hence, adaptation in run time 7 is needed to
handle the expected variations. Feedback con-
trol is implemented using PID techniques or
more sophisticated alternatives (Seborg et al.
2004).

2. Online control of run-end outputs. In this case
it is necessary to predict the run-end out-
puts z based on measurements of the run-time
outputs y. Model predictive control (MPC)
is well suited to this task (Nagy and Braatz
2003). However, the process models available
for prediction are often simplified and thus of
limited accuracy.

3. Iterative control of run-time outputs. The
manipulated variable profiles can be generated
using iterative learning control (ILC), which
exploits information from previous runs
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(Moore 1993). This strategy exhibits the
limitations of open-loop control with respect
to the current run, in particular the fact
that there is no feedback correction for
run-time disturbances. Nevertheless, this
scheme is useful for generating a time-varying
feedforward input term.

4. Iterative control of run-end outputs. In this
case the input profiles are parameterized as
ur[0,tr] = U(my) using the input parameters
7. The batch process is thus seen as a static
map between the input parameters 7 and the
run-end outputs z; (Francois et al. 2005).

It is also possible to combine online and run-
to-run control for both y and z. However, in such
a combined scheme, care must be taken so that
the online and run-to-run corrective actions do
not oppose each other. Stability during run time
and convergence in run index must be guaranteed
(Srinivasan and Bonvin 2007a).

Optimization of Batch Processes

The process variables undergo significant
changes during batch operation. Hence, the
major objective in batch operations is not to
keep the system at optimal constant set points but
rather to determine input profiles that optimize
an objective function expressing the system
performance.

Problem Formulation
A typical optimization problem in the context of
batch processes is

min Jip = ¢ (xi (¢
ik P (xk(ty))

ly
4 / L(xi0), ui(e), 1) dt (1)
0

subject to

Xk (1) = F (e (0),u (1)), x(0) = xx0(2)
S(xk (@), ue (1)) <0, T(xk(ts)) <0, (3)
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where x represents the state vector, J the scalar
cost to be minimized, S the run-time constraints,
T the run-end constraints, and ¢ the final time.

In constrained optimal control problems, the
solution often lies on the boundary of the fea-
sible region. Batch processes involve run-time
constraints on inputs and states as well as run-end
constraints.

Optimization Strategies

As can be seen from the cost objective (1), op-

timization requires information about the com-

plete run and thus cannot be implemented in
real time using only online measurements. Some
information regarding the future of the run is
needed in the form of either a process model
capable of prediction or measurements from pre-
vious runs. Accordingly, measurement-based op-
timization methods can be classified depending
on whether or not a process model is used ex-

plicitly for implementation, as illustrated in Fig. 2

and discussed next:

1. Online explicit optimization. This approach
is similar to model predictive control (Nagy
and Braatz 2003). Optimization uses a process
model explicitly and is repeated whenever
a new set of measurements becomes avail-
able. This scheme involves two steps, namely,
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updating the initial conditions for the sub-
sequent optimization (and optionally the pa-
rameters of the process model) and numerical
optimization based on the updated process
model (Abel et al. 2000). Since both steps
are repeated as measurements become avail-
able, the procedure is also referred to as re-
peated online optimization. The weakness of
this method is its reliance on the model; if
the model is not updated, its accuracy plays
a crucial role. However, when the model is
updated, there is a conflict between parameter
identification and optimization since parame-
ter identification requires persistency of exci-
tation, that is, the inputs must be sufficiently
varied to uncover the unknown parameters, a
condition that is usually not satisfied when
near-optimal inputs are applied. Note that,
instead of computing the input u;[t, 7], it is
also possible to use a receding horizon and
compute only u,’g [t,t + T], with T the control
horizon (Abel et al. 2000).

2. Online implicit optimization. In this scenario,
measurements are used to update the inputs
directly, that is, without the intermediary of
a process model. Two classes of techniques
can be identified. In the first class, an update
law that approximates the optimal solution

. Use of process model
Implementation o o o o
Explicit optimization Implicit optimization
aspect P p p p
(with process model) (without process model)
1 Repeated online optimization | 2 Onlm;’éf :Jrlé’;;j ::tasusmg
Online EST . OPT )
(Within-run) yk[O’ t] > X (t) i u}f: [l, tf] yk(t) Approx. of opt. solution L{Z(t)
1 repeat online 13[0,1] ORI, N0 —> 14(1)
3 Repeated run-to-run optimization | 4 Run-to-run input update using
) measurements
lterative IDENT & OPT NCO evaluation
| N valuati k
(run-to-run) Y081 = 8 = w061 y0,2] NCO—> w,[0,1]
‘f repeat with run delay | ‘f repeat with run delay |

Control and Optimization of Batch Processes, Fig. 2
Optimization strategies for batch processes. The strate-
gies are classified according to whether or not a process
model is used for implementation (horizontal division).
Furthermore, each class can be implemented either online

or iteratively over several runs (vertical division). EST
stands for “estimation,” IDENT for “identification,” OPT
for “optimization,” and NCO for “necessary conditions of
optimality”
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is sought. For example, a neural network is
trained with data corresponding to optimal be-
havior for various uncertainty realizations and
used to update the inputs (Rahman and Palanki
1996). The second class of techniques relies
on transforming the optimization problem into
a control problem that enforces the neces-
sary conditions of optimality (NCO) (Srini-
vasan and Bonvin 2007b). The NCO involve
constraints that need to be made active and
sensitivities that need to be pushed to zero.
Since some of these NCO are evaluated at
run time and others at run end, the control
problem involves both run-time and run-end
outputs. The main issue is the measurement or
estimation of the controlled variables, that is,
the constraints and sensitivities that constitute
the NCO.

3. Iterative explicit optimization. The steps
followed in run-to-run explicit optimization
are the same as in online explicit optimization.
However, there is substantially more data
available at the end of the run as well as
sufficient computational time to refine the
model by updating its parameters and, if
needed, its structure. Furthermore, data from
previous runs can be collected for model
update (Rastogi et al. 1992). As with online
explicit optimization, this approach suffers
from the conflict between estimation and
optimization.

4. Iterative implicit optimization. In this sce-
nario, the optimization problem is transformed
into a control problem, for which the control
approaches in the second row of Fig.1 are
used to meet the run-time and run-end ob-
jectives (Francois et al. 2005). The approach,
which is conceptually simple, might be ex-
perimentally expensive since it relies more on
data.

These complementary measurement-based
optimization strategies can be combined by
implementing some aspects of the optimization
online and others on a run-to-run basis. For
instance, in explicit schemes, the states can be
estimated online, while the model parameters
can be estimated on a run-to-run basis. Similarly,
in implicit optimization, approximate update
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laws can be implemented online, leaving the
responsibility for satisfying terminal constraints
and sensitivities to run-to-run controllers.

Summary and Future Directions

Batch processing presents several challenges.
Since there is little time for developing
appropriate dynamic models, there is a need for
improved data-driven control and optimization
approaches. These approaches require the
availability of online concentration-specific
measurements such as chromatographic and
spectroscopic sensors, which are not yet readily
available in production.

Technically, the main operational difficulty in
batch process improvement lies in the presence
of run-end outputs such as final quality, which
cannot be measured during the run. Although
model-based solutions are available, process
models in the batch area tend to be poor. On
the other hand, measurement-based optimization
for a given batch faces the challenge of having
to know about the future to act during the batch.
Consequently, the main research push is in the
area of measurement-based optimization and the
use of data from both the current and previous
batches for control and optimization purposes.

Cross-References

Industrial MPC of continuous processes
Iterative Learning Control
Multiscale Multivariate Statistical
Control

Scheduling of Batch Plants

State Estimation for Batch Processes

Process

Bibliography

Abel O, Helbig A, Marquardt W, Zwick H, Daszkowski T
(2000) Productivity optimization of an industrial semi-
batch polymerization reactor under safety constraints.
J Process Control 10(4):351-362

Bonvin D (1998) Optimal operation of batch reactors — a
personal view. J Process Control 8(5-6):355-368


http://dx.doi.org/10.1007/978-1-4471-5058-9_242
http://dx.doi.org/10.1007/978-1-4471-5058-9_115
http://dx.doi.org/10.1007/978-1-4471-5058-9_250
http://dx.doi.org/10.1007/978-1-4471-5058-9_254
http://dx.doi.org/10.1007/978-1-4471-5058-9_249

138

Bonvin D, Srinivasan B, Hunkeler D (2006) Con-
trol and optimization of batch processes: improve-
ment of process operation in the production of spe-
cialty chemicals. IEEE Control Syst Mag 26(6):
34-45

Francois G, Srinivasan B, Bonvin D (2005) Use of mea-
surements for enforcing the necessary conditions of
optimality in the presence of constraints and uncer-
tainty. J Process Control 15(6):701-712

Moore KL (1993) Iterative learning control for determin-
istic systems. Advances in industrial control. Springer,
London

Nagy ZK, Braatz RD (2003) Robust nonlinear model
predictive control of batch processes. AIChE J
49(7):1776-1786

Rahman S, Palanki S (1996) State feedback synthesis for
on-line optimization in the presence of measurable
disturbances. AIChE J 42:2869-2882

Rastogi A, Fotopoulos J, Georgakis C, Stenger HG
(1992) The identification of kinetic expressions and
the evolutionary optimization of specialty chemical
batch reactors using tendency models. Chem Eng Sci
47(9-11):2487-2492

Seborg DE, Edgar TF, Mellichamp DA (2004) Process
dynamics and control. Wiley, New York

Srinivasan B, Bonvin D (2007a) Controllability and sta-
bility of repetitive batch processes. J Process Control
17(3):285-295

Srinivasan B, Bonvin D (2007b) Real-time optimization of
batch processes by tracking the necessary conditions
of optimality. Ind Eng Chem Res 46(2):492-504

Control Applications in Audio
Reproduction

Yutaka Yamamoto

Department of Applied Analysis and Complex
Dynamical Systems, Graduate School of
Informatics, Kyoto University, Kyoto, Japan

Abstract

This entry gives a brief overview of the recent
developments in audio sound reproduction via
modern sampled-data control theory. We first re-
view basics in the current sound processing tech-
nology and then proceed to the new idea derived
from sampled-data control theory, which is dif-
ferent from the conventional Shannon paradigm
based on the perfect band-limiting hypothesis.
The hybrid nature of sampled-data systems pro-
vides an optimal platform for dealing with signal
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processing where the ultimate objective is to
reconstruct the original analog signal one started
with. After discussing some fundamental prob-
lems in the Shannon paradigm, we give our basic
problem formulation that can be solved using
modern sampled-data control theory. Examples
are given to illustrate the results.

Keywords

Digital signal processing; Multirate signal pro-
cessing; Sampled-data control; Sampling theo-
rem; Sound reconstruction

Introduction: Status Quo

Consider the problem of reproducing sounds
from recorded media such as compact discs. The
current CD format is recorded at the sampling
frequency 44.1 kHz. It is commonly claimed that
the highest frequency for human audibility is
20kHz, whereas the upper bound of reproduction
in this format is believed to be the half of
44.1kHz, i.e., 22.1kHz, and hence, this format
should have about 10% margin against the
alleged audible limit of 20kHz.

CD players of early days used to process such
digital signals with the simple zero-order hold
at this frequency, followed by an analog low-
pass filter. This process requires a sharp low-
pass characteristic to cut out unnecessary high
frequency beyond 20 kHz. However, a sharp cut-
off low-pass characteristic inevitably requires a
high-order filter which in turn introduces a large
amount of phase shift distortion around the cutoff
frequency.

To circumvent this defect, there was intro-
duced the idea of oversampling DA converter that
is realized by the combination of a digital filter
and a low-order analog filter (Zelniker and Taylor
1994). This is based on the following principle:

Let {f(nh)}72__, be a discrete-time signal
obtained from a continuous-time signal f(-) by
sampling it with sampling period /. The upsam-
pler appends the value 0, M — 1 times, between
two adjacent sampling points:
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See Fig.1 for the case M = 2. This has the
effect of making the unit operational time M
times faster.

The bandwidth will also be expanded by M
times and the Nyquist frequency (i.e., half the
sampling frequency) becomes M 7/ h [rad/sec].
As we see in the next section, the Nyquist fre-
quency is often regarded as the true bandwidth
of the discrete-time signal {f(nh)}52__ . But
this upsampling process just insert zeros between
sampling points, and the real information con-
tents (the true bandwidth) is not really expanded.
As a result, the copy of the frequency content
for [0, =/ h) appears as a mirror image repeatedly
over the frequency range above 7/ h. This dis-
tortion is called imaging. In order to avoid the
effect of such mirrored frequency components,
one often truncates the frequency components
beyond the (original) Nyquist frequency via a
digital low-pass filter that has a sharp roll-off
characteristic. One can then complete the digital
to analog (DA) conversion process by postposing
a slowly decaying analog filter. This is the idea of
an oversampling DA converter (Zelniker and Tay-
lor 1994). The advantage here is that by allowing
a much wider frequency range, the final analog
filter can be a low-order filter and hence yields a
relatively small amount of phase distortion sup-
ported in part by the linear-phase characteristic
endowed on the digital filter preceding it.

Signal Reconstruction Problem

As before, consider the sampled discrete-
time signal {f(nh)}52__,, obtained from a
continuous-time signal f. The main question is

how we can recover the original continuous-time
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signal f(-) from sampled data. This is clearly
an ill-posed problem without any assumption on
f because there are infinitely many functions
that can match the sampled data { f(nh)}52_ .
Hence, one has to impose a reasonable a
priori assumption on f to sensibly discuss this
problem.

The following sampling theorem gives one

answer to this question:

Theorem 1 Suppose that the signal f € L?
is perfectly band-limited, in the sense that there
exists wy < 1/ h such that the Fourier transform

f of f satisfies

f@) =0, |o|> .. 2)
Then
< sinz(t/h —n)
f) = n;oo S = @

This theorem states that if the signal f does
not contain any high-frequency components be-
yond the Nyquist frequency m/ h, then the origi-
nal signal f can be uniquely reconstructed from
its sampled-data {f(nh)}72_.,. On the other
hand, if this assumption does not hold, then the
result does not necessarily hold. This is easy to
see via a schematic representation in Fig. 2.

If we sample the sinusoid in the upper fig-
ure in Fig.2, these sampled values would turn
out to be compatible with another sinusoid with
much lower frequency as the lower figure shows.
In other words, this sampling period does not
have enough resolution to distinguish these two
sinusoids. The maximum frequency below where
there does not occur such a phenomenon is the
Nyquist frequency. The sampling theorem above
asserts that it is half of the sampling frequency
27/ h, that is, 7/ h [rad/sec]. In other words, if
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we can assume that the original signal contains
no frequency components beyond the Nyquist
frequency, then one can uniquely reconstruct the
original analog signal f from its sampled-data
{f(nh)}22_.. On the other hand, if this as-
sumption does not hold, the distortion depicted
in Fig. 2 occurs; this is called aliasing.

This is the content of the sampling theorem.
It has been widely accepted as the basis for
digital signal processing that bridges analog to
digital. Concrete applications such as CD, MP3,
or images are based on this principle in one way
or another.

Difficulties

However, this paradigm (hereafter the Shannon

paradigm) of the perfect band-limiting hypoth-

esis and the resulting sampling theorem renders
several difficulties as follows:

e The reconstruction formula (3) is not causal,
i.e., one needs future sampled values to recon-
struct the present value f(¢). One can remedy
this defect by allowing a certain amount of
delay in reconstruction, but this delay can
depend on how fast the formula converges.

* This formula is known to decay slowly; that
is, we need many terms to approximate if we
use this formula as it is.

* The perfect band-limiting hypothesis is hardly
satisfied in reality. For example, for CDs, the
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Nyquist frequency is 22.05kHz, and the en-
ergy distribution of real sounds often extends
way over 20 kHz.

* To remedy this, one often introduces a band-
limiting low-pass filter, but it can introduce
distortions due to the Gibbs phenomenon, due
to a required sharp decay in the frequency
domain. See Fig. 3.

This is the Gibbs phenomenon well known
in Fourier analysis. A sharp truncation in the
frequency domain yields such a ringing effect.

In view of such drawbacks, there has been
revived interest in the extension of the sampling
theorem in various forms since the 1990s. There
is by now a stream of papers that aim at studying
signal reconstruction under the assumption of
nonideal signal acquisition devices; an excellent
survey is given in Unser (2000). In this research
framework, the incoming signal is supposed to be
acquired through a nonideal analog filter (acqui-
sition device) and sampled, and then the recon-
struction process attempts to recover the original
signal. The idea is to place the problem into
the framework of the (orthogonal or oblique)
projection theorem in a Hilbert space (usually
L?) and then project the signal space to the
subspace generated by the shifted reconstruction
functions. It is often required that the process
give a consistent result, i.e., if we subject the
reconstructed signal to the whole process again, it
should yield the same sampled values from which
it was reconstructed (Unser and Aldroubi 1994).

In what follows, we take a similar viewpoint,
that is, the incoming signals are acquired through
a nonideal filter, but develop a methodology dif-
ferent from the projection method, relying on
sampled-data control theory.

The Signal Class

We have seen that the perfect band-limiting hy-
pothesis is restrictive. Even if we adopt it, it is a
fairly crude model for analog signals to allow for
a more elaborate study.

Let us now pose the question: What class of
functions should we process in such systems?
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Consider the situation where one plays a mu-
sical instrument, say, a guitar. A guitar naturally
has a frequency characteristic. When one picks a
string, it produces a certain tone along with its
harmonics, as well as a characteristic transient
response. All these are governed by a certain
frequency decay curve, demanded by the physical
characteristics of the guitar. Let us suppose that
such a frequency decay is governed by a rational
transfer function F(s), and it is driven by varied
exogenous inputs.

Consider Fig. 4. The exogenous analog signal
we € L? is applied to the analog filter F(s).
This F(s) is not an ideal filter and hence its
bandwidth is not limited below the Nyquist fre-
quency. The signal w, drives F(s) to produce
the target analog signal y., which should be the
signal to be reconstructed. It is then sampled
by sampler S, and becomes the recorded or
transmitted digital signal y,;. The objective here
is to reconstruct the target analog signal y. out
of this sampled signal y,;. In order to recover

the frequency components beyond the Nyquist
frequency, one needs a faster sampling period,
so we insert the upsampler 1 L to make the
sampling period /L. This upsampled signal is
processed by digital filter K(z) and then becomes
a continuous-time signal again by going through
the hold device Hy, . It will then be processed
by analog filter P(s) to be smoothed out. The
obtained signal is then compared with delayed
analog signal y.(t — mh) to form the delayed
error signal e.. The objective is then to make
this error e, as small as possible. The reason for
allowing delay e is to accommodate certain
processing delays. This is the idea of the block
diagram Fig. 4.

The performance index we minimize is the
induced norm of the transfer operator 7, from
we to e;:

4)

llec 2
1 Tewlloo := sup ———=.
we0 [Iwell2
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In other words, the H°°-norm of the sampled-
data control system Fig. 4. Our objective is then
to solve the following problem:

Filter Design Problem

Given the system specified by Fig. 4. For a given
performance level y > 0, find a filter K(z) such
that

[Tewlloo < v-

This is a sampled-data H (sub-)optimal
control problem. This can be solved by using
the standard solution method for sampled-data
control systems (Chen and Francis 1995a;
Yamamoto 1999; Yamamoto et al. 2012).
The only anomaly here is that the system in
Fig.4 contains a delay element e " which
is infinite dimensional. However, by suitably
approximating this delay by successive series of
shift registers, one can convert the problem to
an appropriate finite-dimensional discrete-time
problem (Yamamoto et al. 1999, 2002, 2012).

This problem setting has the following fea-
tures:

1. One can optimize the continuous-time perfor-
mance under the constraint of discrete-time
filters.

2. By setting the class of input functions as L>
functions band-limited by F(s), one can cap-
ture the continuous-time error signal e, and its
worst-case norm in the sense of (4).

The first feature is due to the advantage of
sampled-data control theory. It is a great ad-
vantage of sampled-data control theory that al-
lows the mixture of continuous- and discrete-
time components. This is in marked contrast to
the Shannon paradigm where continuous-time
performance is really demanded by the artificial
perfect band-limiting hypothesis.

The second feature is an advantage due to
H ° control theory. Naturally, we cannot have an
access to each individual error signal e., but
we can still control the overall performance
from w. to e. in terms of the H° norm that
guarantees the worst-case performance. This is in
clear contrast with the classical case where only
a representative response, e.g., impulse response
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in the case of H?2, is targeted. Furthermore, since
we can control the continuous-time performance
of the worst-case error signal, the present
method can indeed minimize (continuous-time)
phase errors. This is an advantage usually not
possible with conventional methods since they
mainly discuss the gain characteristics of the
designed filters only. By the very property of
minimizing the H° norm of the continuous-
time error signal e., the present method can
even control the phase errors and yield much
less phase distortion even around the cutoff
frequency.

Figure 5 shows the response of the proposed
sampled-data filter against a rectangular wave,
with a suitable first- or second-order analog fil-
ter F(s); see Yamamoto et al. (2012) for more
details. Unlike Fig. 3, the overshoot is controlled
to be minimum.

The present method has been patented
(Fujiyama et al. 2008; Yamamoto 2006;
Yamamoto and Nagahara 2006) and implemented
into sound processing LSI chips as a core
technology by Sanyo Semiconductors and
successfully used in mobile phones, digital voice
recorders, and MP3 players; their cumulative
production has exceeded 40 million units as of
the end of 2012.

Summary and Future Directions

We have presented basic ideas of new signal pro-
cessing theory derived from sampled-data control
theory. The theory has the advantage that is not
possible with the conventional projection meth-
ods, whether based on the perfect band-limiting
hypothesis or not.

The application of sampled-data control
theory to digital signal processing was first made
by Chen and Francis (1995b) with performance
measure in the discrete-time domain; see also
Hassibi et al. (2006). The present author and his
group have pursued the idea presented in this
entry since 1996 (Khargonekar and Yamamoto
1996). See Yamamoto et al. (2012) and references
therein. For the background of sampled-data
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control theory, consult, e.g., Chen and Francis
(1995a) and Yamamoto (1999).

The same philosophy of emphasizing
the importance of analog performance was
proposed and pursued recently by Unser and
co-workers (1994), Unser (2005), and Eldar
and Dvorkind (2006). The crucial difference
is that they rely on L?/H? type optimization
and orthogonal or oblique projections, which
are very different from our method here. In
particular, such projection methods can behave
poorly for signals outside the projected space.
The response shown in Fig.3 is a typical such
example.

Applications to image processing is discussed
in Yamamoto et al. (2012). An application
to Delta-Sigma DA converters is studied in
Nagahara and Yamamoto (2012). Again, the
crux of the idea is to assume a signal generator
model and then design an optimal filter in
the sense of Fig.4 or a similar diagram with
the same idea. This idea should be applicable
to a much wider class of problems in signal
processing and should prove to have more
impact.

Some processed examples of still and moving
images are downloadable from the site: http://
www-ics.acs.i.kyoto-u.ac.jp/~yy/

For sampling theorem, see Shannon (1949),
Unser (2000), and Zayed (1996), for example.
Note, however, that Shannon himself (1949) did
not claim originality on this theorem; hence, it
is misleading to attribute this theorem solely to
Shannon. See Unser (2000) and Zayed (1996)
for some historical accounts. For a general back-
ground in signal processing, Vetterli et al. (2013)
is useful.
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Abstract

Over the last two and a half decades we have
observed astonishing progress in the field of
nanotechnology. This progress is largely due to
the invention of Scanning Tunneling Microscope
(STM) and Atomic Force Microscope (AFM)
in the 1980s. Central to the operation of AFM
and STM is a nanopositioning system that
moves a sample or a probe, with extremely
high precision, up to a fraction of an Angstrom,
in certain applications. This note concentrates
on the fundamental role of feedback, and the
need for model-based control design methods in
improving accuracy and speed of operation of
nanopositioning systems.

Keywords

Atomic force microscopy; High-precision
mechatronic systems; Nanopositioining; Scan-
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Introduction

Controlling motion of an actuator to within a
single atom, known as nanopositioning, may
seem as an impossible task. Yet, it has become
a key requirement in many systems to emerge
in recent years. In scanning probe microscopy
nanopositioning is needed to scan a probe over
a sample surface for imaging and to control the
interaction between the probe and the surface
during interrogation and manipulation (Meyer
et al. 2004). Nanopositioning is the enabling tech-
nology for mask-less lithography tools under de-
velopment to replace optical lithography systems
(Vettiger et al. 2002). Novel nanopositioning



Control for High-Speed Nanopositioning

tools are required for positioning of wafers
and for mask alignment in the semiconductor
industry (Verma et al. 2005). Nanopositioning
systems are vital in molecular biology for
imaging, alignment, and nanomanipulation in
applications such as DNA analysis (Meldrum
et al. 2001) and nanoassembly (Whitesides and
Christopher Love 2001). Nanopositioning is
an important technology in optical alignment
systems (Krogmann 1999). In data storage
systems, nanometer-scale precision is needed
for emerging probe-storage devices, for dual-
stage hard-disk drives, and for next generation
tape drives (Cherubini et al. 2012).

The Need for High-Speed
Nanopositioning

In all applications of nanopositioning, there is a
significant and growing demand for high speeds.
The ability to operate a nanopositioner at a band-
width of tens of kHz, as opposed to today’s
hundreds of Hz, is the key to unlocking countless
technological possibilities in the future (Gao et al.
2000; Pantazi et al. 2008; Salapaka 2003; Sebas-
tian et al. 2008b; Yong et al. 2012). The atomic
force microscope (AFM) is an example of such
technologies. A typical commercial atomic force
microscope is a slow device, taking up to a minute
or longer to generate an image. Such imaging
speeds are too slow to investigate phenomena
with fast dynamics. For example, rapid biological
processes that occur in seconds, such as rapid
movement of cells or fast dehydration and denat-
uration of collagen, are too fast to be observed
by a typical commercial AFM (Zou et al. 2004).
A key obstacle in realizing high-speed and video-
rate atomic force microscopy is the limited speed
of nanopositioners.

The Vital Role of Feedback Control in
High-Speed Nanopositioning

The systems described above depend on a
precision mechatronic device, known as a
nanopositioner, or a scanner for their operation.
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Control for High-Speed Nanopositioning, Fig. 1 A
3DoF flexure-guided high-speed nanopositioner (Yong
et al. 2013). The three axes are actuated independently
using piezoelectric stack actuators. Movement of lateral
axes is measured using capacitive sensors

A high-speed scanner is shown in Fig. 1.
In all applications where nanopositioning is
a necessity, the key objective is to make the
scanner follow, or track, a given reference
trajectory (Devasia et al. 2007). A large number
of control design methods have been proposed
for this purpose, including feedforward control
(Clayton et al. 2009), feedback control (Salapaka
2003), and combinations of those (Yong et al.
2009). These control techniques are required
in order to compensate for the mechanical
resonances of the scanner as well as for various
nonlinearities and uncertainties in the dynamics
of the nanopositioner. At low speeds, feedforward
techniques are usually sufficient to address
many of the arising challenges. However, over
a wide bandwidth, model uncertainties, sensor
noise, and mechanical cross-couplings become
significant, and hence feedback control becomes
essential to achieve the requisite nanoscale
accuracy and precision at high speeds (Devasia
et al. 2007; Salapaka 2003).

Control Design Challenges

A feedback loop typically encountered in
nanopositioning is illustrated in Fig.2. The
purpose of the feedback controller is to control
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Control for High-Speed Nanopositioning, Fig. 2 A
feedback loop typically encountered in nanopositioning.
Purpose of the controller is to control the position of

the position of the scanner such that it follows
a given reference trajectory based on the
measurement provided by a displacement
sensor. The resulting tracking error contains
both deterministic and stochastic components.
Deterministic errors are typically due to
insufficient closed-loop bandwidth. They may
also arise from excitation of mechanical resonant
modes of the scanner or actuator nonlinearities
such as piezoelectric hysteresis and creep (Croft
et al. 2001). The factors that limit the achievable
closed-loop bandwidth include phase delays and
non-minimum phase zeros associated with the
actuator and scanner dynamics (Devasia et al.
2007). The dynamics of the nanopositioner, the
controller, and the reference trajectory selected
for scanning play a key role in minimizing the
deterministic component of the tracking error.

Tracking errors of a stochastic nature mostly
arise from external noise and vibrations and from
position measurement noise. External noise and
vibrations can be significantly reduced by oper-
ating the nanopositioner in a controlled environ-
ment. However, dealing with the measurement
noise is a significant challenge (Sebastian et al.
2008a). The feedback loop allows the sensing
noise to generate a random positioning error that
deteriorates the positioning precision. Increasing
the closed-loop bandwidth (to decrease the deter-
ministic errors) tends to worsen this effect. Low
sensitivity to measurement noise is, therefore,
a key requirement in feedback control design
for high-speed nanopositioning and a very hard
problem to address.

the scanner such that it follows the intended reference
trajectory based on the position measurement obtained
from a position sensor

Summary and Future Directions

While high-precision nanoscale positioning
systems have been demonstrated at low speeds,
despite an intensive international race spanning
several years, the longstanding challenge remains
to achieve high-speed motion and positioning
with Angstrom-level accuracy. Overcoming this
barrier is believed to be the necessary catalyst for
emergence of ground breaking innovations across
a wide range of scientific and technological fields.
Control is a critical technology to facilitate the
emergence of such systems.
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Abstract

This entry provides an overview of the so-called
control pyramid, which organizes the different
types of control tasks in a processing plant in a
set of interconnected layers, from basic control
and instrumentation to plant-wide economic op-
timization. These layers have different functions,
all of them necessary for the optimal functioning
of large processing plants.

Keywords

Control hierarchy; Control pyramid; Model-
predictive control; Optimization; Plant-wide
control; Real-time optimization

Introduction

Operating a process plant is a complex task in-
volving many different aspects ranging from the
control of individual pieces of equipment and of
process units to the management of the plant or
factory as a whole, including relations with other
plants or suppliers.

From the control point of view, the corre-
sponding tasks are traditionally organized in sev-
eral layers, placing in the bottom the ones closer
to the physical processes and in the top those
closer to plant-wide management, forming the so-
called control pyramid represented in Fig. 1.

The process industry currently faces many
challenges, originated from factors such as
increased competition among companies and bet-
ter global market information, new environmental
regulations and safety standards, improved
quality, or energy efficiency requirements. Many
years ago, the main tasks were associated to the
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correct and safe functioning of the individual
process units and to the global management
of the factory from the point of view of
organization and economy. Therefore, only the
lower and top layers of the control pyramid were
realized by computer-based systems, whereas
the intermediate tasks were largely performed
by human operators and managers, but more
and more the intermediate layers are gaining
importance in order to face the abovementioned
challenges.

Above the physical plant represented in Fig. 1,
there is a layer related to instrumentation and
basic control, devoted to obtaining direct pro-
cess information and maintaining selected pro-
cess variables close to their desired targets by
means of local controllers. Motivated by the need
for more efficient operation and better-quality
assurance, an improvement of this basic control
can be obtained using control structures such
as cascades, feed forwards, ratios, and selectors.
This is called advanced control in industry, but
not in academia, where the word is reserved for
more sophisticated controls.

A big step forward took place in the control
field with the introduction of model-based
predictive control (MBPC/MPC) in the late 1970s

Control Hierarchy of Large Processing Plants: An Overview

and 1980s, (» Industrial MPC of Continuous
Processes; Camacho and Bordons (2004)).
MPC aims at regulating a process unit as
a whole considering all manipulated and
controlled variables simultaneously. It handles
all interactions, disturbances, and process
constraints using a process model in order to
compute the control actions that optimize a
control performance index. MPC is built on top
of the basic control loops and partly replaces
the complex control structures of the advanced
control layer adding new functionalities and
better control performance. The improvements
in control quality and the management of
constraints and interactions of the model-
predictive controllers open the door for the
implementation of local economic optimization.
Linked to the MPC controller and taking
advantage of its model, an optimizer may look
for the best operating point of the unit by
computing the controller set points that optimize
an economic cost function of the process unit
considering the operational constraints of the
unit. This task is usually formulated and solved
as a linear programming (LP) problem, i.e., based
on linear or linearized economic models and cost
function (see Fig. 2).

A natural extension of these ideas was to
consider the interrelations among the different
parts of the processing plants and to look for
the steady-state operating point that provides the
best economic return and minimum energy ex-
pense or optimizes any other economic criterion
while satisfying the global production aims and
constraints. These optimization tasks are known
as real-time optimization (RTO) (» Real-Time
Optimization of Industrial Processes) and form
another layer of the control pyramid.

Finally, when we consider the whole plant
operation, obvious links between the RTO and
the planning and economic management of the
company appear. In particular, the organization
and optimization of the flows of raw materials,
purchases, etc., involved in the supply chains
present important challenges that are placed in
the top layer of Fig. 1.

This entry provides an overview of the dif-
ferent layers and associated tasks so that the


http://dx.doi.org/10.1007/978-1-4471-5058-9_242
http://dx.doi.org/10.1007/978-1-4471-5058-9_243

Control Hierarchy of Large Processing Plants: An Overview

LP, local optimizer

sp O
MPC
g

Basic Control

Control Hierarchy of Large Processing Plants: An
Overview, Fig. 2 MPC implementation with a local op-
timizer

reader can place in context the different con-
trollers and related functionalities and tools, as
well as appreciate the trends in process control
focusing the attention toward the higher levels of
the hierarchy and the optimal operation of large-
scale processes.

An Alternative View

The implementation in a process factory of the
tasks and layers previously mentioned is possible
nowadays due to important advances in many
fields, such as modeling and identification, con-
trol and estimation, optimization methods, and, in
particular, software tools, communications, and
computing power. Today it is rather common
to find in many process plants an information
network that follows also a pyramidal structure
represented in Fig. 3.

At the bottom, there is the instrumentation
layer that includes, besides sensors and
actuators connected by the classical analog
4-20mA signals, possibly enhanced by the
transmission of information to and from the
sensors by the HART protocol, digital field
buses and smart transmitters and actuators
that incorporate improved information and
intelligence. New functionalities, such as
remote calibration, filtering, self-test, and
disturbance compensation, provide more accurate
measurements that contribute to improving
the functioning of local controllers, in the
same way as that of new methods and tools
available nowadays for instrument monitoring
and fault detection and diagnosis. The increased

149

installation of wireless transmitters and the
advances in analytical instrumentation will lead,
without doubt, to the development of a stronger
information base to support better decisions and
operations in the plants.

Information from transmitters is collected in
the control rooms that are the core of the second
layer. Many of them are equipped with distributed
control systems (DCS) that implement monitor-
ing and control tasks. Field signals are received
in the control cabinets where a large number
of microprocessors execute the data acquisition
and regulatory control tasks, sending signals back
to the field actuators. Internal buses connect the
controllers with the computers that support the
displays of the human-machine interface (HMI)
for the plant operators of the control room. In
the past, DCS were mostly in charge of the
regulatory control tasks, including basic control,
alarm management, and historians, while inter-
locking systems related to safety and sequences
related to batch operations were implemented
either in the DCS or in programmable logic
controllers (PLCs): » Programmable Logic Con-
trollers. Today, the bounds are not so clear, due to
the increase of the computing power of the PLCs
and the added functionalities of the DCS. Safety
instrumented systems (SIS) for the maintenance
of plant safety are usually implemented in dedi-
cated PLCs, if not hard-wired, but for the rest of
the functions, a combination of PLC-like proces-
sors with I/O cards and SCADAs (Supervision,
Control, And Data Acquisition Systems) is the
prevailing architecture. SCADAs act as HMI and
information systems collecting large amounts of
data that can be used at other levels with different
purposes.

Above the basic and advanced control layer,
using the information stored in the SCADA
as well as other sources, there is an increased
number of applications covering diverse fields.
Figure 3 depicts the perspective of the computing
and information flow architecture and includes
a level called supervisory control, placed in
direct connection with the control room and
the production tasks. It includes, for instance,
MPC with local optimizers, statistical process
control (SPC) for quality and production
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supervision (» Multiscale Multivariate Statistical
Process Control), data reconciliation, inferences
and estimation of unmeasured quantities,
fault detection and diagnosis, or performance
controller monitoring (» Controller Performance
Monitoring) (CPM).

The information flow becomes more complex
when we move up the basic control layer, looking
more like a web than a pyramid when we enter
the world of what can be called generally as
asset (plant and equipment) management: a col-
lection of different activities oriented to sustain
performance and economic return, considering
their entire cycle of life and, in particular, aspects
such as maintenance, efficiency, or production
organization. Above the supervisory layer, one
can usually distinguish at least two levels denoted
generically as manufacturing execution systems
(MES) and enterprise resource planning (ERP)
(Scholten 2009) as can be seen in Fig. 4.

MES are information systems that support the
functions that a production department must
perform in order to prepare and to manage
work instructions, schedule production activities,
monitor the correct execution of the production
process, gather and analyze information about
the production process, and optimize procedures.
Notice that regarding the control of process units,
up to this level no fundamental differences appear
between continuous and batch processes. But at
the MES level, which corresponds to RTO of
Fig. 1, many process units may be involved, and
the tools and problems are different, the main task
in batch production being the optimal scheduling
of those process units (» Scheduling of Batch
Plants; Mendez et al. 2006).

MES are part of a larger class of systems
called manufacturing operation management
(MOM) that cover not only the management of
production operations but also other functions
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such as maintenance, quality, laboratory
information systems, or warehouse management.
One of their main tasks is to generate elaborate
information, quite often in the form of key
performance indicators (KPIs), with the purpose
of facilitating the implementation of corrective
actions.

ERP systems represent the top of the pyramid,
corresponding to the enterprise business planning
activities that allows assigning global targets to
production scheduling. For many years, it has
been considered to be out of the scope of the field
of control, but nowadays, more and more, supply
chain management is viewed and addressed as a
control and optimization problem in research.

Future Control and Optimization at
Plant Scale

Going back to Fig. 1, the variety of control and
optimization problems increases as we move up
in the control hierarchy, entering the field of
dynamic process operations and considering not
only individual process units but also larger sets
of equipment or whole plants. Examples at the
RTO (or MES) level are optimal management of
shared resources or utilities, production bottle-
neck avoidance, optimal energy use or maximum
efficiency, smooth transitions against production
changes, etc.

Above, we have mentioned RTO as the most
common approach for plant-wide optimization.
Normally, RTO systems perform the optimization
of an economic cost function using a nonlinear
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Basic Control

process model in steady state and the correspond-
ing operational constraints to generate targets for
the control systems on the lower layers. The
implementation of RTO provides consistent ben-
efits by looking at the optimal operation problem
from a plant-wide perspective. Nevertheless, in
practice, when MPCs with local optimizers are
operating the process units, many coordination
problems appear between these layers, due to dif-
ferences in models and targets, so that driving the
operation of these process units in a coherent way
with the global economic targets is an additional
challenge.

A different perspective is taken by the
so-called self-optimizing control (Fig.5 right,
Skogestad 2000) that, instead of implementing
the RTO solution online, uses it to design a
control structure that assures a near optimum
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operation if some specially chosen variables are
maintained closed to their targets.

As in any model-based approach, the problem
of how to implement or modify the theoretical
optimum computed by RTO so that the optimum
computed with the model and the real optimum
of the process coincide in spite of model errors,
disturbances, etc., emerges. A common choice to
deal with this problem is to update periodically
the model using parameter estimation methods
or data reconciliation with plant data in steady
state. Also, uncertainty can be explicitly taken
into account by considering different scenarios
and optimizing the worst case, but this is con-
servative and does not take advantage of the
plant measurements. Along this line, there are
proposals of other solutions such as modifier-
adaptation methods that use a fixed model and
process measurements to modify the optimization
problem so that the final result corresponds to the
process optimum (Marchetti et al. 2009) or the
use of stochastic optimization where several sce-
narios are taken into account and future decisions
are used as recourse variables (Lucia et al. 2013).

RTO is formulated in steady state, but in prac-
tice, most of the time the plants are in transients,
and there are many problems, such as start-up
optimization, that require a dynamic formulation.
A natural evolution in this direction is to combine
nonlinear MPC with economic optimization so
that the target of the NMPC is not set point
following but direct economic optimization as in
the right-hand side of Fig. 6: » Economic Model

Price
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Control Hierarchy of Large Processing Plants: An
Overview, Fig. 7 Hierarchical, price coordination, and
distributed approaches

Predictive Control and » Model-Based Perfor-
mance Optimizing Control (Engell 2007).

The type of problems that can be formulated
within this framework is very wide, as are the
possible fields of application. Processes with dis-
tributed parameter structure or mixtures of real
and on/off variables, batch and continuous units,
statistical distribution of particle sizes or proper-
ties, etc., give rise to special type of NMPC prob-
lems (see, e.g., Lunze and Lamnabhi-Lagarrigue
2009), but a common characteristic of all of them
is the fact that they are computational intensive
and should be solved taking into account the
different forms of uncertainty always present.

Control and optimization are nowadays
inseparable essential parts of any advanced
approach to dynamic process operation.
Progress in the field and spreading of the
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industrial applications are possible thanks to
the advances in optimization methods and tools
and computing power available on the plant
level, but implementation is still a challenge
from many points of view, not only technical.
Few suppliers offer commercial products,
and finding optimal operation policies for a
whole factory is a complex task that requires
taking into consideration many aspects and
elaborate information not available directly
as process measurements. Solving large
NMPC problems in real time may require
breaking the associated optimization problem
in subproblems that can be solved in parallel.
This leads to several local controllers/optimizers,
each one solving one subproblem involving
variables of a part of the process and linked
by some type of coordination. This offers a
new point of view of the control hierarchy.
Typically, three types of architectures are
mentioned for dealing with this problem,
represented in Fig.7: In the hierarchical
approach, coordination between local controllers
is made by an upper layer that deals with
the interactions, assigning targets to them. In
price coordination, the coordination task is
performed by a market-like mechanism that
assigns different prices to the cost functions of
every local controller/optimizer. Finally, in
the distributed approach, the local controllers
coordinate their actions by interchanging
information about its decisions or states with
neighbors (Scattolini 2009).

Summary and Future Research

Process control is a key element in the operation
of process plants. At the lowest layer, it can
be considered a mature, well-proven technology,
even if many problems such as control structure
selection and controller tuning in reality are often
not solved well. The range of problems under
consideration is continuously expanding to the
upper layers of the hierarchy, merging control
with process operation and optimization, creating
new challenges that range from modeling and
estimation to efficient large-scale optimization
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and robustness against uncertainty, and leading
to new challenges and problems for research
and possibly large improvements of plant oper-
ations.
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Abstract

Closed-loop control can significantly improve the
performance of bioprocesses, e.g., by an increase
of the production rate of a target molecule or
by guaranteeing reproducibility of the production
with low variability. In contrast to the control
of chemical reaction systems, the biological re-
actions take place inside cells which constitute
highly regulated, i.e., internally controlled sys-
tems by themselves. As a result, through evolu-
tion, the same cell can and will mimic a system
of first order in some situations and a high-
dimensional, highly nonlinear system in others.
A complete mathematical description of the pos-
sible behaviors of the cell is still beyond reach
and would be far too complicated as a basis for
model-based process control. This makes super-
vision, control, and optimization of biosystems
very demanding.

Keywords

Bioprocess control; Control of uncertain sys-
tems; Optimal control; Parameter identification;
State estimation; Structure identification; Struc-
tured models

Introduction

Biotechnology offers solutions to a broad
spectrum of challenges faced today, e.g., for
health care, remediation of environmental
pollution, new sources for energy supplies,
sustainable food production, and the supply of
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bulk chemicals. To explain the needs for control
of bioprocesses, especially for the production of
high-value and/or large-volume compounds, it
is instructive to have a look on the development
of a new process. If a potential strain is found
or genetically engineered, the biologist will
determine favorable environmental factors for the
growth of and the production of the target product
by the cells. These factors typically comprise the
levels of temperature, pH, dissolved oxygen, etc.
Moreover, concentration regions for the nutrients,
precursors, and so-called trace elements are
specified. Whereas for the former variables
often “optimal” setpoints are provided which,
at least in smaller scale reactors, can be easily
maintained by independent classically designed
controllers, information about the best nutrient
supply is incomplete from a control engineering
point of view. It is this dynamic nutrient supply
which is most often not revealed in the biological
laboratory and which, however, offers substantial
room for production improvements by control.
Irrespective whether bacteria, yeasts, fungi, or
animal cells are used for production, these cells
will consist of thousands of different compounds
which react with each other in hundreds or more
reactions. All reactions are tightly regulated on a
molecular and genetic basis; see » Deterministic
Description of Biochemical Networks. For so-
called unlimited growth conditions, all cellular
compartments will be built up with the same
specific growth rate, meaning that the cellular
composition will not change over time. In a
mathematical model describing growth and pro-
duction, only one state variable will be needed
to describe the biotic phase. This will give rise
to unstructured models; see below. Whenever a
cell enters a limitation, which is often needed
for production, the cell will start to reorganize
its internal reaction pathways. Model-based ap-
proaches of supervision and control based on
unstructured models are now bound to fail. More
biotic state variables are needed. However, it is
not clear which and how many. As a result, mod-
eling of limiting behaviors is challenging and cru-
cial for the control of biotechnological processes.
It requires a large amount of process-specific
information. Moreover, model-based estimates of
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the state of the cell and of the environment are a
key factor as online measurements of the internal
processes in the cell and of the nutrient concen-
trations are usually impossible. Finally, as models
used for process control have to be limited in size
and thus only give an approximative description,
robustness of the methods has to be addressed.

Mathematical Models

For the production of biotechnical goods, many
up- and downstream unit operations are involved
besides the biological reactions. As these pose
no typical bio-related challenges, we will concen-
trate here on the cultivation of the organisms only.
This is mostly performed in aqueous solutions in
special bioreactors through which air is sparged
for a supply with oxygen. In some cases, other
gases are supplied as well; see Fig. 1. Disregard-
ing wastewater treatment plants, most cultiva-
tions are still performed in a fed-batch mode,
meaning that a small amount of cells and part
of the nutrients are put into the reactor initially.
Then more nutrients and correcting fluids, e.g.,

for pH or antifoam control, are added with vari-
able rates leading to an unsteady behavior. The
system to be modeled consists of the gaseous, the
liquid, and the biotic phase inside the reactor. For
the former ones, balance equations can be formu-
lated readily. The biotic phase can be modeled
in a structured or unstructured way. Moreover, as
not all cells behave similarly, this may give rise to
a segregated model formulation which is omitted
here for brevity.

Unstructured Models

If the biotic phase is represented by just one
state variable, my, a typical example of a simple
unstructured model of the liquid phase would be

my = uxmy

mp = [Lpmx
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Control of Biotechnological Processes, Table 1 Multiplicative rates depending on several concentrations c, ..., ¢k
with possible kinetic terms

Ri = @imaxpir(c) - pia(e2) - ...+ pik(cx)
i 2 Ay I

cj Fag ¢j +ai ¢j +ai

cj cj
S —cifay j
e Cildij
cj +aij a;jc%+cj + ajj41

with the masses m; with i = X, P, S, O for
cells, product, substrate or nutrient, and dissolved
oxygen, respectively. The volume is given by V,
and the specific growth and production rates py
and pp depend on concentrations ¢; = m;/V,
e.g., of the substrate S or oxygen O according to
formal kinetics, e.g.,

aicsco

(cs +as)(co +av)
aoCs

allﬁ% +cs +ap

x =

The nutrient supply can be changed by the feed
rate u(t) as a control input, with inflow concen-
tration cg f..q. Very often, just one feed stream
is considered in unstructured models. As all pa-
rameters a; have to be identified from noisy and
infrequently sampled data, a low-dimensional
nonlinear uncertain model results. All steps prior
to the cultivation in which, e.g., from frozen
cells, enough cells are produced to start the
fermentation add to the uncertainty. Whereas the
balance equations follow from first principles-
based modeling, the structure of the kinetics py
and pp is unknown, i.e., empirical relations are
exploited. Many different kinetic expressions can
be used here; see Bastin and Dochain (1990) or a
small selection shown in Table 1.

It has to be pointed out that, most often,
neither ¢y, cp, nor cg are measured online. As
the measurement of cp might be unreliable, the
exhaust gas concentration of the gaseous phase
is the main online measurement which can be
used by employing an additional balance equa-
tion for the gaseous phase. Infrequent at-line
measurements, though, are sometimes available
for X, P, S, especially at the lab-scale during
process development.

Structured Models

In structured models, the changing composition
and reaction pathways of the cell is accounted for.
As detailed information about the cell’s complete
metabolism including all regulations is missing
for the majority if not all cells exploited in bio-
processes, an approximative description is used.
Examples are models in which a part of the real
metabolism is described on a mechanistic level,
whereas the rest is lumped together into one or
very few states (Goudar et al. 2006), cybernetic
models (Varner and Ramkrishna 1998), or com-
partment models (King 1997). As an example,
all compartment models can be written down as

1

Ap@)+ f, W+ f ()

V:Zui

i

with vectors of streams into and out of the re-
action mixture, Ln and i out”® which depend
on control inputs u; a matrix of (stoichiomet-
ric) parameters, A; a vector of reaction rates
uw = p(c); and, finally, a vector m comprising
albstreges, products, and more than one biotic
state. These biotic states can be motivated, for
example, by physiological arguments, describing
the total amounts of macromolecules in the cell,
such as the main building blocks DNA, RNA, and
proteins. In very simple compartment models, the
cell is only divided up into what is called ac-
tive and inactive biomass. Again, all coefficients
in A and the structure and the coefficients of
all entries in u(c) (see Table 1) are unknown
and have to be identified based on experimental
data. Issues of structural and practical identifia-
bility are of major concern. For models of sys-
tem biology (see » Deterministic Description of
Biochemical Networks), algebraic equations are
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added that describe the dependencies between in-
dividual fluxes. Then at least part of A is known.
Describing the biotic phase with a higher de-
gree of granularity does not change the mea-
surement situation in the laboratory or in the
production scale, i.e., still only very few online
measurements will be available for control.

Identification

Even if the growth medium initially “only” con-
sists of some 10-20 different, chemically well-
defined substances, from which only few are
described in the model, this situation will change
over the cultivation time as the organisms release
further compounds from which only few may be
known. If, for economic reasons, complex raw
materials are used, even the initial composition
is unknown. Hence, measuring the concentrations
of some of the compounds of the large set of
substances as a basis for modeling is not trivial.
For structured models, intracellular substances
have to be determined additionally. These are
embedded in an even larger matrix of compounds
making chemical analysis more difficult. There-
fore, the basis for parameter and structure identi-
fication is uncertain.

As the expensive experiments and chemical
analysis tasks are very time consuming, some-
times lasting up to several weeks, methods of
optimal experimental design should always be
considered in biotechnology; see » Experiment
Design and Identification for Control.

The models to be built up should possess
some predictive capability for a limited range
of environmental conditions. This rules out un-
structured models for many practical situations.
However, for process control, the models should
still be of manageable complexity. Medium-sized
structured models seem to be well suited for
such a situation. The choice of biotic states in
m and possible structures for the reaction rates
Ui, however, is hardly supported by biological
or chemical evidence. As a result, a combined
structure and parameter identification problem
has to be solved. The choices of possible terms
pij in all p; give rise to a problem that exhibits
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a combinatorial explosion. Although approaches
exist to support this modeling step (see Herold
and King 2013 or Mangold et al. 2005) finally,
the modeler will have to settle with a compromise
with respect to the accuracy of the model found
versus the number of fully identified model can-
didates. As a result, all control methods applied
should be robust in some sense.

Soft Sensors

Despite many advantages in the development
of online measurements (see Mandenius and
Titchener-Hooker 2013) systems for supervision
and control of biotechnical processes often
include model-based estimations schemes, such
as extended Kalman filters (EKF); see » Kalman
Filters. Concentration estimates are needed for
unmeasured substances and for quantities which
depend on these concentrations like the growth
rate of the cells. In real applications, formulations
have to be used which account for delays in
laboratory analysis of up to several hours and for
situations in which results from the laboratory
will not be available in the same sequence as
the samples were taken. An example from a
real cultivation is shown in Fig. 2. Here, the at-
line measurement of the biomass concentration,
cx = my/V,is the only measurement available.
The result of a single measurement is obtained
about 30min after sampling. For reference,
unaccessible state variables, which were analyzed
later, are shown as well along with the online
estimates. The scatter of the data, especially of
DNA and RNA, gives a qualitative impression of
the measurement accuracy in biotechnology.

Control

Beside the relatively simple control of physical
parameters, such as temperature, pH, dissolved
oxygen, or carbon dioxide concentration, only
few biotic variables are typically controlled
with respect to a setpoint. The most prominent
example is the growth rate of the biomass with
the goal to reach a high cell concentration


http://dx.doi.org/10.1007/978-1-4471-5058-9_103
http://dx.doi.org/10.1007/978-1-4471-5058-9_61
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Control of Biotechnological Processes, Fig. 2 Estima-
tion of states of a structured model with an EKF with an
unexpected growth delay initially. At-line measurement
my (red filled circles), initially predicted evolution of

in the reactor as fast as possible. This is the
predominant goal when the cells are the primary
target as in baker’s yeast cultivations or when
the expression of the desired product is growth
associated. For other non-growth-associated
products, a high cell mass is desirable as well,
as production is proportional to the amount of
cells. If the nutrient supply is maintained above a
certain level, unlimited growth behavior results,
allowing the use of unstructured models for
model-based control. An excess of nutrients
has to be avoided, though, as some organisms,
like baker’s yeast, will initiate an overflow
metabolism, with products which may be
inhibitory in later stages of the cultivation. For
some products, such as the antibiotic penicillin,
the organism has to grow slowly to obtain
a high production rate. For these so-called
secondary metabolites, low but not vanishing
concentrations for some limiting substrates
are needed. If setpoints are given for these

MGilucose [Q]

50

0 25
time [h]

50 0 25

time [h]

states (black), online estimated evolution (blue), off-line
data analyzed after the experiment (open red circles) (Data
obtained by T. Heine)

concentrations instead, this can pose a rather
challenging control problem. As the organisms
try to grow exponentially, the controller must
be able to increase the feed exponentially as
well. The difficulty mainly arises from the
inaccurate and infrequent measurements that
the soft sensors/controller has to work with
and from the danger that an intermediate
shortage or oversupply with nutrients may switch
the metabolism to an undesired state of low
productivity.

For control of biotechnical processes,
many methods explained in this encyclopedia
including feedforward, feedback, model-based,
optimal, adaptive, fuzzy, neural nets, etc., can
be and have been used (cf. Dochain 2008;
Gnoth et al. 2008; Rani and Rao 1999).
As in other areas of application, (robust)
model-predictive control schemes (MPC) (see

Industrial MPC of Continuous Processes) are
applied with great success in biotechnology.
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Control of Biotechnological Processes, Fig. 3 MPC
control and state estimation of a cultivation with S. ten-
dae. At-line measurement my (red filled circles), initially
predicted evolution of states (black), online estimated evo-

For the antibiotic production shown in Fig. 3,
optimal feeding profiles u; for ammonia (AM),
phosphate (PH), and glucose (C) were calculated
before the experiment was performed in a
trajectory optimization such that the final
mass of the desired antibiotic nikkomycin
(Ni) was maximized. This resulted in the blue
broken lines for the feeds u;. However, due to
disturbances and model inaccuracies, an MPC
scheme had to significantly change the feeding
profiles, to actually obtain this high amount
of nikkomycin; see the feeding profiles given
in black solid lines. This example shows that,
especially in biotechnology, off-line trajectory
planning has to be complemented by closed-loop
concepts.

On the other hand, the experimental data given
in Fig. 2 shows that significant disturbances, such
as an unexpected initial growth delay, may occur
in real systems as well. For this reason, the
classical receding horizon MPC with an off-line

time [h]

3
- —_
' =g
;:)\H o Lo LT
50 100 0 50 100
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lution (blue), off-line data analyzed after the experiment
(open red circles). Off-line optimal feeding profiles u;
(blue broken line), MPC-calculated feeds (black, solid)
(Data obtained by T. Heine)

determined optimal reference trajectory will not
always be the best solution, and an online op-
timization over the whole horizon has a larger
potential (cf. Kawohl et al. 2007).

Summary and Future Directions

Advanced process control including soft sen-
sors can significantly improve biotechnical pro-
cesses. Using these techniques promotes qual-
ity and reproducibility of processes (Junker and
Wang 2006). These methods should, however,
not only be exploited in the production scale.
For new pharmaceutical products, the time to
market is the decisive factor. Methods of (model-
based) monitoring and control can help here to
speed up process development. Since a few years,
a clear trend can be seen in biotechnology to
miniaturize and parallelize process development
using multi-fermenter systems and robotic tech-
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nologies. This trend gives rise to new challenges
for modeling on the basis of huge data sets and
for control in very small scales. At the same
time, it is expected that a continued increase
of information from bioinformatic tools will be
available which has to be utilized for process
control as well. Going to large-scale cultivations
adds further spatial dimensions to the problem.
Now, the assumption of a well-stirred, ideally
mixed reactor does not longer hold. Substrate
concentrations will be space dependent. Cells
will experience changing good and bad nutrient
environments frequently. Thus, mass transfer has
to be accounted for, leading to partial differential
equations as models for the process.
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Abstract

We introduce control and stabilization issues for
fluid flows along with known results in the field.
Some models coupling fluid flow equations and
equations for rigid or elastic bodies are presented,
together with a few controllability and stabiliza-
tion results.

Keywords

Control; Fluid flows; Fluid-structure systems;
Stabilization

Some Fluid Models

We consider a fluid flow occupying a bounded
domain Qr C RV, with N = 2or N = 3,
at the initial time ¢ = 0, and a domain Q ()
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at time ¢ > 0. Let us denote by p(x,7) € R
the density of the fluid at time ¢ at the point
x € Qr(t) and by u(x,t) € RV its velocity.
The fluid flow equations are derived by writing
the mass conservation

9
%P 4 div(ou) = 0

5 in Qp(t), fort >0, (1)
and the balance of momentum
M V) =divo+p f
— u-Vu) =divo
P\ P 2)

in Qp(t), fort >0

where o is the so-called constraint tensor and
f represents a volumic force. For an isothermal
fluid, there is no need to complete the system
by the balance of energy. The physical nature
of the fluid flow is taken into account in the
choice of the constraint tensor . When the vol-
ume is preserved by the fluid flow transport, the
fluid is called incompressible. The incompress-
ibility condition reads as div u = 0 in Qg ().
The incompressible Navier-Stokes equations are
the classical model to describe the evolution of
isothermal incompressible and Newtonian fluid
flows. When in addition the density of the fluid
is assumed to be constant, p(x, ) = po, the
equations reduce to

divu = 0,

d
po(a—%(u-vm) — VAUV po f

in Qr(t), t>0, 3)

which are obtained by setting

o=v (Vu + (Vu)T) + (/,c - 2?”) divul—pl,

“
in Eq.(2). When div u=0, the expression of o
simplifies. The coefficients v > 0 and p > 0 are
the viscosity coefficients of the fluid, and p(x,t)
its pressure at the point x € Qp(¢) and at time
t>0.
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This model has to be completed with boundary
conditions on 92 (¢) and an initial condition at
time r = 0.

The incompressible Euler equations with con-
stant density are obtained by setting v = 0 in the
above system.

The compressible Navier-Stokes system is ob-
tained by coupling the equation of conservation
of mass Eq. (1) with the balance of momentum
Eq. (2), where the tensor o is defined by Eq. (4),
and by completing the system with a constitutive
law for the pressure.

Control Issues

There are unstable steady states of the Navier-
Stokes equations which give rise to interesting
control problems (e.g., to maximize the ratio
“lift over drag”), but which cannot be observed
in real life because of their unstable nature. In
such situations, we would like to maintain the
physical model close to an unstable steady state
by the action of a control expressed in feedback
form, that is, as a function either depending on
an estimation of the velocity or depending on the
velocity itself. The estimation of the velocity of
the fluid may be recovered by using some real-
time measurements. In that case, we speak of a
feedback stabilization problem with partial infor-
mation. Otherwise, when the control is expressed
in terms of the velocity itself, we speak of a feed-
back stabilization problem with full information.

Another interesting issue is to maintain a fluid
flow (described by the Navier-Stokes equations)
in the neighborhood of a nominal trajectory (not
necessarily a steady state) in the presence of
perturbations. This is a much more complicated
issue which is not yet solved.

In the case of a perturbation in the initial
condition of the system (the initial condition at
time t = O is different from the nominal velocity
held at time ¢t = 0), the exact controllability
to the nominal trajectory consists in looking for
controls driving the system in finite time to the
desired trajectory.

Thus, control issues for fluid flows are those
encountered in other fields. However there are
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specific difficulties which make the correspond-
ing problems challenging. When we deal with the
incompressible Navier-Stokes system, the pres-
sure plays the role of a Lagrange multiplier asso-
ciated with the incompressibility condition. Thus,
we have to deal with an infinite-dimensional non-
linear differential algebraic system. In the case
of a Dirichlet boundary control, the elimination
of the pressure, by using the so-called Leray or
Helmholtz projector, leads to an unusual form of
the corresponding control operator; see Raymond
(2006). In the case of an internal control, the
estimation of the pressure to prove observability
inequalities is also quite tricky; see Fernandez-
Cara et al. (2004). From the numerical viewpoint,
the approximation of feedback control laws leads
to very large-size problems, and new strategies
have to be found for tackling these issues.

Moreover, the issues that we have described
for the incompressible Navier-Stokes equations
may be studied for other models like the
compressible Navier-Stokes equations, the
Euler equations (describing nonviscous fluid
flows) both for compressible and
pressible models, or even more complicated
models.

incom-

Feedback Stabilization of Fluid Flows

Let us now describe what are the known results
for the incompressible Navier-Stokes equations
in 2D or 3D bounded domains, with a control act-
ing locally in a Dirichlet boundary condition. Let
us consider a given steady state (us, ps) satisfying
the equation

—VvAus + (us - Viug + Vps = fi,
and divu, =0 in Qp,

with some boundary conditions which may be
of Dirichlet type or of mixed type (Dirichlet-
Neumann-Navier type). For simplicity, we only
deal with the case of Dirichlet boundary condi-
tions

on 0Q2F,

us = gs
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where g, and f; are time-independent functions.
In the case Q () = QF, not depending on ¢, the
corresponding instationary model is

g—b;—vAu+(u-V)u+Vp=fs
and div u=0 in Qp x (0, 00), (5)
u=g,+ 3N, fig, IRF x (0, 00)

M(O) = Uy On QF.

In this model, we assume that uy # u,, g; are
given functions with localized supports in 92
and f(r) = (fi@®), ..., fa.(t)) is a finite-
dimensional control. Due to the incompressibility
condition, the functions g; have to satisfy

/ gi-n=0,
IQF

where n is the unit normal to 02 r, outward Q.
The stabilization problem, with a prescribed

decay rate —o < O, consists in looking for a

control f in feedback form, that is, of the form

(1) = K(u(t) — us), (6)

such that the solution to the Navier-Stokes system
Eq. (5), with f defined by Eq. (6), obeys

e () —u) . < ¢ (lluo — usll) .

for some norm Z, provided [uo — uy|, is small
enough and where ¢ is a nondecreasing function.
The mapping K, called the feedback gain, may
be chosen linear.

The usual procedure to solve this stabilization
problem consists in writing the system satisfied
by u — u,, in linearizing this system, and in
looking for a feedback control stabilizing this
linearized model. The issue is first to study the
stabilizability of the linearized model and, when
it is stabilizable, to find a stabilizing feedback
gain. Among the feedback gains that stabilize
the linearized model, we have to find one able
to stabilize, at least locally, the nonlinear system
too.

The linearized controlled system associated
with Eq. (5) is
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8V — A + (g V)V + (v Vg + Vg = 0

and div v=01in QF x (0, 00),

v=2% fi()g on R x (0, %),

v(0) = vy on Qp.

(N

The easiest way for proving the stabilizability of
the controlled system Eq. (7) is to verify the Hau-
tus criterion. It consists in proving the following
unique continuation result. If (¢;,¥;,A;) is the

solution to the eigenvalue problem

Ajp; = vAP; — (uy - V)g; + (Vuy)' ¢,
+Vy; =0 and divg; =0in Qp,
¢; =0 on dQr, Red; >—a, (8)

and if in addition (¢;, ¥;) satisfies

/ gi-o(p;, ¥j)n=0 forall 1 <i <N,
0QF

then (¢;,v¥;) = 0. By using a unique continu-
ation theorem due to Fabre and Lebeau (1996),
we can explicitly determine the functions g; so
that this condition is satisfied; see Raymond and
Thevenet (2010). For feedback stabilization re-
sults of the Navier-Stokes equations in two or
three dimensions, we refer to Fursikov (2004),
Raymond (2006), Barbu et al. (2006), Raymond
(2007), Badra (2009), and Vazquez and Krstic
(2008).

Controllability to Trajectories of Fluid
Flows

If (@ (2), P (£))o<;<o00 18 @ solution to the Navier-
Stokes system, the controllability problem to the
trajectory (i (1), p (t))g</<00» in time T > 0,
may be rewritten as a null controllability problem
satisfied by (v, ¢) = (u — it,p — p). The local
null controllability in time 7 > O follows from
the null controllability of the linearized system
and from a fixed point argument. The linearized
controlled system is
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Uy Ay + @ (1) - V) v+ (v - V) (1) + Vg =0
and divv=0 in Qf x (0, T),
v=m.f on dQp x (0, T),
v(0) = vy € L2(Qr:RY),  div v9=0.
9)
The nonnegative function m,. is used to lo-
calize the boundary control f. The control f is

assumed to satisfy

/ me f-n=0. (10)
IQF

As for general linear dynamical systems, the null
controllability of the linearized system follows
from an observability inequality for the solutions
to the following adjoint system

P A=) V) $+ (it (1) + VY =0
and div ¢=0in Qr x (0,7),
¢ =0 on dQFr x(0,T),
¢(T) € LX(Q:RY), div ¢(T)=0.
(11

Contrary to the stabilization problem, the null
controllability by a control of finite dimension
seems to be out of reach and it will be
impossible in general. We look for a control
f € L*(0QF; RY), satisfying Eq. (10), driving
the solution to system Eq.(9) in time T to
zero, that is, such that the solution vy, s
obeys vy, r(T) = 0. The linearized system
Eq.(9) is null controllable in time 7" > 0 by a
boundary control f € L?(0Qr; RY) obeying
Eq. (10), if and only if there exists C > 0 such
that

/ 6O dx < C / me lo(@. ynl dx.
QF 0QF
(12)

for all solution (¢,v¥) of Eq.(11). The
observability inequality Eq. (12) may be proved
by establishing weighted energy estimates called
“Carleman-type estimates”; see Fernandez-Cara
et al. (2004) and Fursikov and Imanuvilov
(1996).
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Additional Controllability Results for
Other Fluid Flow Models

The null controllability of the 2D incompressible
Euler equation has been obtained by J.-M. Coron
with the so-called Return Method (Coron 1996).
See also Coron (2007) for additional references
(in particular, the 3D case has been treated by O.
Glass).

Some null controllability results for the
one-dimensional compressible Navier-Stokes
equations have been obtained in Ervedoza et al.
(2012).

Fluid-Structure Models

Fluid-structure models are obtained by coupling
an equation describing the evolution of the fluid
flow with an equation describing the evolution
of the structure. The coupling comes from the
balance of momentum and by writing that at
the fluid-structure interface, the fluid velocity is
equal to the displacement velocity of the struc-
ture.

The most important difficulty in studying
those models comes from the fact that the domain
occupied by the fluid at time ¢ evolves and
depends on the displacement of the structure.
In addition, when the structure is deformable,
its evolution is usually written in Lagrangian
coordinates while fluid flows are usually
described in Eulerian coordinates.

The structure may be a rigid or a deformable
body immersed into the fluid. It may also be a
deformable structure located at the boundary of
the domain occupied by the fluid.

A Rigid Body Immersed in a
Three-Dimensional Incompressible

Viscous Fluid

In the case of a 3D rigid body Q2(¢) immersed
in a fluid flow occupying the domain Q¢ (¢), the
motion of the rigid body may be described by
the position () € R3? of its center of mass
and by a matrix of rotation Q(t) € R3*3.
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The domain Q5(¢) and the flow X associated
with the motion of the structure obey

Xs(y, 1) = h(t) + Q1) Q5" (v — h(0)),
for y € Q5(0) = Qg,
Qs(t) = Xs(2s(0), 1),

(13)

and the matrix Q(¢) is related to the angular
velocity w : (0,T) R3, by the differential
equation

0'(t) =) x Q). 0(0)=Qo. (14
We consider the case when the fluid flow satisfies
the incompressible Navier-Stokes system Eq. (3)
in the domain Qp(¢) corresponding to Fig. 1.
Denoting by J(t) € R¥3 the tensor of inertia
at time ¢, and by m the mass of the rigid body, the
equations of the structure are obtained by writing
the balance of linear and angular momenta

mh"” =/ o(u, p)ndx,
Qs (1)
(x —h) xo(u, p)ndx,

Jo'=Joxw+
0Q25(1)
h(0) = ho, K'(0) = hy, ©(0) = wy,

(15)
where n is the normal to d25(¢) outward Q2 r(¢).
The system Eqgs. (3) and (13)—(15) has to be com-
pleted with boundary conditions. At the fluid-
structure interface, the fluid velocity is equal to
the displacement velocity of the rigid solid:

ulx, 1) =h'@) + @) x (x—h()), (16)
for all x € dQg(¢), t > 0. The exterior bound-
ary of the fluid domain is assumed to be fixed

Control of Fluids and Fluid-Structure Interactions,
Fig. 1
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I, = 0Q2F(¢)\0R2s(¢). The boundary condition
on I, x (0, T') may be of the form
u=m,f on I, x (0, c0), 17

with fr m. f+-n =0, f is a control, and m. a
localization function.

An Elastic Beam Located at the
Boundary of a Two-Dimensional
Domain Filled by an Incompressible
Viscous Fluid

When the structure is described by an infinite-
dimensional model (a partial differential equation
or a system of p.d.e.), there are a few existence
results for such systems and mainly existence of
weak solutions (Chambolle et al. 2005). But for
stabilization and control problems of nonlinear
systems, we are usually interested in strong so-
lutions. Let us describe a two-dimensional model
in which a one-dimensional structure is located
on a flat part I's = (0, L)X {yo} of the boundary
of the reference configuration of the fluid domain
QFr. We assume that the structure is a Euler-
Bernoulli beam with or without damping. The
displacement 7 of the structure in the direction
normal to the boundary I's is described by the
partial differential equation

ntt_bnxx_cntxx Fanxxxx = F,inT'g x (O, 00)7
n=0 and 75, =0 on dl's x (0, c0),
n(0) =7} and 7,(0) =73 in Ts,

(13)
where 7y, Nyx, and 7Nyyxx stand for the first,
the second, and the fourth derivative of n with
respect to x € I's. The other derivatives are
defined in a similar way. The coefficients b
and ¢ are nonnegative, and a > 0. The term
CMixx 18 a structural damping term. At time
t, the structure occupies the position ['s(f) =
{(x, ) |x €(0, L), y=yo+n(x,1)}. When
Qr 1s a two-dimensional model, I's is of
dimension one, and dI'g is reduced to the two
extremities of I's. The momentum balance is

165

obtained by writing that F' in Eq.(18) is given
by F = —\/1 +n2 o(u, p)ii - n, where ii(x, y)
is the unit normal at (x,y) € Tg(z) to T's(?)
outward Qp(¢), and n is the unit normal to
I's outward Q£(0) = Qp. If in addition, a
control f acts as a distributed control in the
beam equation, we shall have

F=—\14+n20(@, pi-n+ f (19)
The equality of velocities on I'g(¢) reads as
ulx, yo +n(x, 1)) = (0, ni(x, 1)),
xe(0,L),t>0. (20)

Control of Fluid-Structure Models

To control or to stabilize fluid-structure models,
the control may act either in the fluid equation or
in the structure equation or in both equations.
There are a very few controllability and
stabilization results for systems coupling the
incompressible Navier-Stokes system with a
structure equation. We state below two of those
results. Some other results are obtained for
simplified one-dimensional models coupling
the viscous Burgers equation coupled with the
motion of a mass; see Badra and Takahashi
(2013) and the references therein.

We also have to mention here recent papers on
control problems for systems coupling quasi-
stationary Stokes equations with the motion
of deformable bodies, modeling microorganism
swimmers at low Reynolds number; see Alouges
et al. (2008).

Null Controllability of the
Navier-Stokes System Coupled with
the Motion of a Rigid Body

The system coupling the incompressible Navier-
Stokes system Eq.(3) in the domain drawn
in Fig. 1, with the motion of a rigid body
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described by Egs. (13)-(16), with the boundary
control Eq. (17) is null controllable locally in a
neighborhood of 0. Before linearizing the system
in a neighborhood of 0, the fluid equations have
to be rewritten in Lagrangian coordinates, that
is, in the cylindrical domain Qr x (0, c0). The
linearized system is the Stokes system coupled
with a system of ordinary differential equations.
The proof of this null controllability result relies
on a Carleman estimate for the adjoint system;
see, e.g., Boulakia and Guerrero (2013).

Feedback Stabilization of the
Navier-Stokes System Coupled with a
Beam Equation

The system coupling the incompressible Navier-
Stokes system Eq.(3) in the domain drawn in
Fig. 2, with beam Egs. (18)—(20), can be locally
stabilized with any prescribed exponential decay
rate —a < 0, by a feedback control f acting in
Eq. (18) via Eq. (19); see Raymond (2010). The
proof consists in showing that the infinitesimal
generator of the linearized model is an analytic
semigroup (when ¢ > 0), that its resolvent is
compact, and that the Hautus criterion is satisfied.

When the control acts in the fluid equation,
the system coupling Eq. (3) in the domain drawn
in Fig. 2, with the beam Egs. (18)—(20), can be
stabilized when ¢ > 0. To the best of our
knowledge, there is no null controllability result
for such systems, even with controls acting both
in the structure and fluid equations. The case
where the beam equation is approximated by a
finite-dimensional model is studied in Lequeurre
(2013).

1N

I

Control of Fluids and Fluid-Structure Interactions,
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Control of Linear Systems with
Delays

Wim Michiels
KU Leuven, Leuven (Heverlee), Belgium

Abstract

The presence of time delays in dynamical sys-
tems may induce complex behavior, and this be-
havior is not always intuitive. Even if a system’s
equation is scalar, oscillations may occur. Time
delays in control loops are usually associated
with degradation of performance and robustness,
but, at the same time, there are situations where
time delays are used as controller parameters.

Keywords

Delay differential equations; Delays as controller
parameters; Functional differential equation

Introduction

Time-delays are important components of many
systems from engineering, economics, and the
life sciences, due to the fact that the transfer
of material, energy, and information is mostly
not instantaneous. They appear, for instance, as
computation and communication lags, they
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model transport phenomena and heredity, and
they arise as feedback delays in control loops.
An overview of applications, ranging from traffic
flow control and lasers with phase-conjugate
feedback, over (bio)chemical reactors and cancer
modeling, to control of communication networks
and control via networks, is included in Sipahi
etal. (2011).

The aim of this contribution is to describe
some fundamental properties of linear control
systems subjected to time-delays and to outline
principles behind analysis and synthesis methods.
Throughout the text, the results will be illustrated
by means of the scalar system

() = u(t — 1), (1

which, controlled with instantaneous state feed-
back, u(t) = —kx(t), leads to the closed-loop
system

X() = —kx@ —1). )

Although this didactic example is extremely sim-
ple, we shall see that its dynamics are already
very rich and shed a light on delay effects in
control loops.

In some works, the analysis of (2) is called the
hot shower problem, as it can be interpreted as
a (over)simplified model for a human adjusting
the temperature in a shower: x(¢) then denotes
the difference between the water temperature and
the desired temperature as felt by the person, the
term — kx(¢) models the reaction of the person
by further opening or closing taps, and the delay
is due to the propagation with finite speed of the
water in the ducts.

Basis Properties of Time-Delay
Systems

Functional Differential Equation
We focus on a model for a time-delay system
described by

X(t) = Aox(t) + Aix(t —1), x()eR". (3)
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This is an example of a functional differential
equation (FDE) of retarded type. The term FDE
stems from the property that the right-hand side
can be interpreted as a functional evaluated at a
piece of trajectory. The term retarded expresses
that the right-hand side does not explicitly depend
on X.

As a first difference with an ordinary differ-
ential equation, the initial condition of (3) at
t = 0is a function ¢ from [—7,0] to R". For
all ¢ € C([—7,0],R"), where C ([—7,0],R") is
the space of continuous functions mapping the
interval [—t, 0] into R”, a forward solution x (¢)
exists and is uniquely defined. In Fig. 1, a solution
of the scalar system (2) is shown.

The discontinuity in the derivative at t = 0
stems from Agp(0) + A1p(—1) # limg_o¢.
Due to the smoothing property of an integrator,
however, at ¢ n € N, the discontinuity will
only be present in the (n + 1)th derivative.
This illustrates a second property offunctional

¢ €C([~tm 0], R") :
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differential equations of retarded type: solutions
become smoother as time evolves. As a
third major difference with ODEs, backward
continuation of solutions is not always possible
(Michiels and Niculescu 2007).

Reformulation in a First-Order Form

The state of system (3) at time ¢ is the minimal in-
formation needed to continue the solution, which,
once again, boils down to a function segment
X (¢p)where x,(¢)(0) = x(t +6),0 € [—7,0] (in
Fig. 1, the function X, is shown in red for # = 5).
This suggests that (3) can be reformulated as a
standard ordinary differential equation over the
infinite-dimensional space C([—t, 0], R"). This
equation takes the form

9a0) = A0 20 € C (0L B @)

where operator A is given by

¢ € C([~1,0], R")

DA = g i
. ¢ (0) = Ao¢ (0) + 419 (—7)
— d¢
Ag =0 (&)
The relation between solutions of (3) and (4)  where ||- ||, is the supremum norm and ||p||; =

is given by z(¢)(0) x(t + 0),0 € [-1,0].
Note that all system information is concentrated
in the nonlocal boundary condition describing the
domain of A. The representation (4) is closely
related to a description by an advection PDE with

a nonlocal boundary condition (Krstic 2009).

Asymptotic Growth Rate of Solutions

and Stability

The reformulation of (3) into the standard
form (4) allows us to define stability notions
and to generalize the stability theory for ordinary
differential equations in a straightforward way,
with the main change that the state space is
C([-7,0],R"). For example, the null solution
of (3) is exponentially stable if and only if there
exist constants C > 0 and y > 0 such that

Vo € C([—tm. 0], R") [lx;: (p)l|; < Ce " |1,

SUPpel—r07l|@(0)]]2. As the system is linear,

1.2

1

0.8}
0.6
0.4}

x 0.2¢

-0.2¢
04}
-0.6¢
-0.8
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Solution of (2) for T = 1,k = 1, and initial condition

p=1



Control of Linear Systems with Delays

asymptotic stability and exponential stability are
equivalent. A direct generalization of Lyapunov’s
second method yields:

Theorem 1 The null solution of linear system
(3) is asymptotically stable if there exist a
continuous functional V : C([—t,0],R") = R (a
so-called Lyapunov-Krasovskii functional) and
continuous nondecreasing functions u,v,w
Rt — R with

u(0) = v(0) = w(0) = 0 and u(s) > 0,

v(s) > 0,w(s) > fors > 0,
such that for all ¢ € C([—t, 0], R")

u(llglly) < V@) <vlo0l,).
V(p) <—w(40],),

where

V(9) = lim sup ~[V(x(8)) — V(@)].
h—0+ h

Converse Lyapunov theorems and the con-
struction of the so-called complete-type
Lyapunov-Krasovskii functionals are discussed
in Kharitonov (2013). Imposing a particular
structure on the functional, e.g., a form depending
only on a finite number of free parameters,
often leads to easy-to-check stability criteria
(for instance, in the form of LMIs), yet as price
to pay, the obtained results may be conservative
in the sense that the sufficient stability conditions
might not be close to necessary conditions.
As an alternative to Lyapunov functionals,
Lyapunov functions can be used as well, provided
that the condition V < 0 is relaxed (the so-
called Lyapunov-Razumikhin approach); see, for
example, Gu et al. (2003).

Delay Differential Equations as

Perturbation of ODEs

Many results on stability, robust stability, and
control of time-delay systems are explicitly or
implicitly based on a perturbation point of view,
where delay differential equations are seen as
perturbations of ordinary differential equations.
For instance, in the literature, a classification
of stability criteria is often presented in terms
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of delay-independent criteria (conditions holding
for all values of the delays) and delay-dependent
criteria (usually holding for all delays smaller
than a bound). This classification has its origin at
two different ways of seeing (3) as a perturbation
of an ODE, with as nominal system x(t) =
Aox(t) and x(t) = (Ao + Ap)x(t) (system
for zero delay), respectively. This observation is
illustrated in Fig.2 for results based on input-
output- and Lyapunov-based approaches.

The Spectrum of Linear Time-Delay
Systems

Two Eigenvalue Problems
The substitution of an exponential solution in (3)
leads us to the nonlinear eigenvalue problem

A —Ag—Aje ) =0,1eC,veC" v #0.
(6)
The solutions of the equation det(Al — Ay —
Are™7) = 0 are called characteristic roots.
Similarly, formulation (4) leads to the equivalent
infinite-dimensional linear eigenvalue problem

(M — Ay =0, € C,u € C([~7,0],C"), uz0.
(7

The combination of these two viewpoints lays
at the basis of most methods for computing
characteristic roots; see Michiels (2012). On the
one hand, discretizing (7), i.e., approximating
A with a matrix, and solving the resulting
standard eigenvalue problems allow to obtain
global information, for example, estimates of
all characteristic roots in a given compact set
or in a given right half plane. On the other
hand, the (finitely many) nonlinear equations (6)
allow to make local corrections on characteristic
root approximations up to the desired accuracy,
e.g., using Newton’s method or inverse residual
iteration. Linear time-delay systems satisfy
spectrum-determined growth properties of
solutions. For instance, the zero solution of (3)
is asymptotically stable if and only if all
characteristic roots are in the open left half plane.
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Delay-independent results

Z(t) = Agz(t)+Az(t—7)

Control of Linear Systems with Delays

Delay-dependent results

(t) = (Ag + Al)z(t)+ A (z(t — 1) —x(t))

input-output setting:

(M — Ap)~1A, (M= (Ag+ Ap) T AN
AT e M1
€ 3 T
|e=dwr| = 1 ‘&‘ST
Jjw
Lyapunov setting:

V=2aTPx +f V= acTPac—l—f...
where where

ATP+ PA; <0

(Ag+ ADTP+ P(Ay + A) <0

Control of Linear Systems with Delays, Fig. 2 The classification of stability criteria in delay-independent results and
delay-dependent results stems from two different perturbation viewpoints. Here, perturbation terms are printed in red
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Control of Linear Systems with Delays, Fig. 3 (Left) Rightmost characteristic roots of (2) for kt = 1. (Right) Real

parts of rightmost characteristic roots as a function of kt

In Fig.3 (left), the rightmost characteristic
roots of (2) are depicted for kt = 1. Note that
since the characteristic equation can be written
as AT + kte™** = 0,k and t can be combined
into one parameter. In Fig. 3 (right), we show the
real parts of the characteristic roots as a func-
tion of ktr. The plots illustrate some important
spectral properties of retarded-type FDEs. First,
even though there are in general infinitely many
characteristic roots, the number of them in any
right half plane is always finite. Second, the indi-
vidual characteristic roots, as well as the spectral

abscissa, i.e., the supremum of the real parts of
all characteristic roots, continuously depend on
parameters. Related to this, a loss or gain of
stability is always associated with characteristic
roots crossing the imaginary axis. Figure 3 (right)
also illustrates the transition to a delay-free sys-
tem as kt — 07,

Critical Delays: A Finite-Dimensional
Characterization

Assume that for a given value of k, we are
looking for values of the delay t. for which (2)
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has a characteristic root jw, on the imaginary

axis. From jo = —ke /7, we get
Z+027
w. =k, . = EE——
We
dA -
=0,1,....,0 % E“r@.jwf)} :a)_(z (8)

Critical delay values 7, are indicated with green
circles on Fig. 3 (right). The above formulas first
illustrate an invariance property of imaginary
axis roots and their crossing direction with re-
spect to delay shifts of 277 /w,. Second, the num-
ber of possible values of w, is one and thus finite.
More generally, substituting A = jw in (6) and
treating v as a free parameter lead to a two-
parameter eigenvalue problem

(Jol —Ag— Aiz)v =0, ©))

with @ on the real axis and z = exp(—jw1)
on the unit circle. Most methods to solve such a
problem boil down to an elimination of one of the
independent variables w or z. As an example of an
elimination technique, we directly get from (9)

jow ea(Ag+ A1z), —jw € o(AF + ATz
= det (Ao + A12) ® (A5 + Afz7")) =0,

where o(-) denotes the spectrum and & the
Kronecker sum. Clearly, the resulting eigenvalue
problem in z is finite dimensional.
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Limitations Induced by Delays

It is well known that delays in control loop
may lead to a significant degradation of per-
formance and robustness and even to instability
(Niculescu 2001; Richard 2003). Let us return
to example (2). As illustrated with Fig.3 and
expressions (8), the system loses stability if 7
reaches the value 7/2k, while stability cannot
be recovered for larger delays. The maximum
achievable exponential decay rate of the solu-
tions, which corresponds to the minimum of the
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spectral abscissa, is given by —1/7; hence, large
delays can only be tolerated at the price of a
degradation of the rate of convergence. It should
be noted that the limitations induced by delays are
even more stringent if the uncontrolled systems
are exponentially unstable, which is not the case
for (2).

The analysis in the previous sections gives
a hint why control is difficult in the presence
of delays: the system is inherently infinite
dimensional. As a consequence, most control
design problems which involve determining a
finite number of parameters can be interpreted
as reduced-order control design problems or
as control design problems for under-actuated
systems, which both are known to be hard
problems.

Fixed-Order Control

Most standard control design techniques lead to
controllers whose dimension is larger or equal
to the dimension of the system. For infinite-
dimensional time-delay system, such controllers
might have a disadvantage of being complicated
and hard to implement. To see this, for a system
with delay in the state, the generalization of
static state feedback, u(t) = k(x), is given by
u(t) = f_oI x(t + 0)du(0), where u is a function
of bounded variation. However, in the context
of large-scale systems, it is known that reduced-
order controllers often perform relatively well
compared to full-order controllers, while they are
much easier to implement.

Recently, new methods for the design of con-
trollers with a prescribed order (dimension) or
structure have been proposed (Michiels 2012).
These methods rely on a direct optimization of
appropriately defined cost functions (spectral ab-
scissa, Hy/Hoo criteria). While H; criteria can be
addressed within a derivative-based optimization
framework, H oo criteria and the spectral abscissa
require targeted methods for non-smooth opti-
mization problems. To illustrate the need for such
methods, consider again Fig. 3 (right): minimiz-
ing the spectral abscissa for a given value of 7
as a function of the controller gain k leads to an
optimum where the objective function is not dif-
ferentiable, even not locally Lipschitz, as shown
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by the red circle. In case of multiple controller
parameters, the path of steepest descent in the pa-
rameter space typically has phases along a man-
ifold characterized by the non-differentiability of
the objective function.

Using Delays as Controller Parameters

In contrast to the detrimental effects of delays,
there are situations where delays have a beneficial
effect and are even used as controller parameters;
see Sipahi et al. (2011). For instance, delayed
feedback can be used to stabilize oscillatory sys-
tems where the delay serves to adjust the phase in
the control loop. Delayed terms in control laws
can also be used to approximate derivatives in
the control action. Control laws which depend
on the difference x(¢) — x(t — t), the so-called
Pyragas-type feedback, have the property that the
position of equilibria and the shape of periodic
orbits with period t are not affected, in contrary
to their stability properties. Last but not least,
delays can be used in control schemes to generate
predictions or to stabilize predictors, which allow
to compensate delays and improve performance
(Krstic 2009; Zhong 2006). Let us illustrate the
main idea once more with system (1).

System (1) has a special structure, in the sense
that the delay is only in the input, and it is advan-
tageous to exploit this structure in the context of
control. Coming back to the didactic example, the
person who is taking a shower is — possibly after
some bad experiences — aware about the delay
and will take into account his/her prediction of
the system’s reaction when adjusting the cold and
hot water supply. Let us, to conclude, formalize
this. The uncontrolled system can be rewritten as
X(t) = v(t), where v(t) = u(t — t). We know
u up to the current time ¢; thus, we know v up
to time ¢ + 7, and if x(¢) is also known, we can
predict the value of x at time 7 + 7,

t+1
Xp(t +1)=x()+ / v(s)ds

x(0) + / " w(s)ds,

and use the predicted state for feedback. With the
control law u(t) = —kx,(¢t 4+ v), there is only
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one closed-loop characteristic root at A = —k,
i.e., as long as the model used in the predictor
is exact, the delay in the loop is compensated by
the prediction. For further reading on prediction-
based controllers, see, e.g., Krstic (2009) and the
references therein.

Conclusions

Time-delay systems, which appear in a large
number of applications, are a class of infinite-
dimensional systems, resulting in rich dynamics
and challenges from a control point of view. The
different representations and interpretations and,
in particular, the combination of viewpoints lead
to a wide variety of analysis and synthesis tools.
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Abstract

Control of machining processes encompasses
a broad range of technologies and innovations,
ranging from optimized motion planning and
servo drive loop design to on-the-fly regulation
of cutting forces and power consumption to
applying control strategies for damping out
chatter vibrations caused by the interaction of
the chip generation mechanism with the machine
tool structural dynamics. This article provides a
brief introduction to some of the concepts and
technologies associated with machining process
control.
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Introduction

Machining is used extensively in the manufac-
turing industry as a shaping process, where high
product accuracy, quality, and strength are re-
quired. From automotive and aerospace compo-
nents, to dies and molds, to biomedical implants,
and even mobile device chassis, many manufac-
tured products rely on the use of machining.
Machining is carried out on machine tools,
which are multi-axis mechatronic systems de-
signed to provide the relative motion between
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the tool and workpiece, in order to facilitate the
desired cutting operation. Figure 1 illustrates a
single axis of a ball screw-driven machine tool,
performing a milling operation. Here, the cutting
process is influenced by the motion of the servo
drive. The faster the part is fed in towards the ro-
tating cutter, the larger the cutting forces become,
following a typically proportional relationship
that holds for a large class of milling operations
(Altintas 2012). The generated cutting forces, in
turn, are absorbed by the machine tool and feed
drive structure. They cause mechanical deforma-
tion and may also excite the vibration modes,
if their harmonic content is near the structural
natural frequencies. This may, depending on the
cutting speed and tool and workpiece engagement
conditions, lead to forced vibrations or chatter
(Altintas 2012).

The disturbance effect of cutting forces is
also felt by the servo control loop, consisting of
mechanical, electrical, and digital components.
This disturbance may result in the degradation
of tool positioning accuracy, thereby leading to
part errors. Another input that influences the
quality achieved in a machining operation is the
commanded trajectory. Discontinuous or poorly
designed motion commands, with acceleration
discontinuity, lead typically to jerky motion, vi-
brations, and poor surface finish. Beyond motion
controller design and trajectory planning, emerg-
ing trends in machining process control include
regulating, by feedback, various outcomes of the
machining process, such as peak resultant cutting
force, spindle power consumption, and amplitude
of vibrations caused by the machining process.
In addition to using actuators and instrumentation
already available on a machine tool, such as feed
and spindle drives and current sensors, additional
devices, such as dynamometers, accelerometers,
as well as inertial or piezoelectric actuators, may
need to be used in order to achieve the required
level of feedback and control injection capability.

Servo Drive Control

Stringent requirements for part quality, typically
specified in microns, coupled with disturbance
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Control of Machining Processes, Fig. 1 Single axis of a ball screw-driven machine tool performing milling

force inputs coming from the machining process, It can be seen in Fig.3 that increased axis
which can be in the order of tens to thousands tracking errors (ex and ey) may result in increased
of Newtons, require that the disturbance rejec- contour error (g). A practical solution to mitigate
tion of feed drives, which act as dynamic (i.e., this problem, in machine tool engineering, is
frequency dependent) “stiffness” elements, be to also match the dynamics of different motion
kept as strong as possible. In traditional machine axes, so that the tracking errors always assume
design, this is achieved by optimizing the me- an instantaneous proportion that brings the actual
chanical structure for maximum rigidity. After- tool position as close as possible to the desired
wards, the motion control loop is tuned to yield toolpath (Koren 1983). Sometimes, the control
the highest possible bandwidth (i.e., responsive action can be designed to directly reduce the
frequency range), without interfering with the contour error as well, which leads to the structure
vibratory modes of the machine tool in a way that  known as “cross-coupling control” (Koren 1980).
can cause instability. The P-PI position velocity

cascade control structure, shown in Fig.2, is

the most widely used technique in machine tool  Trajectory Planning

drives. Its tuning guidelines have been well estab-

lished in the literature (Ellis 2004). To augment  Smooth trajectory planning with at least accel-
the command following accuracy, velocity and  eration level continuity is required in machine
acceleration feedforward, and friction compensa-  tgo] control, in order to avoid inducing unwanted
tion terms are added. Increasing the closed-loop  vibration or excessive tracking error during the
bandwidth yields better disturbance rejection and  machining process. For this purpose, computer
more accurate tracking of the commanded tra-  pumerical control (CNC) systems are equipped
jectory (Pritschow 1996), which is especially  with various spline toolpath interpolation func-
important in high-speed machining applications  tjons, such as B-splines, and NURBS. The fee-
where elevated cutting speeds necessitate faster  drate (i.e., progression speed along the toolpath)
feed motion. is planned in the “look-ahead” function of the
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CNC so that the total machining cycle time is
reduced as much as possible. This has to be
done without violating the position-dependent
feedrate limits already programmed into the nu-
merical control (NC) code, which are specified
by considering various constraints coming from
the machining process.

In feedrate optimization, axis level trajecto-
ries have to stay within the velocity and torque
limits of the drives, in order to avoid damaging
the machine tool or causing actuator saturation.
Moreover, as an indirect way of containing track-
ing errors, the practice of limiting axis level jerk
(i.e., rate of change of acceleration) is applied
(Gordon and Erkorkmaz 2013). This results in

tool position

tool deflection

reduced machining cycle time, while avoiding
excessive vibration or positioning error due to
“jerky” motion.

An example of trajectory planning using quin-
tic (5th degree) polynomials for toolpath param-
eterization is shown in Fig.4. Here, comparison
is provided between unoptimized and optimized
feedrate profiles subject to the same axis velocity,
torque (i.e., control signal), and jerk limits. As
can be seen, significant machining time reduc-
tion can be achieved through trajectory optimiza-
tion, while retaining the dynamic tool position
accuracy. While Fig.4 shows the result of an
elaborate nonlinear optimization approach (Alt-
intas and Erkorkmaz 2003), practical look-ahead
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Control of Machining Processes, Fig. 4 Example of quintic spline trajectory planning without and with feedrate

optimization

algorithms have also been proposed which lead to
more conservative cycle times but are much better
suited for real-time implementation inside a CNC
(Weck et al. 1999).

Adaptive Control of Machining

There are established mathematical methods for
predicting cutting forces, torque, power, and even
surface finish for a variety of machining oper-
ations like turning, boring, drilling, and milling
(Altintas 2012). However, when machining com-
plex components, such as gas turbine impellers,
or dies and molds, the tool and workpiece en-
gagement and workpiece geometry undergo con-
tinuous change. Hence, it may be difficult to
apply such prediction models efficiently, unless

they are fully integrated inside a computer-aided
process planning environment, as reported for
3-axis machining by Altintas and Merdol (2007).

An alternative approach, which allows the ma-
chining process to take place within safe and ef-
ficient operating bounds, is to use feedback from
the machine tool during the cutting process. This
measurement can be of the cutting forces using a
dynamometer or the spindle power consumption.
This measurement is then used inside a feedback
control loop to override the commanded feedrate
value, which has direct impact on the cutting
forces and power consumption. This scheme can
be used to ensure that the cutting forces do not
exceed a certain limit for process safety or to
increase the feed when the machining capacity
is underutilized, thus boosting productivity. Since
the geometry and tool engagement are generally



Control of Machining Processes

177

4500 ——— —
<
§ 3000
h
x By
é'é 1500 Adaptive Control
0

Time

Control of Machining Processes, Fig. 5 Example of 5-axis impeller machining with adaptive force control (Source:

Budak and Kops (2000), courtesy of Elsevier)

JES

Chuck
Tool =~ I

Feed Direction

Control of Machining
Processes, Fig. 6
Schematic of the chatter
vibration mechanism for
one degree of freedom
(From: Altintas (2012),
courtesy of Cambridge
University Press)

o
[~ |

Orthogonal plunge turning

Workpiece ho
5
n

Workpiece

Intended
Chip Thickness

hols) 4 S+ h(s)

R

ws)

Inner Modulation

Present

Chip Thickness, | Previous

revious

hal?) - ™ Chip Thickness
Fr(s) Ms) ’ halt-T)
e T T .
o ohi o Dynamic
Machine Structure Chip 'I'h?fknc

()

Yols)

Block diagram of chatter dynamics

continuously varying, the coefficients of a model
that relates the cutting force (or power) to the feed
command are also time-varying. Furthermore,
in CNC controllers, depending on the trajectory
generation architecture, the execution latency of
a feed override command may not always be
deterministic. Due to these sources of variabil-
ity, rather than using classical fixed gain feed-
back, machining control research has evolved
around adaptive control techniques (Masory and
Koren 1980; Spence and Altintas 1991), where
changes in the cutting process dynamics are con-
tinuously tracked and the control law, which com-
putes the proceeding feedrate override, is updated

[ | Outer Modulation
eh

Wave generation

accordingly. This approach has produced signifi-
cant cycle time reduction in 5-axis machining of
gas turbine impellers, as reported in Budak and
Kops (2000) and shown in Fig. 5.

Control of Chatter Vibrations

Chatter vibrations are caused by the interaction
of the chip generation mechanism with the
structural dynamics of the machine, tool, and
workpiece assembly (see Fig.6). The relative
vibration between the tool and workpiece gener-
ates a wavy surface finish. In the consecutive tool
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pass, a new wave pattern, caused by the current
instantaneous vibration, is generated on top of
the earlier one. If the formed chip, which has an
undulated geometry, displays a steady average
thickness, then the resulting cutting forces and
vibrations also remain bounded. This leads to
a stable steady-state cutting regime, known as
“forced vibration.” On the other hand, if the
chip thickness keeps increasing at every tool
pass, resulting in increased cutting forces and
vibrations, then chatter vibration is encountered.
Chatter can be extremely detrimental to the
machined part quality, tool life, and the machine
tool.

Chatter has been reported in literature to be
caused by two main phenomena: self-excitation
through regeneration and mode coupling. For
further information on chatter theory, the reader is
referred to Altintas (2012) as an excellent starting
point.

Various mitigation measures have been inves-
tigated and proposed in order to avoid and control
chatter. One widespread approach is to select
chatter-free cutting conditions through detailed
modal testing and stability analyses. Recently,
to achieve higher material removal rates, the
application of active damping has started to re-
ceive interest. This has been realized through spe-
cially designed tools and actuators (Munoa et al.
2013; Pratt and Nayfeh 2001) and demonstrated
productivity improvement in boring and milling
operations. As another method for chatter sup-
pression, modulation of the cutting (i.e., spindle)
speed has been successfully applied as a means
of interrupting the regeneration mechanism (Soli-
man and Ismail 1997; Zatarain et al. 2008).

Summary and Future Directions

This article has presented an overview of various
concepts and emerging technologies in the area of
machining process control. The new generation
of machine tools, designed to meet the ever-
growing productivity and efficiency demands,
will likely utilize advanced forms of these ideas
and technologies in an integrated manner. As
more computational power and better sensors
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become available at lower cost, one can expect
to see new features, such as more elaborate
trajectory planning algorithms, active vibration
damping techniques, and real-time process
and machine simulation and control capability,
beginning to appear in CNC units. No doubt that
the dynamic analysis and controller design for
such complicated systems will require higher
levels of rigor, so that these new technologies can
be utilized reliably and at their full potential.
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Abstract

Control of networks of underwater vehicles is
critical to underwater exploration, mapping,
search, and surveillance in the multiscale,
spatiotemporal dynamics of oceans, lakes,
and rivers. Control methodologies have been
derived for tasks including feature tracking and
adaptive sampling and have been successfully
demonstrated in the field despite the severe
challenges of underwater operations.

Keywords
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Mobile sensor arrays; Underwater exploration

Introduction

The development of theory and methodology
for control of networks of underwater vehicles
is motivated by a multitude of underwater
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applications and by the unique -challenges
associated with operating in the oceans,
lakes, and rivers. Tasks include underwater
exploration, mapping, search, and surveillance,
associated with problems that include pollution
monitoring, human safety, resource seeking,
ocean science, and marine archeology. Vehicle
networks collect data on underwater physics,
biology, chemistry, and geology for improving
the understanding and predictive modeling
of natural dynamics and human-influenced
changes in marine environments. Because the
underwater environment is opaque, inhospitable,
uncertain, and dynamic, control is critical to the
performance of vehicle networks.

Underwater vehicles typically carry sensors
to measure external environmental signals and
fields, and thus a vehicle network can be regarded
as a mobile sensor array. The underlying principle
of control of networks of underwater vehicles
leverages their mobility and uses an interacting
dynamic among the vehicles to yield a high-
performing collective behavior. If the vehicles
can communicate their state or measure the rel-
ative state of others, then they can cooperate and
coordinate their motion.

One of the major drivers of control of under-
water mobile sensor networks is the multiscale,
spatiotemporal dynamics of the environmental
fields and signals. In Curtin et al. (1993), the
concept of the autonomous oceanographic sam-
pling network (AOSN), featuring a network of
underwater vehicles, was introduced for dynamic
measurement of the ocean environment and res-
olution of spatial and temporal gradients in the
sampled fields. For example, to understand the
coupled biological and physical dynamics of the
ocean, data are required both on the small-scale
dynamics of phytoplankton, which are major ac-
tors in the marine ecosystem and the global cli-
mate, and on the large-scale dynamics of the flow
field, temperature, and salinity.

Accordingly, control laws are needed to co-
ordinate the motion of networks of underwater
vehicles to match the many relevant spatial and
temporal scales. And for a network of underwater
vehicles to perform complex missions reliably
and efficiently, the control must address the many
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uncertainties and real-world constraints including
the influence of currents on the motion of the
vehicles and the limitations on underwater com-
munication.

Vehicles

Control of networks of underwater vehicles is
made possible with the availability of small
(e.g., 1.5-2m long), relatively inexpensive
autonomous underwater vehicles (AUVs).
Propelled AUVs such as the REMUS provide
maneuverability and speed. These kinds of AUVs
respond quickly and agilely to the needs of
the network, and because of their speed, they
can often power through strong ocean flows.
However, propelled AUVs are limited by their
batteries; for extended missions, they need
docking stations or other means to recharge their
batteries.

Buoyancy-driven autonomous underwater
gliders, including the Slocum, the Spray, and
the Seaglider, are a class of endurance AUVs
designed explicitly for collecting data over large
three-dimensional volumes continuously over
periods of weeks or even months (Rudnick et al.
2004). They move slowly and steadily, and, as a
result, they are particularly well suited to network
missions of long duration.

Gliders propel themselves by alternately in-
creasing and decreasing their buoyancy using
either a hydraulic or a mechanical buoyancy en-
gine. Lift generated by flow over fixed wings
converts the vertical ascent/descent induced by
the change in buoyancy into forward motion, re-
sulting in a sawtooth-like trajectory in the vertical
plane. Gliders can actively redistribute internal
mass to control attitude, for example, they pitch
by sliding their battery pack forward and aft. For
heading control, they shift mass to roll, bank,
and turn or deflect a rudder. Some gliders are
designed for deep water, e.g., to 1,500 m, while
others for shallower water, e.g., to 200 m.

Gliders are typically operated at their maxi-
mum speed and thus they move at approximately
constant speed relative to the flow. Because this is
relatively slow, on the order of 0.3—0.5m/s in the
horizontal direction and 0.2 m/s in the vertical,
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ocean currents can sometimes reach or even ex-
ceed the speed of the gliders. Unlike a propelled
AUV, which typically has sufficient thrust to
maintain course despite currents, a glider trying
to move in the direction of a strong current will
make no forward progress. This makes coordi-
nated control of gliders challenging; for instance,
two sensors that should stay sufficiently far apart
may be pushed toward each other leading to less
than ideal sampling conditions.

Communication and Sensing

Underwater communication is one of the biggest
challenges to the control of networks of un-
derwater vehicles and one that distinguishes it
from control of vehicles on land or in the air.
Radio-frequency communication is not typically
available underwater, and acoustic data telemetry
has limitations including sensitivity to ambient
noise, unpredictable propagation, limited band-
width, and latency.

When acoustic communication is too limiting,
vehicles can surface periodically and communi-
cate via satellite. This method may be bandwidth
limited and will require time and energy. How-
ever, in the case of profiling propelled AUVs
or underwater gliders, they already move in the
vertical plane in a sawtooth pattern and thus
regularly come closer to the surface. When on the
surface, vehicles can also get a GPS fix whereas
there is no access to GPS underwater. The GPS
fix is used for correcting onboard dead reckoning
of the vehicle’s absolute position and for updating
onboard estimation of the underwater currents,
both helpful for control.

Vehicles are typically equipped with
conductivity-temperature-density (CTD) sensors
to measure temperature, salinity, and density.
From this pressure can be computed and thus
depth and vertical speed. Attitude sensors
provide measurements of pitch, roll, and
heading. Position and velocity in the plane is
estimated using dead reckoning. Many sensors
for measuring the environment have been
developed for use on underwater vehicles; these
include chlorophyll fluorometers to estimate
phytoplankton abundance, acoustic Doppler
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profilers (ADPs) to measure variations in water
velocity, and sensors to measure pH, dissolved
oxygen, and carbon dioxide.

Control

Described here are a selection of control method-
ologies designed to serve a variety of under-
water applications and to address many of the
challenges described above for both propelled
AUVs and underwater gliders. Some of these
methodologies have been successfully field tested
in the ocean.

Formations for Tracking Gradients,
Boundaries, and Level Sets in Sampled

Fields

While a small underwater vehicle can take only
single-point measurements of a field, a network
of N vehicles employing cooperative control
laws can move as a formation and estimate or
track a gradient in the field. This can be done in a
straightforward way in 2D with three vehicles and
can be extended to 3D with additional vehicles.
Consider N = 3 vehicles moving together in an
equilateral triangular formation and sampling a
2D field T : R> — R. The formation serves as a
sensor array and the triangle side length defines
the resolution of the array.

Let the position of the ith vehicle be x; € R.
Consider double integrator dynamics X; = u;,
where u; € RZ is the control force on the ith
vehicle. Suppose that each vehicle can measure
the relative position of each of its neighbors,
X;; = X; — X;. Decentralized control that derives
from an artificial potential is a popular method for
each of the three vehicles to stay in the triangular
formation of prescribed resolution dy. Consider
the nonlinear interaction potential V; : R> — R
defined as

d
Vi(xij) = ks (ln IIxij I + —02)
[1xij I

where k; > 0 is a scalar gain. The control law
for the ith vehicle derives as the gradient of this
potential with respect to x; as follows:

181

N
% =u = — Z VVi(xij) — kax;
j=Li#i

where a damping term is added with scalar gain
kq > 0. Stability of the triangle of resolution dy
is proved with the Lyapunov function

L& N-1 N
V=3 DoIkAP+DY ] D Vi)

i=1 i=1 j=i+1

Now let each vehicle use the sequence of
single-point measurements it takes along its path
to compute the projection of the spatial gradient
onto its normalized velocity, ez = X;/[|X],
ie, VIp(x,%x;) = (VT(x) - e;)ex. Following
Bachmayer and Leonard (2002), let

N
% =w; =kVTp(x.%)— Y VVi(xij)—kak:,
j=Lj#i

where k is a scalar gain. For « > 0, each vehicle
will accelerate along its path when it measures an
increasing 7' and decelerates for a decreasing 7 .
Each vehicle will also turn to keep up with the
others so that the formation will climb the spatial
gradient of 7" to find a local maximum.

Alternative control strategies have been devel-
oped that add versatility in feature tracking. The
virtual body and artificial potential (VBAP) mul-
tivehicle control methodology (Ogren et al. 2004)
was demonstrated with a network of Slocum
autonomous underwater gliders in the AOSN II
field experiment in Monterey Bay, California,
in August 2003 (Fiorelli et al. 2006). VBAP is
well suited to the operational scenario described
above in which vehicles surface asynchronously
to establish communication with a base.

VBAP is a control methodology for coordi-
nating the translation, rotation, and dilation of a
group of vehicles. A virtual body is defined by
a set of reference points that move according to
dynamics that are computed centrally and made
available to the vehicles in the group. Artificial
potentials are used to couple the dynamics of
vehicles and a virtual body so that control laws
can be derived that stabilize desired formations
of vehicles and a virtual body. When sampled
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measurements of a scalar field can be commu-
nicated, the local gradients can be estimated.
Gradient climbing algorithms prescribe virtual
body direction, so that, for example, the vehicle
network can be directed to head for the coldest
water or the highest concentration of phytoplank-
ton. Further, the formation can be dilated so that
the resolution can be adapted to minimize error in
estimates. Control of the speed of the virtual body
ensures stability and convergence of the vehicle
formation.

These ideas have been extended further to
design provable control laws for cooperative level
set tracking, whereby small vehicle groups coop-
erate to generate contour plots of noisy, unknown
fields, adjusting their formation shape to provide
optimal filtering of their noisy measurements
(Zhang and Leonard 2010).

Motion Patterns for Adaptive Sampling

A central objective in many underwater applica-
tions is to design provable and reliable mobile
sensor networks for collecting the richest data
set in an uncertain environment given limited re-
sources. Consider the sampling of a single time-
and space-varying scalar field, like temperature
T, using a network of vehicles, where the control
problem is to coordinate the motion of the net-
work to maximize information on this field over
a given area or volume.

The definition of the information metric will
depend on the application. If the data are to
be assimilated into a high-resolution dynamical
ocean model, then the metric would be defined
by uncertainty as computed by the model. A
general-purpose metric, based on objective anal-
ysis (linear statistical estimation from given field
statistics), specifies the statistical uncertainty of
the field model as a function of where and when
the data were taken (Bennett 2002). The pos-
teriori error A(r,t) is the variance of 7' about
its estimate at location r and time ¢. Entropic
information over a spatial domain of area A is

Z(t) = —log (OOLA /dr A(r,t)) ,

where 0y is a scaling factor (Grocholsky 2002).
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Computing coordinated trajectories to maxi-
mize Z(t) can in principle be addressed using
optimal coverage control methods. However, this
coverage problem is especially challenging since
the uncertainty field is spatially nonuniform and
it changes with time and with the motion of
the sampling vehicles. Furthermore, the optimal
trajectories may become quite complex so that
controlling vehicles to them in the presence of
dynamic disturbances and uncertainty may lead
to suboptimal performance.

An alternative approach decouples the design
of motion patterns to optimize the entropic in-
formation metric from the decentralized control
laws that stabilize the network onto the motion
patterns (see Leonard et al. 2007). This approach
was demonstrated with a network of 6 Slocum
autonomous underwater gliders in a 24-day-long
field experiment in Monterey Bay, California, in
August 2006 (see Leonard et al. 2010). The coor-
dinating feedback laws for the individual vehicles
derive systematically from a control methodol-
ogy that provides provable stabilization of a pa-
rameterized family of collective motion patterns
(Sepulchre et al. 2008). These patterns consist of
vehicles moving on a finite set of closed curves
with spacing between vehicles defined by a small
number of “synchrony” parameters. The feed-
back laws that stabilize a given motion pattern use
the same synchrony parameters that distinguish
the desired pattern.

Each vehicle moves in response to the relative
position and direction of its neighbors so that it
keeps moving, it maintains the desired spacing,
and it stays close to its assigned curve. It has been
observed in the ocean, for vehicles carrying out
this coordinated control law, that “when a vehicle
on a curve is slowed down by a strong opposing
flow field, it will cut inside a curve to make up
distance and its neighbor on the same curve will
cut outside the curve so that it does not overtake
the slower vehicle and compromise the desired
spacing” (Leonard et al. 2010). The approach is
robust to vehicle failure since there are no leaders
in the network, and it is scalable since the control
law for each vehicle can be defined in terms of
the state of a few other vehicles, independent of
the total number of vehicles.
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The control methodology prescribes steering
laws for vehicles operated at a constant speed.
Assume that the i th vehicle moves at unit speed in
the plane in the direction 6; (¢) at time 7. Then, the
velocity of the ith vehicle is X; = (cos 6;, sin 6;).
The steering control u; is the component of the
force in the direction normal to velocity, such that
éi =u; fori = 1,..., N. Define

N
U@.....0n) = 7||pe||2,

1
Po = NZX]

Jj=1

U is a potential function that is maximal at 1
when all vehicle directions are synchronized and
minimal at 0 when all vehicle directions are
perfectly anti-synchronized. Let X; = (X;, y;) =
(1/N) Y0 xij and let % = (=, %). Define

N
1
S(Xt,. .. XN, 01,.. ., Oy) = EZHX,-—CUOQ}HZ,

i=1

where wy # 0. S is a potential function that is
minimal at O for circular motion of the vehicles
around their center of mass with radius py =
lewo| "

Define the steering control as

N
éi = a)()(l —+ Kc‘<ii,5(i>) — K@ Zsin(ej — 9,‘),
Jj=1

where K. > 0 and Ky are scalar gains. Then, cir-
cular motion of the network is a steady solution,
with the phase-locked heading arrangement a
minimum of KyU, i.e., synchronized or perfectly
anti-synchronized depending on the sign of Kjp.
Stability can be proved with the Lyapunov func-
tion V.o = K.S + KpU. This steering control
law depends only on relative position and relative
heading measurements of the other vehicles.

The general form of the methodology extends
the above control law to network interconnec-
tions defined by possibly time-varying graphs
with limited sensing or communication links,
and it provides systematic control laws to stabi-
lize symmetric patterns of heading distributions
about noncircular closed curves. It also allows
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for multiple graphs to handle multiple scales.
For example, in the 2006 field experiment, the
default motion pattern was one in which six
gliders moved in coordinated pairs around three
closed curves; one graph defined the smaller-
scale coordination of each pair of gliders about
its curve, while a second graph defined the larger-
scale coordination of gliders across the three
curves.

Implementation

Implementation of control of networks of
underwater vehicles requires coping with the
remote, hostile underwater environment. The
control methodology for motion patterns
and adaptive sampling, described above, was
implemented in the field using a customized
software infrastructure called the Glider
Coordinated Control System (GCCS) (Paley et al.
2008). The GCCS combines a simple model for
control planning with a detailed model of glider
dynamics to accommodate the constant speed of
gliders, relatively large ocean currents, waypoint
tracking routines, communication only when
gliders surface (asynchronously), other latencies,
and more. Other approaches consider control
design in the presence of a flow field, formal
methods to integrate high-resolution models of
the flow field, and design tailored to propelled
AUVs.

Summary and Future Directions

The multiscale, spatiotemporal dynamics of the
underwater environment drive the need for well-
coordinated control of networks of underwater
vehicles that can manage the significant opera-
tional challenges of the opaque, uncertain, inhos-
pitable, and dynamic oceans, lakes, and rivers.
Control theory and algorithms have been de-
veloped to enable networks of vehicles to suc-
cessfully operate as adaptable sensor arrays in
missions that include feature tracking and adap-
tive sampling. Future work will improve control
in the presence of strong and unpredictable flow
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fields and will leverage the latest in battery and
underwater communication technologies. Hybrid
vehicles and heterogeneous networks of vehicles
will also promote advances in control. Future
work will draw inspiration from the rapidly grow-
ing literature in decentralized cooperative con-
trol strategies and complex dynamic networks.
Dynamics of decision-making teams of robotic
vehicles and humans is yet another important
direction of research that will impact the success
of control of networks of underwater vehicles.

Cross-References

Motion Planning for Marine Control Systems
Underactuated Marine Control Systems

Recommended Reading

In Bellingham and Rajan (2007), it is argued that
cooperative control of robotic vehicles is espe-
cially useful for exploration in remote and hostile
environments such as the deep ocean. A recent
survey of robotics for environmental monitoring,
including a discussion of cooperative systems,
is provided in Dunbabin and Marques (2012).
A survey of work on cooperative underwater
vehicles is provided in Redfield (2013).
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Abstract

The reader is introduced to the predictor feedback
method for the control of general nonlinear sys-
tems with input delays of arbitrary length. The
delays need not necessarily be constant but can
be time-varying or state-dependent. The predictor
feedback methodology employs a model-based
construction of the (unmeasurable) future state of
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the system. The analysis methodology is based on
the concept of infinite-dimensional backstepping
transformation — a transformation that converts
the overall feedback system to a new, cascade
“target system” whose stability can be studied
with the construction of a Lyapunov function.

Keywords

Distributed parameter systems; Delay systems;
Backstepping; Lyapunov function

Nonlinear Systems with Input Delay

Nonlinear systems of the form

X0)=f(X@®).U@—=DX0). 1)

where t € Ry istime, f : R" xR — R”
is a vector field, X € R”"” is the state, D
Ry x R" — Ry is a nonnegative function of
the state of the system, and U € R is the scalar
input, are ubiquitous in applications. The starting
point for designing a control law for (1), as well
as for analyzing the dynamics of (1) is to con-
sider the delay-free counterpart of (1), i.e., when
D = 0, for which a plethora of results exists
dealing with its stabilization and Lyapunov-based
analysis (Krstic et al 1995).

Systems of the form (1) constitute more
realistic models for physical systems than
delay-free systems. The reason is that often
in engineering applications the control that is
applied to the system does not immediately affect
the system. This dead time until the controller can
affect the system might be due to, among other
things, the long distance of the controller from
the system, such as, for example, in networked
control systems, or due to finite-speed transport
or flow phenomena, such as, for example, in
additive manufacturing and cooling systems, or
due to various after-effects, such as, for example,
in population dynamics.
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The first step toward control design and anal-
ysis for system (1) is to consider the special
case in which D = const. The next step is to
consider the special case of system (1), in which
D = D(t), i.e., the delay is an a priori given
function of time. Systems with time-varying de-
lays model numerous real-world systems, such
as, networked control systems, traffic systems,
or irrigation channels. Assuming that the input
delay is an a priori defined function of time is
a plausible assumption for some applications.
Yet, the time-variation of the delay might be
the result of the variation of a physical quantity
that has its own dynamics, such as, for example,
in milling processes (due to speed variations),
3D printers (due to distance variations), cooling
systems (due to flow rate variations), and popu-
lation dynamics (due to population’s size varia-
tions). Processes in this category can be modeled
by systems with a delay that is a function of
the state of the system, i.e., by (1) with D =
D(X).

In this article control designs are presented
for the stabilization of nonlinear systems with
input delays, with delays that are constant (Krstic
2009), time-varying (Bekiaris-Liberis and Krstic
2012) or state-dependent (Bekiaris-Liberis and
Krstic 2013b), employing predictor feedback,
i.e., employing a feedback law that uses the future
rather than the current state of the system. Since
one employs in the feedback law the future values
of the state, the predictor feedback completely
cancels (compensates) the input delay, i.e., after
the control signal reaches the system, the state
evolves as if there were no delay at all. Since the
future values of the state are not a priori known,
the main control challenge is the implementation
of the predictor feedback law. Having determined
the predictor, the control law is then obtained
by replacing the current state in a nominal state-
feedback law (which stabilizes the delay-free
system) by the predictor.

A methodology is presented in the article
for the stability analysis of the closed-loop
system under predictor feedback by constructing
Lyapunov functionals. The Lyapunov functionals
are constructed for a transformed (rather than
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the original) system. The transformed system
is, in turn, constructed by transforming the
original actuator state U(f), 8 € [t — D,t]
to a transformed actuator state with the
aid of an infinite-dimensional backstepping
transformation. The overall transformed system
is easier to analyze than the original system
because it is a cascade, rather than a feedback
system, consisting of a delay line with zero
input, whose effect fades away in finite time,
namely, after D time units, cascaded with an
asymptotically stable system.

0
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Predictor Feedback

The predictor feedback designs are based on a
feedback law U(t) = k(X(t)) that renders the
closed-loop system X = f (X,«k(X)) glob-
ally asymptotically stable. For stabilizing sys-
tem (1), the following control law is employed
instead

U0) = k(P()), )

where

f (P(s).U) PR

P(O) = X(1) +/

1=p.x) 1 = Di (0(5), P(5)) = VD (a(s), P(s)) f (P(s). U(s))

1

0
f) = ds,
oO)y=1+ /,_D(,,Xm) [=D,(0(). P() VD (0 (). (&) f (PGs). UGN

4)

for all £ — D (¢,X(t)) < 6 < t. The sig-
nal P is the predictor of X at the appropri-
ate prediction time o, i.e., P(t) = X(o(t)).
This fact is explained in more detail in the next
paragraphs of this section. The predictor em-
ploys the future values of the state X which
are not a priori available. Therefore, for actually
implementing the feedback law (2) one has to
employ (3). Relation (3) is a formula for the
future values of the state that depends on the
available measured quantities, i.e., the current
state X(¢) and the history of the actuator state
U@),0 €lt—D(t,X(¢)),t]. To make clear the
definitions of the predictor P and the prediction
time o, as well as their implementation through
formulas (3) and (4), the constant delay case is
discussed first.

The idea of predictor feedback is to employ in
the control law the future values of the state at
the appropriate future time, such that the effect
of the input delay is completely canceled (com-
pensated). Define the quantity ¢(¢) = t — D,
which from now on is referred to as the de-
layed time. This is the time instant at which the
control signal that currently affects the system

was actually applied. To cancel the effect of this
delay, the control law (2) is designed such that
Up(t)) = Uit — D) = «x(X(t)), ie., such
that U(r) = «k (X (¢7'(1))) = « (X( + D)).
Define the prediction time o through the relation
¢~ '(t) = o(t) = t + D. This is the time
instant at which an input signal that is currently
applied actually affects the system. In the case of
a constant delay, the prediction time is simply D
time-units in the future. Next an implementable
formula for X(o(¢)) = X(t + D) is derived.
Performing a change of variables t = 6 + D, for
allt—D <6 <tinX(t) = f (X(t).U(t — D))
and integrating in 0 starting at 0 = t — D, one
can conclude that P defined by (3) with D, =
VDf = 0and D = const is the D time-units
ahead predictor of X, i.e., P(t) = X(o(t)) =
X+ D).

To better understand definition (3) the
case of a linear system with a constant input
delay D, ie., a system of the form X (f) =
AX() + BU(t — D), is considered next (see
also » Control of Linear Systems with Delays
and Hale and Verduyn Lunel (1993)). In this
case, the predictor P(t) is given explicitly
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using the variation of constants formula, with
the initial condition P(t — D) = X(¢), as
P@t) = ePX@) + [, e DBU®)dE.
For systems that are nonlinear, P(¢) cannot be
written explicitly, for the same reason that a
nonlinear ODE cannot be solved explicitly. So
P(¢) is represented implicitly using the nonlinear
integral equation (3). The computation of P(¢)
from (3) is straightforward with a discretized
implementation in which P(¢) is assigned values
based on the right-hand side of (3), which
involves earlier values of P and the values of
the input U.

The case D = D(t) is considered next. As
in the case of constant delays the main goal is
to implement the predictor P. One needs first to
define the appropriate time interval over which
the predictor of the state is needed, which, in
the constant delay case is simply D time-units
in the future. The control law has to satisfy
U@@) = (X)), or, U(t) = « (X (0(1))).
Hence, one needs to find an implementable for-
mula for P(t) = X (o(¢)). In the constant
delay case the prediction horizon over which one
needs to compute the predictor can be determined
based on the knowledge of the delay time since
the prediction horizon and the delay time are
both equal to D. This is not anymore true in
the time-varying case in which the delayed time
is defined as ¢(t) = t — D(t), whereas the
predictiontime as ¢~ (t) = o (t) = t+D (o(2)).
Employing a change of variables in X (1) =
f(X(@®),U(t—D(@)) as t = o(0), for all
¢(t) < 0 < t and integrating in 6 starting at
6 = ¢(t) one obtains the formula for P given
by (3) with D, = D’(o(t)), VDf = 0 and
D = D(t).

Next the case D = D(X(¢)) is considered.
First one has to determine the predictor, i.e.,
the signal P such that P(t) = X (o(t)), where
o(t) = ¢7'(¢t) and ¢(r) = t — D(X(¢)). In
the case of state-dependent delay, the prediction
time o(¢) depends on the predictor itself, i.e.,
the time when the current control reaches
the system depends on the value of the state
at that time, namely, the following implicit
relationship holds P(t) = X + D(P(t)))
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(and X(¢) = P(t — D(X(¢)))). This implicit
relation can be solved by proceeding as in the
time-varying case, i.e., by performing the change
of variables t = o(0), for all t — D (X(¢)) <
O <tinX(t) = f (X(),U (t — D(X()))) and
integrating in 0 starting at 0 = t — D (X(?)),
to obtain the formula (3) for P with D, = 0,
VDf = VD (P(s)) f (P(s),U(s)) and D =
D(X(1)).

Analogously, one can derive the predictor for
the case D = D (¢, X(¢t)) with the difference
that now the prediction time is not given explic-
itly in terms of P, but it is defined through an
implicit relation, namely, it holds that o(t) =
t + D (0(t), P(t)). Therefore, for actually com-
puting o one has to proceed as in the deriva-
tion of P, i.e., to differentiate relation o(0) =
0 + D (0(6), P(8)) and then integrate starting
at the known value o (t — D (¢, X(2))) = t. It
is important to note that the integral equation (4)
is needed in the computation of P only when D
depends on both X and ¢.

Backstepping Transformation and
Stability Analysis

The predictor feedback designs are based on a
feedback law « (X)) that renders the closed-loop
system X = f (X,k(X)) globally asymptoti-
cally stable. However, in the rest of the section
it is assumed that the feedback law «x (X) renders
the closed-loop system X = f(X.k(X)+v)
input-to-state stable (ISS) with respect to v, i.e.,
there exists a smooth function S : R* — R4 and
class K functions «y, oy, o3, a4 such that

a3 (|X@))) = S (X(1)
< a (IX0)D) )

dS(X (1))
Tf (X(0),k(X(1))

+v(0) = —a (| XO))) + ea(fo()).  (6)

Imposing this stronger assumption enables one
to construct a Lyapunov functional for the
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closed-loop systems (1)—(4) with the aid of the
Lyapunov characterization of ISS defined in (5)
and (6).

The stability analysis of the closed-loop
systems (1)—(4) is explained next. Denote the
infinite-dimensional backstepping transformation
of the actuator state as

W) = U(0) —«k(P(0)),
forallt — D (1, X)) <6 <1, (7)

where P(0) is given in terms of U(6) from (3).
Using the fact that P (t — D (¢, X(t))) =
X(t), for all t > 0, one gets from (7) that
U(—-D(t X)) = W(E—D(t X)) +
k(X(t)). With the fact that for all § > 0,
U@@) = «(P(8)) one obtains from (7) that
wW@) = 0, for all 8 > 0. Yet, for all
t < D(t,X(t)),ie., forall 8 <0, W(6) might
be nonzero due to the effect of the arbitrary initial
condition U(0), 6 € [-D (0, X(0)), 0]. With the
above observations, one can transform system (1)
with the aid of transformation (7) to the following
target system

X(1) = f (X(0), k(X())
+W(t — D, X(1)))) (®)
W@ —-D( X)) =0,
fort — D (¢, X(¢)) = 0. ©)]

Using relations (5), (6), and (8), (9) one can
construct the following Lyapunov functional
for showing asymptotic stability of the target
system (8), (9), i.e., for the overall system
consisting of the vector X (¢) and the transformed

infinite-dimensional  actuator state  W(0),
=D X)) =0 =<t,

2 L(t)
vo=saxoy+2 [ 2 ar ao)
Cc Jo r
where ¢ > 0 is arbitrary and

L(t) = sup

t—D(1,X(1)) <0<t

eCODWO)|.
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With the invertibility of the backstepping trans-
formation one can then show global asymptotic
stability of the closed-loop system in the original
variables (X, U). In particular, there exists a class
KL function § such that

|X (@) +

sup  |U(O)]

=D, X(1)=<0=t

sup
—D(0,X(0))<6<0

=p (IX(0)|+ IU(Q)I,Z),

forallz > 0. (12)
One of the main obstacles in designing glob-
ally stabilizing control laws for nonlinear sys-
tems with long input delays is the finite escape
phenomenon. The input delay may be so large
that the control signal cannot reach the system
before its state grows unbounded. Therefore, one
has to assume that the system X = f (X, ) is
forward complete, i.e., for every initial condition
and every bounded input signal the corresponding

solution is defined for all > 0.

With the forward completeness requirement,
estimate (12) holds globally for constant but
arbitrary large delays. For the case of time-
varying delays, estimate (12) holds globally as
well but under the following four conditions on
the delay:

Cl. D(¢t) = 0. This condition guarantees the
causality of the system.

C2. D(t) < oo. This condition guarantees that
all inputs applied to the system eventually
reach the system.

C3. D(t) < 1. This condition guarantees that the
system never feels input values that are older
than the ones it has already felt, i.e., the input
signal’s direction never gets reversed. (This
condition guarantees the existence of 0 =
47

C4. D(t) > —oo This condition guarantees that
the delay cannot disappear instantaneously,
but only gradually.

In the case of state-dependent delays, the delay
depends on time as a result of its dependency on
the state. Therefore, predictor feedback guaran-
tees stabilization of the system when the delay
satisfies the four conditions C1-C4. Yet, since
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the delay is a nonnegative function of the state,
conditions C2—C4 are satisfied by restricting the
initial state X and the initial actuator state. There-
fore estimate (12) holds locally.

Cross-References
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Recommended Reading

The main control design tool for general systems
with input delays of arbitrary length is predictor
feedback. The reader is referred to Artstein
(1982) for the first systematic treatment of
general linear systems with constant input delays.
The applicability of predictor feedback was
extended in Krstic (2009) to several classes of
systems, such as nonlinear systems with constant
input delays and linear systems with unknown
input delays. Subsequently, predictor feedback
was extended to general nonlinear systems with
nonconstant input and state delays (Bekiaris-
Liberis and Krstic 2013a). The main stability
analysis tool for systems employing predictor
feedback is backstepping. Backstepping was
initially introduced for adaptive control of finite-
dimensional nonlinear systems (Krstic et al
1995). The continuum version of backstepping
was originally developed for the boundary
control of several classes of PDEs in Krstic and
Smyshlyaev (2008).
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Abstract

Quantum control theory is concerned with the
control of systems whose dynamics are governed
by the laws of quantum mechanics. Quantum
control may take the form of open loop quan-
tum control or quantum feedback control. Also,
quantum feedback control may consist of mea-
surement based feedback control, in which the
controller is a classical system governed by the
laws of classical physics. Alternatively, quantum
feedback control may take the form of coherent
feedback control in which the controller is a
quantum system governed by the laws of quan-
tum mechanics. In the area of open loop quantum
control, questions of controllability along with
optimal control and Lyapunov control methods
are discussed. In the case of quantum feedback
control, LQG and H®° control methods are dis-
cussed.
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quantum feedback; Quantum control; Quantum
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Introduction

Quantum control is the control of systems whose
dynamics are described by the laws of quantum
physics rather than classical physics. The
dynamics of quantum systems must be described
using quantum mechanics which allows for
uniquely quantum behavior such as entanglement
and coherence. There are two main approaches
to quantum mechanics which are referred to
as the Schrodinger picture and the Heisenberg
picture. In the Schrddinger picture, quantum
systems are modeled using the Schrédinger
equation or a master equation which describe the
evolution of the system state or density operator.
In the Heisenberg picture, quantum systems are
modeled using quantum stochastic differential
equations which describe the evolution of system
observables. These different approaches to
quantum mechanics lead to different approaches
to quantum control. Important areas in which
quantum control problems arise include physical
chemistry, atomic and molecular physics, and
optics. Detailed overviews of the field o quantum
control can be found in the survey papers Dong
and Petersen (2010) and Brif et al. (2010) and the
monographs Wiseman and Milburn (2010) and
D’ Alessandro (2007).

A fundamental problem in a number of ap-
proaches to quantum control is the controllability
problem. Quantum controllability problems are
concerned with finite dimensional quantum sys-
tems modeled using the Schrodinger picture of
quantum mechanics and involves the structure of
corresponding Lie groups or Lie algebras; e.g.,
see D’Alessandro (2007). These problems are
typically concerned with closed quantum sys-
tems which are quantum systems isolated from
their environment. For a controllable quantum
system, an open loop control strategy can be
constructed in order to manipulate the quantum
state of the system in a general way. Such open
loop control strategies are referred to as coherent
control strategies. Time optimal control is one
method of constructing these control strategies
which has been applied in applications including
physical chemistry and in nuclear magnetic res-
onance systems; e.g., see Khaneja et al. (2001).

Control of Quantum Systems

An alternative approach to open loop quantum
control is the Lyapunov approach; e.g., see Wang
and Schirmer (2010). This approach extends the
classical Lyapunov control approach in which a
control Lyapunov function is used to construct a
stabilizing state feedback control law. However
in quantum control, state feedback control is not
allowed since classical measurements change the
quantum state of a system and the Heisenberg un-
certainty principle forbids the simultaneous exact
classical measurement of noncommuting quan-
tum variables. Also, in many quantum control
applications, the timescales are such that real time
classical measurements are not technically feasi-
ble. Thus, in order to obtain an open loop control
strategy, the deterministic closed loop system is
simulated as if the state feedback control were
available and this enables an open loop control
strategy to be constructed. As an alternative to
coherent open loop control strategies, some clas-
sical measurements may be introduced leading to
incoherent control strategies; e.g., see Dong et al.
(2009).

In addition to open loop quantum control
approaches, a number of approaches to quantum
control involve the use of feedback; e.g., see
Wiseman and Milburn (2010). This quantum
feedback may either involve the use of classical
measurements, in which case the controller is a
classical (nonquantum) system or it may involve
the case where no classical measurements are
used since the controller itself is a quantum
system. The case in which the controller itself
is a quantum system is referred to as coherent
quantum feedback control; e.g., see Lloyd
(2000) and James et al. (2008). Quantum
feedback control may be considered using the
Schrodinger picture, in which case the quantum
systems under consideration are modeled using
stochastic master equations. Alternatively using
the Heisenberg picture, the quantum systems
under consideration are modeled using quantum
stochastic differential equations. Applications in
which quantum feedback control can be applied
include quantum optics and atomic physics. In
addition, quantum control can potentially be
applied to problems in quantum information (e.g.,
see Nielsen and Chuang 2000) such as quantum
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error correction (e.g., see Kerckhoff et al. 2010)
or the preparation of quantum states. Quantum
information and quantum computing in turn have
great potential in solving intractable computing
problems such as factoring large integers using
Shor’s algorithm; see Shor (1994).

Schrodinger Picture Models of
Quantum Systems

The state of a closed quantum system can be rep-
resented by a unit vector |¢) in a complex Hilbert
space H. Such a quantum state is also referred
to as a wavefunction. In the Schrédinger picture,
the time evolution of the quantum state is defined
by the Schrodinger equation which is in general a
partial differential equation. An important class
of quantum systems are finite-level systems in
which the Hilbert space is finite dimensional. In
this case, the Schrodinger equation is a linear
ordinary differential equation of the form

0
ih ¥ (1)) = Holy (1))

where Hj is the free Hamiltonian of the sys-
tem, which is a self-adjoint operator on H; e.g.,
see Merzbacher (1970). Also, # is the reduced
Planck’s constant, which can be assumed to be
one with a suitable choice of units. In the case of
a controlled closed quantum system, this differ-
ential equation is extended to a bilinear ordinary
differential equation of the form

a m
i lv () = [Ho + Zuk(z)Hk} [y (@) (1)

k=1

where the functions ug(¢z) are the control
variables and the Hj are corresponding control
Hamiltonians, which are also assumed to be self-
adjoint operators on the underlying Hilbert space.
These models are used in the open loop control
of closed quantum systems.

To represent open quantum systems, it is nec-
essary to extend the notion of quantum state to
density operators p which are positive operators
with trace one on the underlying Hilbert space
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‘H. In this case, the Schrédinger picture model of
a quantum system is given in terms of a master
equation which describes the time evolution of
the density operator. In the case of an open quan-
tum system with Markovian dynamics defined on
a finite dimensional Hilbert space of dimension
N, the master equation is a matrix differential
equation of the form

p6) = —i |:(Ho + Zuk(rmk) ,p(t)}

k=1

1N2—1
+§ Z ok (I:Fj,o(l),FkT]

k=0
+ [F,-,p(z)F,j]);
()

e.g., see Breuer and Petruccione (2002). Here
the notation [X,p] = Xp — pX refers to the
commutation operator and the notation ™ denotes

the adjoint of an operator. Also, {F j}jvigl is a
basis set for the space of bounded linear operators
on H with Fy = 1. Also, the matrix A = (o )
is assumed to be positive definite. These models,
which include the Lindblad master equation for
dissipative quantum systems as a special case
(e.g., see Wiseman and Milburn 2010), are used
in the open loop control of finite-level Markovian
open quantum systems.

In quantum mechanics, classical measure-
ments are described in terms of self-adjoint
operators on the underlying Hilbert space
referred to as observables; e.g., see Breuer
and Petruccione (2002). An important case
of measurements are projective measurements
in which an observable M is decomposed as
M = Y}, kP; where the Py are orthogonal
projection operators on H; e.g., see Nielsen and
Chuang (2000). Then, for a closed quantum
system with quantum state |), the probability
of an outcome k from the measurement is given
by (Y| Px|y) which denotes the inner product
between the vector |{) and the vector Pylyr).
This notation is referred to as Dirac notation and
is commonly used in quantum mechanics. If the
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outcome of the quantum measurement is k, the
state of the quantum system collapses to the new

value of M. This change in the quantum
NI g q

state as a result of a measurement is an important
characteristic of quantum mechanics. For an open
quantum system which is in a quantum state
defined by a density operator p, the probability of
a measurement outcome k is given by tr( Py p). In
this case, the quantum state collapses to tf ("}‘,’3‘) .

In the case of an open quantum system with
continuous measurements of an observable X,
we can consider a stochastic master equation as
follows:

dp(t) = —i [(Ho +> uk(t)Hk) ,p(l)] dr

k=1
—k [X. [X, p()]] dr

+v2k (Xp(t) + p(1) X
=2tr (Xp(1)) p(2)) dW

3)

where k is a constant parameter related to the
measurement strength and dW is a standard
Wiener increment which is related to the
continuous measurement outcome y(¢) by

dW = dy — 2/ktr (Xp(t)) dt; 4)
e.g., see Wiseman and Milburn (2010). These
models are used in the measurement feedback
control of Markovian open quantum systems.
Also, the Egs.(3) and (4) can be regarded as a
quantum filter in which p(¢) is the conditional
density of the quantum system obtained by filter-

ing the measurement signal y(¢); e.g., see Bouten
et al. (2007) and Gough et al. (2012).

Heisenberg Picture Models of
Quantum Systems

In the Heisenberg picture of quantum mechanics,
the observables of a system evolve with time and
the quantum state remains fixed. This picture may
also be extended slightly by considering the time
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evolution of general operators on the underlying
Hilbert space rather than just observables which
are required to be self-adjoint operators. An im-
portant class of open quantum systems which are
considered in the Heisenberg picture arise when
the underlying Hilbert space is infinite dimen-
sional and the system represents a collection of
independent quantum harmonic oscillators inter-
acting with a number of external quantum fields.
Such linear quantum systems are described in the
Heisenberg picture by linear quantum stochastic
differential equations (QSDEs) of the form

dx(t) = Ax(t)dt + Bdw(t):
dy(t) = Cx(t)dt + Ddw(r) (5)

where A, B, C, D are real or complex matrices,
x(t) is a vector of possibly noncommuting oper-
ators on the underlying Hilbert space H; e.g., see
James et al. (2008). Also, the quantity dw() is
decomposed as

dw(t) = Buw(t)dt + div(t)

where §,,(¢) is an adapted process and w(¢) is a
quantum Wiener process with Itd table:

din(t)dn(r)" = Fdt.

Here, F; > 0 is a real or complex matrix. The
quantity w(?) represents the components of the
input quantum fields acting on the system. Also,
the quantity y(¢) represents the components of
interest of the corresponding output fields that
result from the interaction of the harmonic oscil-
lators with the incoming fields.

In order to represent physical quantum sys-
tems, the components of vector x (¢) are required
to satisfy certain commutation relations of the
form

[x; (), xk ()] =2iOp, jok =1,2,....n, Vi

where the matrix ® = (@ jk) is skew symmetric.
The requirement to represent a physical quan-
tum system places restrictions on the matrices
A, B, C, D, which are referred to as physical
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realizability conditions; e.g., see James et al.
(2008) and Shaiju and Petersen (2012). QSDE
models of the form (5) arise frequently in the area
of quantum optics. They can also be generalized
to allow for nonlinear quantum systems such as
arise in the areas of nonlinear quantum optics
and superconducting quantum circuits; e.g., see
Bertet et al. (2012). These models are used in
the feedback control of quantum systems in both
the case of classical measurement feedback and
in the case of coherent feedback in which the
quantum controller is also a quantum system and
is represented by such a QSDE model.

(S, L, H) Quantum System Models

An alternative method of modeling an open
quantum system as opposed to the stochastic
master equation (SME) approach or the
quantum stochastic differential equation (QSDE)
approach, which were considered above, is to
simply model the quantum system in terms of
the physical quantities which underlie the SME
and QSDE models. For a general open quantum
system, these quantities are the scattering
matrix S which is a matrix of operators on
the underlying Hilbert space, the coupling
operator L which is a vector of operators on
the underlying Hilbert space, and the system
Hamiltonian which is a self-adjoint operator on
the underlying Hilbert space; e.g., see Gough
and James (2009). For a given (S, L, H) model,
the corresponding SME model or QSDE model
can be calculated using standard formulas; e.g.,
see Bouten et al. (2007) and James et al. (2008).
Also, in certain circumstances, an (S, L, H)
model can be calculated from an SME model
or a QSDE model. For example, if the linear
QSDE model (5) is physically realizable, then a
corresponding (S, L, H) model can be found. In
fact, this amounts to the definition of physical
realizability.

Open Loop Control of Quantum
Systems

A fundamental question in the open loop
control of quantum systems is the question of
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controllability. For the case of a closed quantum
system of the form (1), the question of
controllability can be defined as follows (e.g.,
see Albertini and D’ Alessandro 2003):

Definition 1 (Pure State Controllability) The
quantum system (1) is said to be pure state
controllable if for every pair of initial and final
states [y) and |V /), there exist control functions
{urp(t)} and a time T > O such that the cor-
responding solution of (1) with initial condition

o) satisfies [(T)) = [¢y).

Alternative definitions have also been con-
sidered for the controllability of the quantum
system (1); e.g., see Albertini and D’ Alessandro
(2003) and Grigoriu et al. (2013) in the case
of open quantum systems. The following the-
orem provides a necessary and sufficient con-
dition for pure state controllability in terms of
the Lie algebra £y generated by the matrices
{—iHy,—iH,,...,—iH,}, u(N) the Lie algebra
corresponding to the unitary group of dimension
N, su(N) the Lie algebra corresponding to the
special unitary group of dimension N, sp(%) the
% dimensional symplectic group, and L the Lie
algebra conjugate to sp(%).

Theorem 1 (See D’Alessandro 2007) The
quantum system (1) is pure state controllable
if and only if the Lie algebra Ly satisfies one of
the following conditions:

(1) Lo = su(N);

(2) Ly is conjugate to Sp(%);

(3) Lo =u(N); )

(4) Lo =span{ilyxy} D L.

Similar conditions have been obtained when
alternative definitions of controllability are used.

Once it has been determined that a quantum
system is controllable, the next task in open
loop quantum control is to determine the control
functions {uy (¢)} which drive a given initial state
to a given final state. An important approach to
this problem is the optimal control approach
in which a time optimal control problem is
solved using Pontryagin’s maximum principle
to construct the control functions {u(t)} which
drives the given initial state to the given final state
in minimum time; e.g., see Khaneja et al. (2001).
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This approach works well for low dimensional

quantum systems but is computationally
intractable for high dimensional quantum
systems.

An alternative approach for high dimensional
quantum systems is the Lyapunov control ap-
proach. In this approach, a Lyapunov function is
selected which provides a measure of the distance
between the current quantum state and the desired
terminal quantum state. An example of such a
Lyapunov function is

V=@ -yrlv@)—yr) =0

e.g., see Mirrahimi et al. (2005). A state feedback
control law is then chosen to ensure that the time
derivative of this Lyapunov function is negative.
This state feedback control law is then simulated
with the quantum system dynamics (1) to give the
required open loop control functions {uy (¢)}.

Classical Measurement Based
Quantum Feedback Control

A Schrédinger Picture Approach to

Classical Measurement Based Quantum
Feedback Control

In the Schrodinger picture approach to classical
measurement based quantum feedback control
with weak continuous measurements, we begin
the stochastic master equations (3) and (4) which
are considered as both a model for the system
being controlled and as a filter which will form
part of the final controller. These filter equations
are then combined with a control law of the form

u(?) = f(p())

where the function f(-) is designed to achieve
a particular objective such as stabilization of the
quantum system. Here u(¢) represents the vector
of control inputs u(¢). An example of such a
quantum control scheme is given in the paper
Mirrahimi and van Handel (2007) in which a
Lyapunov method is used to design the con-
trol law f(-) so that a quantum system consist-
ing of an atomic ensemble interacting with an
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electromagnetic field is stabilized about a spec-
ified state py = [ ) (Vinl-

A Heisenberg Picture Approach to

Classical Measurement Based Quantum
Feedback Control

In this Heisenberg picture approach to classical
measurement based quantum feedback control,
we begin with a quantum system which is de-
scribed by linear quantum stochastic equations of
the form (5). In these equations, it is assumed
that the components of the output vector all
commute with each other and so can be regarded
as classical quantities. This can be achieved if
each of the components are obtained via a process
of homodyne detection from the corresponding
electromagnetic field; e.g., see Bachor and Ralph
(2004). Also, it is assumed that the input electro-
magnetic field w(¢) can be decomposed as

(6)

dwlt) = [ﬁu(t)dt + dfvl(l):|

dw> (1)

where ,(t) represents the classical control input
signal and w (¢), wy(t) are quantum Wiener pro-
cesses. The control signal displaces components
of the incoming electromagnetic field acting on
the system via the use of an electro-optic modu-
lator; e.g., see Bachor and Ralph (2004).

The classical measurement feedback based
controllers to be considered are classical systems
described by stochastic differential equations of
the form

dxx(t) = Agxi(t)dt + Brdy(r)
Bu(t)dt = Cgxi(t)dt. (7

For a given quantum system model (5), the ma-
trices in the controller (7) can be designed using
standard classical control theory techniques such
as LQG control (see Doherty and Jacobs 1999) or
H > control (see James et al. 2008).
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Coherent Quantum Feedback Control

Coherent feedback control of a quantum system
corresponds to the case in which the controller
itself is a quantum system which is coupled in a
feedback interconnection to the quantum system
being controlled; e.g., see Lloyd (2000). This
type of control by interconnection is closely re-
lated to the behavioral interpretation of feedback
control; e.g., see Polderman and Willems (1998).

An important approach to coherent quantum
feedback control occurs in the case when the
quantum system to be controlled is a linear quan-
tum system described by the QSDEs (5). Also, it
is assumed that the input field is decomposed as
in (6). However in this case, the quantity B,(t)
represents a vector of noncommuting operators
on the Hilbert space underlying the controller
system. These operators are described by the fol-
lowing linear QSDEs, which represent the quan-
tum controller:

dxg(t) = Agxi(t)dt + Bgdy(t) + Bxdwg (1)
dyk(t) = Cxxi(1)dr + Ddwg (¢). (8)

Then, the input 8,(¢) is identified as

Bu(t) = Crxi(1).

Here the quantity

mdn=[®m] ©)

dwk (1)

represents the quantum fields acting on the con-
troller quantum system and where wg(¢) cor-
responds to a quantum Wiener process with a
given It6 table. Also, y(¢) represents the output
quantum fields from the quantum system being
controlled. Note that in the case of coherent quan-
tum feedback control, there is no requirement that
the components of y(¢#) commute with each other
and this in fact represents one of the main advan-
tages of coherent quantum feedback control as
opposed to classical measurement based quantum
feedback control.
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An important requirement in coherent feed-
back control is that the QSDEs (8) should satisfy
the conditions for physical realizability; e.g., see
James et al. (2008). Subject to these constraints,
the controller (8) can then be designed according
to an H®* or LQG criterion; e.g., see James
et al. (2008) and Nurdin et al. (2009). In the case
of coherent quantum H* control, it is shown
in James et al. (2008) that for any controller
matrices (Ag, Bk, Ck), the matrices (Bk, DK)
can be chosen so that the controller QSDEs (8)
are physically realizable. Furthermore, the choice
of the matrices (l§ ') k) does not affect the H*°
performance criterion considered in James et al.
(2008). This means that the coherent controller
can be designed using the same approach as
designing a classical H *° controller.

In the case of coherent LQG control such as
considered in Nurdin et al. (2009), the choice of
the matrices (B, D) significantly affects the
closed loop LQG performance of the quantum
control system. This means that the approach
used in solving the coherent quantum H °° prob-
lem given in James et al. (2008) cannot be applied
to the coherent quantum LQG problem. To date
there exist only some nonconvex optimization
methods which have been applied to the coherent
quantum LQG problem (e.g., see Nurdin et al.
2009), and the general solution to the coherent
quantum LQG control problem remains an open
question.

Cross-References
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Robustness Issues in Quantum Control
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Abstract

The undesirable effects of roll motion of ships
(rocking about the longitudinal axis) became no-
ticeable in the mid-nineteenth century when sig-
nificant changes were introduced to the design of
ships as a result of sails being replaced by steam
engines and the arrangement being changed from
broad to narrow hulls. The combination of these
changes led to lower transverse stability (lower
restoring moment for a given angle of roll) with
the consequence of larger roll motion. The in-
crease in roll motion and its effect on cargo
and human performance lead to the development
several control devices that aimed at reducing and
controlling roll motion. The control devices most
commonly used today are fin stabilizers, rudder,
anti-roll tanks, and gyrostabilizers. The use of
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different types of actuators for control of ship
roll motion has been amply demonstrated for over
100 years. Performance, however, can still fall
short of expectations because of difficulties as-
sociated with control system design, which have
proven to be far from trivial due to fundamental
performance limitations and large variations of
the spectral characteristics of wave-induced roll
motion. This short article provides an overview
of the fundamentals of control design for ship
roll motion reduction. The overview is limited to
the most common control devices. Most of the
material is based on Perez (Ship motion control.
Advances in industrial control. Springer, London,
2005) and Perez and Blanke (Ann Rev Control
36(1):1367-5788,2012).

Keywords

Roll damping; Ship motion control

Ship Roll Motion Control Techniques

One of the most commonly used devices to at-
tenuate ship motion are the fin stabilisers. These
are small controllable fins located on the bilge of
the hull usually amid ships. These devices attain
a performance in the range of 60-90% of roll
reduction (root mean square) (Sellars and Martin
1992). They require control systems that sense
the vessel’s roll motion and act by changing the
angle of the fins. These devices are expensive
and introduce underwater noise that can affect
sonar performance, they add to propulsion losses,
and they can be damaged. Despite this, they
are among the most commonly used ship roll
motion control device. From a control perspec-
tive, highly nonlinear effects (dynamic stall) may
appear when operating in severe sea states and
heavy rolling conditions (Gaillarde 2002).
During studies of ship damage stability con-
ducted in the late 1800s, it was observed that
under certain conditions the water inside the
vessel moved out of phase with respect to the
wave profile, and thus, the weight of the water on
the vessel counteracted the increase of pressure
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on the hull, hence reducing the net roll excitation
moment. This led to the development of fluid
anti-roll tank stabilizers. The most common type
of anti-roll tank is the U-tank, which comprises
two reservoirs, located one on port and one on
starboard, connected at the bottom by a duct.
Anti-roll tanks can be either passive or active. In
passive tanks, the fluid flows freely from side to
side. According to the density and viscosity of
the fluid used, the tank is dimensioned so that
the time required for most of the fluid to flow
from side to side equals the natural roll period
of the ship. Active tanks operate in a similar
manner, but they incorporate a control system
that modifies the natural period of the tank to
match the actual ship roll period. This is normally
achieved by controlling the flow of air from the
top of one reservoir to the other. Anti-roll tanks
attain a medium to high performance in the range
of 20-70 % of roll angle reduction (RMS) (Mar-
zouk and Nayfeh 2009). Anti-roll tanks increase
the ship displacement. They can also be used to
correct list (steady-state roll angle), and they are
the preferred stabilizer for icebreakers.

Rudder-roll stabilization (RRS) is a technique
based on the fact that the rudder is located not
only aft, but also below the center of gravity of
the vessel, and thus the rudder imparts not only
yaw but also roll moment. The idea of using the
rudder for simultaneous course keeping and roll
reduction was conceived in the late 1960s by
observations of anomalous behavior of autopilots
that did not have appropriate wave filtering — a
feature of the autopilot that prevents the rudder
from reacting to every single wave; see, for ex-
ample, Fossen and Perez (2009) for a discus-
sion on wave filtering. Rudder-roll stabilization
has been demonstrated to attain medium to high
performance in the range of 50-75% of roll
reduction (RMS) (Baitis et al. 1983; Blanke et al.
1989; Killstrom et al. 1988; Oda et al. 1992;
van Amerongen et al. 1990). The upgrade of the
rudder machinery is required to be able to attain
slew rates in the range 10-20deg/s for RRS to
have sufficient control authority.

A gyrostabilizer uses the gyroscopic effects of
large rotating wheels to generate a roll reducing
torque. The use of gyroscopic effects was
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proposed in the early 1900s as a method to elim-
inate roll, rather than to reduce it. Although the
performance of these systems was remarkable,
up to 95 % roll reduction, their high cost, the in-
crease in weight, and the large stress produced on
the hull masked their benefits and prevented fur-
ther developments. However, a recent increase in
development of gyrostabilizers has been seen in
the yacht industry (Perez and Steinmann 2009).

Fins and rudder give rise to lift forces in
proportion to the square of flow velocity past the
fin. Hence, roll stabilization by fin or rudder is
not possible at low or zero speed. Only U-tanks
and gyro devices are able to provide stabilization
in these conditions. For further details about the
performance of different devices, see Sellars and
Martin (1992), and for a comprehensive descrip-
tion of the early development of devices, see
Chalmers (1931).

Modeling of Ship Roll Motion for
Control Design

The study of roll motion dynamics for control
system design is normally done in terms of either
one- or four-degrees-of-freedom (DOF) models.
The choice between models of different complex-
ity depends on the type of motion control system
considered.

For a one-degree-of-freedom (1DOF) case, the
following model is used:

¢ =r.
Ixxp = Kh+Kw+Kc,

ey
@

where ¢ is roll angle, p is roll rate, and I, is
rigid-body moment of inertia about the x-axis of
a body-fixed coordinate system, where K, is hy-
drostatic and hydrodynamic torques, K,, torque
generated by wave forces acting on the hull, and
K. the control torques. The hydrodynamic torque
can be approximated by the following parametric
model: K, ~ K; p+K,p+ K, |, plp|+ K(¢).
The first term represents a hydrodynamic torque
in roll due to pressure change that is proportional
to the roll accelerations, and the coefficient K,
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is called roll added mass (inertia). The second
term is a damping term, which captures forces
due to wave making and linear skin friction, and
the coefficient K, is a linear damping coefficient.
The third term is a nonlinear damping term,
which captures forces due to viscous effects. The
last term is the restoring torque due to gravity and
buoyancy.

For a 4DOF model (surge, sway, roll, and
yaw), motion variables considered are n =
pv]T,v=[uvpr]",z; =[X Y K N]", where
¥ is the yaw angle, the body-fixed velocities are
u-surge and v-sway, and r is the yaw rate. The
forces and torques are X -surge, Y -sway, K-roll,
and N-yaw. With these variables, the following
mathematical model is usually considered:

n=Jmv, (3)
Mppv +Crp(v)v =1+ 7.+ 74, (4)

where J(7) is a kinematic transformation, Mgp
is the rigid-body inertia matrix that corresponds
to expressing the inertia tensor in body-fixed co-
ordinates, Crp(v) is the rigid-body Coriolis and
centripetal matrix, and 7, 7., and T, represent
the hydrodynamic, control, and disturbance vec-
tor of force components and torques, respectively.

The hydrostatic and hydrodynamic forces are
T, ~ —Myv — C4a(v)v — D(v)v — K(¢). The
first two terms have origin in the motion of a
vessel in an irrotational flow in a nonviscous
fluid. The third term corresponds to damping
forces due to potential (wave making), skin fric-
tion, vortex shedding, and circulation (lift and
drag). The hydrodynamic effects involved are
quite complex, and different approaches based
on superposition of either odd-term Taylor ex-
pansions or square modulus (x|x|) series expan-
sions are usually considered Abkowitz (1964)
and Fedyaevsky and Sobolev (1964). The K(¢)
term represents the restoring forces in roll due to
buoyancy and gravity. The 4DOF model captures
parameter dependency on ship speed as well as
the couplings between steering and roll, and it is
useful for controller design. For additional details
about mathematical model of marine vehicles,
see Fossen (2011).
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Wave-Disturbance Models

The action of the waves creates changes in pres-
sure on the hull of the ship, which translate into
forces and moments. It is common to model the
ship motion response due to waves within a linear
framework and to obtain two frequency-response
functions (FRF), wave to excitation F; (jw, U, x)
and wave to motion H; (jw, U, x) response func-
tions, where i indicates the degree of freedom.
These FRF depend on the wave frequency, the
ship speed, and the angle y at which the waves
encounter the ship — this is called the encounter
angle.

The wave elevation in deep water is approx-
imately a stochastic process that is zero mean,
stationary for short periods of time, and Gaussian
(Haverre and Moan 1985). Under these assump-
tions, the wave elevation ¢ is fully described by
a power spectral density ®;;(w). With a linear
response assumption, the power spectral density
of wave to excitation force and wave to motion
can be expressed as

qDFF.i (]a)) = |Fl(.]a)v Us X)'zq)é'é'(.]w)s
@i (jo) = |Hi(jo, U, )P O (jo).

These spectra are models of the wave-induced
forces and motions, respectively, from which it
its common to generate either time series of
wave excitation forces in terms of the encounter
frequency to be used as input disturbances in
simulation models or time series of wave-induced
motion to be used as output disturbance; see, for
example, Perez (2005) and references herein.

Roll Motion Control and Performance
Limitations

The analysis of performance of ship roll mo-
tion control by means of force actuators is usu-
ally conducted within a linear framework by
linearizing the models. For a SISO loop where
the wave-induced roll motion is considered an
output disturbance, the Bode integral constraint
applies. This imposes restrictions on one’s free-
dom to shape the closed-loop transfer function
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to attenuate the motion due to the wave-induced
forces in different frequency ranges. These re-
sults have important consequences on the de-
sign of a roll motion control system since the
frequency of the waves seen from the vessel
changes significantly with the sea state, the speed
of the vessel, and the wave encounter angle.
The changing characteristics on open-loop roll
motion in conjunction with the Bode integral
constraint make the control design challenging
since roll amplification may occur if the control
design is not done properly. For some roll motion
control problems, like using the rudder for simul-
taneous roll attenuation and heading control, the
system presents non-minimum phase dynamics.
In this case, the trade-off of reduced sensitivity
vs. amplification of roll motion is dominating
at frequencies close to the non-minimum phase
zero — a constraint with origin in the Poisson
integral (Hearns and Blanke 1998); see also Perez
(2005).

It should be noted that non-minimum phase
dynamics also occurs with fin stabilizers, when
the stabilizers are located aft of the center of
gravity. With the fins at this location, they behave
like a rudder and introduce non-minimum phase
dynamics and heading interference at low wave-
excitation frequencies. These aspects of fin loca-
tion were discussed by Lloyd (1989).

The above discussion highlights general de-
sign constraints that apply to roll motion control
systems in terms of the dynamics of the vessel
and actuator. In addition to these constraints, one
needs also to account for limitations in actuator
slew rate and angle.

Controls Techniques Used in Different
Roll Control Systems

Fin Stabilizers

In regard to fin stabilizers, the control design is
commonly address using the IDOF model (1)
and (2). The main issues associated with control
design are the parametric uncertainty in model
and the Bode integral constraint. This integral
constraint can lead to roll amplification due to
changes in the spectrum of the wave-induced
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roll moment with sea state and sailing conditions
(speed and encounter angle). Fin machinery is
designed so that the rate of the fin motion is
fast enough, and actuator rate saturation is not an
issue in moderate sea states. The fins could be
used to correct heeling angles (steady-state roll)
when the ship makes speed, but this is avoided
due to added resistance. If it is used, integral
action needs to include anti-windup. In terms
of control strategies, PID, Ho, and LQR tech-
niques have been successfully applied in prac-
tice. Highly nonlinear effects (dynamic stall) may
appear when operating in severe sea states and
heavy rolling conditions, and proposals for appli-
cations of model predictive control have been put
forward to constraint the effective angle of attack
of the fins. In addition, if the fins are located
too far aft along the ship, the dynamic response
from fin angle to roll can exhibit non-minimum
phase dynamics, which can limit the performance
at low encounter frequencies. A thorough review
of the control literature can be found in Perez and
Blanke (2012).

Rudder-Roll Stabilization

The problem of rudder-roll stabilization requires
the 4DOF model (3) and (4), which captures the
interaction between roll, sway, and yaw together
with the changes in the hydrodynamic forces
due to the forward speed. The response from
rudder to roll is non-minimum phase (NMP),
and the system is characterized by further con-
straints due to the single-input-two-output nature
of the control problem — attenuate roll without
too much interference with the heading. Studies
of fundamental limitations due to NMP dynamics
have been approached using standard frequency-
domain tools by Hearns and Blanke (1998) and
Perez (2005). A characterization of the trade-off
between roll reduction vs. increase of interfer-
ence was part of the controller design in Stoustrup
et al. (1994). Perez (2005) determined the limits
obtainable using optimal control with full distur-
bance information. The latter also incorporated
constraints due to the limiting authority of the
control action in rate and magnitude of rudder
machinery and stall conditions of the rudder.
The control design for rudder-roll stabilization
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has been addressed in practice using PID, LQG,
and Hoo and standard frequency-domain linear
control designs. The characteristics of limited
control authority were solved by van Ameron-
gen et al. (1990) using automatic gain control.
In the literature, there have been proposals put
forward for the use of model predictive control,
QFT, sliding-mode nonlinear control, and auto-
regressive stochastic control. Combined use of
fin and rudder has also be investigated. Grimble
et al. (1993) and later Roberts et al. (1997)
used Hoo control techniques. Thorough com-
parison of controller performances for warships
was published in Crossland (2003). A thorough
review of the control literature can be found in
Perez and Blanke (2012).

Gyrostabilizers

Using a single gimbal suspension gyrostabilizer
for roll damping control, the coupled vessel-roll-
gyro model can be modeled as follows:

¢ =p 5)
K;p+K,p+Kyp =K, — Kgacosa (6)

I,0 + Bya + Cpsina = Ky pcosa + T,
)

where (6) represents the 1DOF roll dynamics
and (7) represents the dynamics of the gyrosta-
bilizer about the axis of the gimbal suspension,
where « is the gimbal angle, equivalent to the
precession angle for a single gimbal suspension,
I, is gimbal and wheel inertia about the gimbal
axis, B, is the damping, and C, is a restoring
term of the gyro about the precession axis due to
location of the gyro center of mass relative to the
precession axis (Arnold and Maunder 1961). T),
is the control torque applied to the gimbal. The
use of twin counter-spinning wheels prevents gy-
roscopic coupling with other degrees of freedom.
Hence, the control design for gyrostabilizers can
be based on a linear single-degree-of-freedom
model for roll.

The wave-induced roll moment K,, excites the
roll motion. As the roll motion develops, the roll
rate p induces a torque along the precession axis
of the gyrostabilizer. As the precession angle «
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develops, there is reaction torque done on the
vessel that opposes the wave-induced moment.
The later is the roll stabilizing torque, X, £
—Kga cosa ~ —K . This roll torque can only
be controlled indirectly through the precession
dynamics in (7) via T),. In the model above, the
spin angular velocity wyp;, is controlled to be
constant; hence the wheels’ angular momentum
Ky = Iypin wgpin is constant.

The precession control torque 7, is used
to control the gyro. As observed by Sperry
(Chalmers 1931), the intrinsic behavior of the
gyrostabilizer is to use roll rate to generate a roll
torque. Hence, one could design a precession
torque controller such that from the point of
view of the vessel, the gyro behaves as damper.
Depending on how precession torque is delivered,
it may be necessary to constraint precession
angle and rate. This problem has been recently
considered in Donaire and Perez (2013) using
passivity-based control.

U-tanks

U-tanks can be passive or active. Roll reduction
is achieved by attempting to transfer energy from
the roll motion to motion of liquid within the tank
and using the weight of the liquid to counteract
the wave excitation moment. A key aspect of the
design is the dimension and geometry of the tank
to ensure that there is enough weight due to the
displaced liquid in the tank and that the oscilla-
tion of the fluid in the tank matches the vessel
natural frequency in roll; see Holden and Fossen
(2012) and references herein. The design of the
U-tank can ensure a single-frequency matching,
at which the performance is optimized, and for
this frequency the roll natural frequency is used.
As the frequency of roll motion departs from this,
a degradation of roll reduction occurs. Active U-
tanks use valves to control the flow of air from
the top of the reservoirs to extend the frequency
matching in sailing conditions in which the roll
dominant frequency is lower than the roll natural
frequency — the flow of air is used to delay
the motion of the liquid from one reservoir to
the other. This control is achieved by detecting
the dominant roll frequency and using this infor-
mation to control the air flow from one reservoir
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to the other. If the roll dominant frequency is
higher than the roll natural frequency, the U-tank
is used in passive mode, and the standard roll
reduction degradation occurs.

Summary and Future Directions

This article provides a brief summary of control
aspects for the most common ship roll motion
control devices. These aspects include the type of
mathematical models used to design and analyze
the control problem, the inherent fundamental
limitations and the constraints that some of the
designs are subjected to, and the performance
that can be expected from the different devices.
As an outlook, one of the key issues in roll
motion control is the model uncertainty and the
adaptation to the changes in the environmen-
tal conditions. As the vessel changes speed and
heading, or as the seas build up or abate, the dom-
inant frequency range of the wave-induced forces
changes significantly. Due to the fundamental
limitations discussed, a nonadaptive controller
may produce roll amplification rather than roll
reduction. This topic has received some attention
in the literature via multi-mode control switching,
but further work in this area could be beneficial.
In the recent years, new devices have appeared
for stabilization at zero speed, like flapping fins
and rotating cylinders. Also the industry’s interest
in roll gyrostabilizers has been re-ignited. The
investigation of control designs for these devices
has not yet received much attention within the
control community. Hence, it is expected that this
will create a potential for research activity in the
future.
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Abstract

Control structure selection deals with selecting
what to control (outputs), what to measure and
what to manipulate (inputs), and also how to split
the controller in a hierarchical and decentralized
manner. The most important issue is probably
the selection of the controlled variables (outputs),
CV = Hy, where y are the available mea-
surements and H is a degree of freedom that is
seldom treated in a systematic manner by control
engineers. This entry discusses how to find H
for both for the upper (slower) economic layer
and the lower (faster) regulatory layer in the
control hierarchy. Each layer may be split in a
decentralized fashion. Systematic approaches for
input/output (I0) selection are presented.

Keywords

Control configuration; Control hierarchy;
Control structure design; Decentralized control;
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Regulatory control; Supervisory control

Introduction

Consider the generalized controller design prob-
lem in Fig.1 where P denotes the generalized
plant model. Here, the objective is to design the
controller K, which, based on the sensed outputs
v, computes the inputs (MVs) u such that the
variables z are kept small, in spite of variations in
the variables w, which include disturbances (d),
varying setpoints/references (CV) and measure-
ment noise (n),

w = [d, CVg,n]

The variables z, which should be kept small,
typically include the control error for the selected
controlled variables (CV) plus the plant inputs
(w),

z =[CV — CVi;y]

The variables v, which are the inputs to the
controller, include all known variables, including
measured outputs (ypn), measured disturbances
(dn) and setpoints,

V = [Ym; dm; CVy].
The cost function for designing the optimal con-

troller K is usually the weighted control error,

(weighted) (weighted)

exogenous outputs

exogenous inputs
u

[)

Control Structure Selection, Fig. 1 General formu-
lation for designing the controller K. The plant P is
controlled by manipulating u, and is disturbed by the
signals w. The controller uses the measurements v, and the
control objective is to keep the outputs (weighted control
error) z as small as possible

u
control signals

"
sensed outputs
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J = |[W’z||. The reason for using a prime on J

(I, is to distinguish it from the economic cost

J which we later use for selecting the controlled

variables (CV).

Notice that it is assumed in Fig. 1 that we know
what to measure (v), manipulate (u), and, most
importantly, which variables in z we would like to
keep at setpoints (CV), that is, we have assumed a
given control structure. The term “control struc-
ture selection” (CSS) and its synonym “control
structure design” (CSD) is associated with the
overall control philosophy for the system with
emphasis on the structural decisions which are
a prerequisite for the controller design problem
in Fig. 1:

1. Selection of controlled variables
“outputs,” included in z in Fig. 1)

2. Selection of manipulated variables (MVs,
“inputs,” u in Fig. 1)

3. Selection of measurements y (included in v in
Fig. 1)

4. Selection of control configuration (structure
of overall controller K that interconnects the
controlled, manipulated and measured vari-
ables; structure of K in Fig. 1)

5. Selection of type of controller K (PID, MPC,
LQG, H-infinity, etc.) and objective function
(norm) used to design and analyze it.
Decisions 2 and 3 (selection of u and y) are

sometimes referred to as the input/output (I0)
selection problem. In practice, the controller (K)
is usually divided into several layers, operating on
different time scales (see Fig.2), which implies
that we in addition to selecting the (primary)
controlled variables (CV; = CV) must also
select the (secondary) variables that interconnect
the layers (CV>).

Control structure selection includes all the
structural decisions that the engineer needs to
make when designing a control system, but
it does not involve the actual design of each
individual controller block. Thus, it involves the
decisions necessary to make a block diagram
(Fig. 1; used by control engineers) or process
& instrumentation diagram (used by process
engineers) for the entire plant, and provides
the starting point for a detailed controller
design.

(CVs,
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Control Structure Selection, Fig. 2 Typical control hi-
erarchy, as illustrated for a process plant

The term “plantwide control,” which is a syn-
onym for “control structure selection,” is used
in the field of process control. Control structure
selection is particularly important for process
control because of the complexity of large pro-
cessing plants, but it applies to all control applica-
tions, including vehicle control, aircraft control,
robotics, power systems, biological systems, so-
cial systems, and so on.

It may be argued that control structure selec-
tion is more important than the controller design
itself. Yet, control structure selection is hardly
covered in most control courses. This is probably
related to the complexity of the problem, which
requires the knowledge from several engineering
fields. In the mathematical sense, the control
structure selection problem is a formidable com-
binatorial problem which involves a large number
of discrete decision variables.

Control Structure Selection

Overall Objectives for Control and
Structure of the Control Layer

The starting point for control system design

is to define clearly the operational objectives.

There are usually two main objectives for

control:

1. Longer-term economic operation (minimize
economic cost J subject to satisfying opera-
tional constraints)

2. Stability and short-term regulatory control
The first objective is related to “making the sys-
tem operate as intended,” where economics are
an important issue. Traditionally, control engi-
neers have not been much involved in this step.
The second objective is related to “making sure
the system stays operational,” where stability
and robustness are important issues, and this
has traditionally been the main domain of con-
trol engineers. In terms of designing the con-
trol system, the second objective (stabilization)
is usually considered first. An example is bicy-
cle riding; we first need to learn how to sta-
bilize the bicycle (regulation), before trying to
use it for something useful (optimal operation),
like riding to work and selecting the shortest
path.

We use the term “economic cost,” because
usually the cost function J can be given a mon-
etary value, but more generally, the cost J could
be any scalar cost. For example, the cost J could
be the “environmental impact” and the economics
could then be given as constraints.

In theory, the optimal strategy is to combine
the control tasks of optimal economic operation
and stabilization/regulation in a single centralized
controller K, which at each time step collects all
the information and computes the optimal input
changes. In practice, simpler controllers are used.
The main reason for this is that in most cases one
can obtain acceptable control performance with
simple structures, where each controller block in-
volves only a few variables. Such control systems
can be designed and tuned with much less effort,
especially when it comes to the modeling and
tuning effort.

So how are large-scale systems controlled in
practise? Usually, the controller K is decomposed
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into several subcontrollers, using two main prin-

ciples

— Decentralized (local) control. This “horizon-
tal decomposition” of the control layer is usu-
ally based on separation in space, for example,
by using local control of individual units.

— Hierarchical (cascade) control. This “vertical
decomposition” is usually based on time scale
separation, as illustrated for a process plant in
Fig.2. The upper three layers in Fig.2 deal
explicitly with economic optimization and are
not considered here. We are concerned with
the two lower control layers, where the main
objective is to track the setpoints specified by
the layer above.

In accordance with the two main objectives for
control, the control layer is in most cases divided
hierarchically in two layers (Fig. 2):

1. A “slow” supervisory (economic) layer

2. A “fast” regulatory (stabilization) layer
Another reason for the separation in two con-

trol layers, is that the tasks of economic opera-
tion and regulation are fundamentally different.
Combining the two objectives in a single cost
function, which is required for designing a single
centralized controller K, is like trying to compare
apples and oranges. For example, how much is
an increased stability margin worth in monitory
units [$]? Only if there is a reasonable benefit in
combining the two layers, for example, because
there is limited time scale separation between
the tasks of regulation and optimal economics,
should one consider combining them into a single
controller.

Control Structure Selection, Table 1 Important notation

u = [uy; up] = set of all available physical plant inputs
u; = inputs used directly by supervisory control layer
u, = inputs used by regulatory layer

ym = set of all measured outputs

y = [ym; u] = combined set of measurements and inputs
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Notation and Matrices H; and H; for
Controlled Variable Selection

The most important notation is summarized in
Table 1 and Fig.3. To distinguish between the
two control layers, we use “1” for the upper
supervisory (economic) layer and “2” for the
regulatory layer, which is “secondary” in terms
of its place in the control hierarchy.

There is often limited possibility to select the
input set (u) as it is usually constrained by the

Optimizer
(RTO)

CV,

Supervisory
controller
(MPC)
_____ [

I i

— ————————————

controller
(PID) H,

[
: Regulatory
|
|

TGS oo Physical
| ~L4=*7inputs (u)
I

PROCESS |V = [Ym Ul

Stabilized process
nY

Control Structure Selection, Fig. 3 Block diagram of
a typical control hierarchy, emphasizing the selection of
controlled variables for supervisory (economic) control
(CV; = Hyy) and regulatory control (CV, = Hypy)

y2 = controlled outputs in regulatory layer (subset or combination of y); dim(y,) = dim(uy)

CV; = H; y = controlled variables in supervisory layer; dim(CV;) = dim(u)

CV, = [y2;u;] = Hpy = controlled variables in regulatory layer; dim(CV,) = dim(u)

MV, = CVy = [yas; u;] = manipulated variables in supervisory layer; dim(MV;) = dim(u)

MV, = u, = manipulated variables in regulatory layer; dim(MV,) = dim(u,) < dim(u)
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plant design. However, there may be a possibility
to add inputs or to move some to another location,
for example, to avoid saturation or to reduce the
time delay and thus improve the input-output
controllability.

There is much more flexibility in terms of out-
put selection, and the most important structural
decision is related to the selection of controlled
variables in the two control layers, as given by
the decision matrices H; and H, (see Fig. 3).

CV1 = Hly
CVy = Hyy

Note from the definition in Table 1 that y =
[Ym; u]. Thus, y includes, in addition to the can-
didate measured outputs (yy,), also the physical
inputs u. This allows for the possibility of select-
ing an input u as a “controlled” variable, which
means that this input is kept constant (or, more
precisely, the input is left “unused” for control in
this layer).

In general, H; and H; are “full” matrices,
allowing for measurement combinations as con-
trolled variables. However, for simplicity, espe-
cially in the regulatory layer, we often pefer to
control individual measurements, that is, H, is
usually a “selection matrix,” where each row
in H, contains one l-element (to identify the
selected variable) with the remaining elements set
to 0. In this case, we can write CV, = Hyy =
[y2;ui], where y, denotes the actual controlled
variables in the regulatory layer, whereas u; de-
notes the “unused” inputs (u;), which are left
as degrees of freedom for the supervisory layer.
Note that this indirectly determines the inputs u;
used in the regulatory layer to control y,, because
u, is what remains in the set u after selecting u;.
To have a simple control structure, with as few
regulatory loops as possible, it is desirable that
H; is selected such that there are many inputs (u;)
left “unused” in the regulatory layer.

Example. Assume there are three candidate out-
put measurements (temperatures T) and two in-
puts (flowrates q),

Ym = [TaTbTC] , U= [qa qb]

Control Structure Selection

and we have by definition y = [yp; u]. Then the
choice

H,=[01000;0000 1]

means that we have selected CV, = Hyy =
[Tv; qb]. Thus, u; = qp is an unused input for
regulatory control, and in the regulatory layer we
close one loop, using u, = q, to control y, = Tp.
If we instead select

H,=[10000; 00100]

then we have CV, = [T,; T¢]. None of these are
inputs, so u; is an empty set in this case. This
means that we need to close two regulatory loops,
using u; = [qa; qp] to control y, = [T,; T¢].

Supervisory Control Layer and
Selection of Economic Controlled
Variables (CV;)

Some objectives for the supervisory control layer
are given in Table 2. The main structural issue
for the supervisory control layer, and probably
the most important decision in the design of any
control system, is the selection of the primary
(economic) controlled variable CV;. In many
cases, a good engineer can make a reasonable
choice based on process insight and experience.
However, the control engineer must realize that
this is a critical decision. The main rules and
issues for selecting CV are

CViRule 1. Control active constraints (almost

always)

* Active constraints may often be identified
by engineering insight, but more generally
requires optimization based on a detailed
model.

For example, consider the problem of min-
imizing the driving time between two cities
(cost J = T). There is a single input (u =
fuel flow f[l/s]) and the optimal solution
is often constrained. When driving a fast
car, the active constraint may be the speed
limit (C'Vy = v [km/ h] with setpoint VU,
e.g, Unax = 100km/h). When driving
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Control Structure Selection, Table 2 Objectives of supervisory control layer

O1. Control primary “economic” variables CV; at setpoint using as degrees of freedom MV, which includes the
setpoints to the regulatory layer (y»s = CVy) as well as any “unused” degrees of freedom (u;)

02. Switch controlled variables (CV;) depending on operating region, for example, because of change in active
constraints

O3. Supervise the regulatory layer, for example, to avoid input saturation (u;), which may destabilize the system
0O4. Coordinate control loops (multivariable control) and reduce effect of interactions (decoupling)
05. Provide feedforward action from measured disturbances

06. Make use of additional inputs, for example, to improve the dynamic performance (usually combined with input
midranging control) or to extend the steady-state operating range (split range control)

O7. Make use of extra measurements, for example, to estimate the primary variables CV,

an old car, the active constraint maybe the
maximum fuel flow (CV; = f][l/s] with
setpoint fiuax). The latter corresponds to
an input constraint (Wpmax = fmax) Which
is trivial to implement (“full gas”); the
former corresponds to an output constraint
(Vmax = Vmax) which requires a controller
(“cruise control”).

e For“hard” output constraints, which can-
not be violated at any time, we need to
introduce a backoff (safety margin) to guar-
antee feasibility. The backoff is defined as
the difference between the optimal value
and the actual setpoint, for example, we
need to back off from the speed limit be-
cause of the possibility for measurement
error and imperfect control

CVis = CV{max — backoff

For example, to avoid exceeding the
speed limit of 100km/h, we may set
backoff=5km/h, and use a setpoint
vy = 95 km/h rather than 100 km/h.

CV Rule 2. For the remaining unconstrained

degrees of freedom, look for “self-optimizing”

variables which when held constant, indirectly

lead to close-to-optimal operation, in spite of
disturbances.

» Self-optimizing variables (CV; = H,y) are
variables which when kept constant, indi-
rectly (through the action of the feedback
control system) lead to close-to optimal
adjustment of the inputs (u) when there are
disturbances (d).

* Anideal self-optimizing variable is the gra-
dient of the cost function with respect to the
unconstrained input. CV; = dJ/du = J,

* More generally, since we rarely can mea-
sure the gradient J,,, we select CV; = Hyy.
The selection of a good H; is a nontrivial
task, but some quantitative approaches are
given below.

For example, consider again the problem of
driving between two cities, but assume that the
objective is to minimize the total fuel, J =V
[liters]., Here, driving at maximum speed will
consume too much fuel, and driving too slow
is also nonoptimal. This is an unconstrained
optimization problem, and identifying a good
C V1 is not obvious. One option is to maintain
a constant speed (CV, = v), but the optimal
value of v may vary depending on the slope
of the road. A more “self-optimizing” option,
could be to keep a constant fuel rate (CV, =
f11/s]), which will imply that we drive slower
uphill and faster downhill. More generally,
one can control combinations, CVy = Hy
where Hy is a “full” matrix.

CV Rule 3. For the unconstrained degrees of

freedom, one should never control a variable
that reaches its maximum or minimum value at
the optimum, for example, never try to control
directly the cost J. Violation of this rule gives
either infeasibility (if attempting to control J
at a lower value than J,;,) or nonuniqueness
(if attempting to control J at higher value than
Jmin)-

Assume again that we want to minimize the

total fuel needed to drive between two cities,

= V [l ]. Then one should avoid fixing the
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total fuel, CVy = V [l ], or, alternatively, avoid
fixing the fuel consumption(“gas mileage”) in
liters pr.km (CVy = f [l/km]). Attempting to
control the fuel consumption[l/km] below the
car’s minimum value is obviously not possible
(infeasible). Alternatively, attempting to control
the fuel consumption above its minimum value
has two possible solutions; driving slower or
faster than the optimum. Note that the policy of
controlling the fuel rate f [lI/s] at a fixed value
will never become infeasible.

For CV/-Rule 2, it is always possible to find
good variable combinations (i.e., H; is a “full”
matrix), at least locally, but whether or not it is
possible to find good individual variables (H;
is a selection matrix), is not obvious. To help
identify potential “self-optimizing” variables
(CV; = ¢) ,the following requirements may be
used:

Requirement 1. The optimal value of c is insen-
sitive to disturbances, that is, dcyy/dd = H;F
is small. Here F = dy,,/dd is the optimal
sensitivity matrix (see below).

Requirement 2. The variable c is easy to measure
and control accurately

Requirement 3. The value of c is sensitive to
changes in the manipulated variable, u; that
is, the gain, G = HGY, from u to c is
large (so that even a large error in controlled
variable, c, results in only a small variation in
u.) Equivalently, the optimum should be “flat”
with respect to the variable, c. Here G¥ =
dy/du is the measurement gain matrix (see
below).

Requirement 4. For cases with two or more
controlled variables c, the selected variables
should not be closely correlated.

All four requirements should be satisfied.
For example, for the operation of a marathon
runner, the heart rate may be a good “self-
optimizing” controlled variable ¢ (to keep at
constant setpoint). Let us check this against
the four requirements. The optimal heart
rate is weakly dependent on the disturbances
(requirement 1) and the heart rate is easy to
measure (requirement 2). The heart rate is quite
sensitive to changes in power input (requirement
3). Requirement 4 does not apply since this is
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a problem with only one unconstrained input
(the power). In summary, the heart rate is a good
candidate.

Regions and switching. If the optimal active
constraints vary depending on the disturbances,
new controlled variables (CV ) must be identified
(offline) for each active constraint region, and on-
line switching is required to maintain optimality.
In practise, it is easy to identify when to switch
when one reaches a constraint. It is less obvious
when to switch out of a constraint, but actually
one simply has to monitor the value of the un-
constrained CVs from the neighbouring regions
and switch out of the constraint region when the
unconstrained CV reaches its setpoint.

In general, one would like to simplify the
control structure and reduce need for switching.
This may require using a suboptimal CV; in
some regions of active constraints. In this case,
the setpoint for CV; may not be its nominally
optimal value (which is the normal choice), but
rather a “robust setpoint” (with backoff) which
reduces the loss when we are outside the nominal
constraint region.

Structure of supervisory layer. The supervi-
sory layer may either be centralized, e.g., using
model predictive control (MPC), or decomposed
into simpler subcontrollers using standard ele-
ments, like decentralized control (PID), cascade
control, selectors, decouplers, feedforward ele-
ments, ratio control, split range control, and input
midrange control (also known as input resetting,
valve position control or habituating control). In
theory, the performance is better with the central-
ized approach (e.g., MPC), but the difference can
be small when designed by a good engineer. The
main reasons for using simpler elements is that
(1) the system can be implemented in the existing
“basic” control system, (2) it can be implemented
with little model information, and (3) it can be
build up gradually. However, such systems can
quickly become complicated and difficult to un-
derstand for other than the engineer who designed
it. Therefore, model-based centralized solutions
(MPC) are often preferred because the design is
more systematic and easier to modify.
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Quantitative Approach for Selecting
Economic Controlled Variables, CV;

A quantitative approach for selecting economic
controlled variables is to consider the effect of the
choice CV; = H;y on the economic cost J] when
disturbances d occur. One should also include
noise/errors (nY) related to the measurements and
inputs.

Step S1. Define operational objectives (eco-

nomic cost function J and constraints)

We first quantify the operational objectives
in terms of a scalar cost function J [$/s] that
should be minimized (or equivalently, a scalar
profit function, P = —J, that should be max-
imized). For process control applications, this
is usually easy, and typically we have

J = costfeed + cost utilities (energy)

— value products [$/s]

Note that the economic cost function J is used
to select the controlled variables (CV;), and
another cost function (J'), typically involving
the deviation in CV| from their optimal set-
points CV |, is used for the actual controller
design (e.g., using MPC).

Step S2. Find optimal operation for expected

disturbances
Mathematically, the optimization problem can
be formulated as

minu J (u, x, d)
subject to:

Model equations: dx/dt = f(u,x,d)
Operational constraints: g (u,x,d) < 0

In many cases, the economics are determined
by the steady-state behavior, so we can set
dx/dt = 0. The optimization problem should
be resolved for the expected disturbances (d)
to find the truly optimal operation policy,
Ugpi(d). The nominal solution (dpon) may
be used to obtain the setpoints (CVjis)
for the selected controlled variables. In
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practise, the optimum input u,y (d) cannot
be realized, because of model error and
unknown disturbances d, so we use a feeback
implementation where u is adjusted to keep
the selected variables CV; at their nominally
optimal setpoints.

Together with obtaining the model, the opti-
mization step S2 is often the most time con-
suming step in the entire plantwide control
procedure.

Step S3. Select supervisory (economic) con-
trolled variables, CV ;

CV;-Rule 1: Control Active Constraints

A primary goal for solving the optimization prob-
lem is to find the expected regions of active
constraints, and a constraint is said to be “active”
if g = 0 at the optimum. The optimally active
constraints will vary depending on disturbances
(d) and market conditions (prices).

CV;-Rule 2: Control Self-Optimizing

Variables

After having identified (and controlled) the ac-

tive constraints, one should consider the remain-

ing lower-dimension unconstrained optimization
problem, and for the remaining unconstrained
degrees of freedom one should search for control

“self-optimizing” variables c.

1. “Brute force” approach. Given a set of con-
trolled variables CV; = ¢ = Hjy, one
computes the cost J(c,d) when we keep c
constant (c = c¢; + HnY) for various dis-
turbances (d) and measurement errors (nY).
In practise, this is done by running a large
number of steady-state simulations to try to
cover the expected future operation.

2. “Local” approaches based on a quadratic
approximation of the cost J. Linear models are
used for the effect of uand d on y.

y =Gu+ G

This is discussed in more detail in Alstad et al.
(2009) and references therein. The main local
approaches are:
2A. Maximum gain rule: maximize the min-
imum singular value of G = H;G’.
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2B.

2C.

In other words, the maximum gain rule,
which essentially is a quantitative version
of Requirements 1, 3 and 4 given above,
says that one should control “sensitive”
variables, with a large scaled gain G from
the inputs (u) to ¢ = H;y. This rule is
good for pre-screening and also yields good
insight.

Nullspace method. This method yields op-
timal measurement combinations for the
case with no noise, n¥ = 0. One must first
obtain the optimal measurement sensitivity
matrix F, defined as

F = dy*'/dd.

Each column in F expresses the optimal
change in the y’s when the independent
variable (u) is adjusted so that the sys-
tem remains optimal with respect to the
disturbance d. Usually, it is simplest to
obtain F numerically by optimizing the
model. Alternatively, we can obtain F from
a quadratic approximation of the cost func-
tion
F=G] -G T

Then, assuming that we have at least as
many (independent) measurements y as the
sum of the number of (independent) inputs
(u) and disturbances (d), the optimal is to
select c = Hyy such that

HF=0

Note that H; is a nonsquare matrix, so
HiF = 0 does not require that H; = 0
(which is a trivial uninteresting solution),
but rather that H; is in the nullspace of FT.
Exact local method (loss method). This
extends the nullspace method to include
noise (n¥) and allows for any number of
measurements. The noise and disturbances
are normalized by introducing weighting
matrices Wy, and Wy (which have the ex-
pected magnitudes along the diagonal) and
then the expected loss, L = J — Jou(d),
is minimized by selecting H; to solve the
following problem
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min_H; [[M(Hy)|[
where 2 denotes the Frobenius norm and

M(H)) = L (HG)'H Y, Y
= [FWq Wyy].

Note here that the optimal choice with
Wyy = 0 (no noise) is to choose H; such
that HiF = 0, which is the nullspace
method. For the general case, when H; is a
“full” matrix, this is a convex problem and
the optimal solution is H] = (YY’)™'GYQ
where Q is any nonsingular matrix.

Regulatory Control Layer

The main purpose of the regulatory layer is
to “stabilize” the plant, preferably using a
simple control structure (e.g., single-loop PID
controllers) which does not require changes
during operation. “Stabilize” is here used in a
more extended sense to mean that the process
does not “drift” too far away from acceptable
operation when there are disturbances. The
regulatory layer should make it possible to use
a “slow” supervisory control layer that does not
require a detailed model of the high-frequency
dynamics. Therefore, in addition to track the
setpoints given by the supervisory layer (e.g.,
MPC), the regulatory layer may directly control
primary variables (CV;) that require fast and
tight control, like economically important active
constraints.
In general, the design of the regulatory layer
involves the following structural decisions:
1. Selection of controlled outputs y, (among all
candidate measurements yy,).
2. Selection of inputs MV, = u; (a subset of all
available inputs u) to control the outputs y,.
3. Pairing of inputs u, and outputs y, (since
decentralized control is normally used).
Decisions 1 and 2 combined (IO selection) is
equivalent to selecting H, (Fig.3). Note that
we do not “use up” any degrees of freedom in
the regulatory layer because the set points (yss)
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become manipulated variables (MV;) for the
supervisory layer (see Fig. 3). Furthermore, since
the set points are set by the supervisory layer
in a cascade manner, the system eventually
approaches the same steady-state (as defined by
the choice of economic variables CV) regardless
of the choice of controlled variables in the
regulatory layer.

The inputs for the regulatory layer (u,) are
selected as a subset of all the available inputs
(u). For stability reasons, one should avoid input
saturation in the regulatory layer. In particular,
one should avoid using inputs (in the set u,) that
are optimally constrained in some disturbance
region. Otherwise, in order to avoid input satura-
tion, one needs to include a backoff for the input
when entering this operational region, and doing
so will have an economic penalty.

In the regulatory layer, the outputs (y,) are
usually selected as individual measurements and
they are often not important variables in them-
selves. Rather, they are “extra outputs” that are
controlled in order to “stabilize” the system, and
their setpoints (y»s) are changed by the layer
above, to obtain economical optimal operation.
For example, in a distillation column one may
control a temperature somewhere in the middle
of the column (y, = T) in order to “stabilize”
the column profile. Its setpoint (ys = Ts) is
adjusted by the supervisory layer to obtain the
desired product composition (y; = c).

Input-Output (10) Selection for
Regulatory Control (u;, y>)

Finding the truly optimal control structure, in-
cluding selecting inputs and outputs for regu-
latory control, requires finding also the optimal
controller parameters. This is an extremely dif-
ficult mathematical problem, at least if the con-
troller K is decomposed into smaller controllers.
In this section, we consider some approaches
which does not require that the controller param-
eters be found. This is done by making assump-
tions related to achievable control performance
(controllability) or perfect control.
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Before we look at the approaches, note again
that the 10-selection for regulatory control may
be combined into a single decision, by consider-
ing the selection of

CV; = [y2;u1] = Hyy

Here u; denotes the inputs that are not used by the
regulatory control layer. This follows because we
want to use all inputs u for control, so assuming
that the set u is given, “selection of inputs u,”
(decision 2) is by elimination equivalent to “se-
lection of inputs u;.” Note that CV; include all
variables that we keep at desired (constant) values
within the fast time horizon of the regulatory
control layer, including the “unused” inputs u;

Survey by Van de Wal and Jager

Van de Wal and Jager provide an overview of

methods for input-output selection, some of

which include:

1. “Accessibility” based on guaranteeing a
cause—effect relationship between the selected
inputs (up) and outputs (y2). Use of such
measures may eliminate unworkable control
structures.

2. “State controllability and state observability”
to ensure that any unstable modes can be sta-
bilized using the selected inputs and outputs.

3. “Input-output controllability” analysis to en-
sure that y, can be acceptably controlled us-
ing u,. This is based on scaling the system,
and then analysing the transfer matrices Gy(s)
(from u, to y,) and Gy, (from expected dis-
turbances d to y,). Some important control-
lability measures are right half plane zeros
(unstable dynamics of the inverse), condition
number, singular values, relative gain array,
etc. One problem here is that there are many
different measures, and it is not clear which
should be given most emphasis.

4. “Achievable robust performance.” This may
be viewed as a more detailed version of input-
output controllability, where several relevant
issues are combined into a single measure.
However, this requires that the control prob-
lem can actually be formulated clearly, which
may be very difficult, as already mentioned.
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In addition, it requires finding the optimal

robust controller for the given problem, which

may be very difficult.
Most of these methods are useful for analyzing a
given structure (u,, y,) but less suitable for selec-
tion. Also, the list of methods is also incomplete,
as disturbance rejection, which is probably the
most important issue for the regulatory layer, is
hardly considered.

A Systematic Approach for 10-Selection

Based on Minimizing State Drift Caused by
Disturbances

The objectives of the regulatory control layer
are many, and Yelchuru and Skogestad (2013)
list 13 partly conflicting objectives. To have a
truly systematic approach to regulatory control
design, including 10-selection, we would need to
quantify all these partially conflicting objectives
in terms of a scalar cost function J,. We here
consider a fairly general cost function,

Iy = [|[Wx]]|

which may be interpreted as the weighted state
drift. One justification for considering the state
drift, is that the regulatory layer should ensure
that the system, as measured by the weighted
states Wx, does not drift too far away from the
desired state, and thus stays in the “linear region”
when there are disturbances. Note that the cost J,
is used to select controlled variables (CV;) and
not to design the controller (for which the cost
may be the control error, J," = [|[CV,; — CVy])).

Within this framework, the IO-selection prob-
lem for the regulatory layer is then to select the
nonsquare matrix Hy,

CV, = Hyy

where y = [ym;u], such that the cost J, is
minimized. The cause for changes in J, are dis-
turbances d, and we consider the linear model (in
deviation variables)

y =Gu+Gid
x = G*u+ Gid
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where the G-matrices are transfer matrices. Here,
G} gives the effect of the disturbances on the
states with no control, and the idea is to reduce
the disturbance effect by closing the regulatory
control loops. Within the “slow” time scale of
the supervisory layer, we can assume that CV, is
perfectly controlled and thus constant, or CV, =
0 in terms of deviation variables. This gives

CV, = H,Gu + HzGZld =0
and solving with respect to u gives
u=—(HG)" (H:G})d

and we have
X = Pg (Hz) d

where
PX(Hy) = G} — G* (H,G") ™' H,G)

is the disturbance effect for the “partially” con-
trolled system with only the regulatory loops
closed. Note that it is not generally possible to
make P} = 0 because we have more states than
we have available inputs. To have a small “state
drift,” we want J, = ||W P4 d|| to be small, and
to have a simple regulatory control system we
want to close as few regulatory loops as possible.
Assume that we have normalized the disturbances
so that the norm of d is 1, then we can solve the
following problem

For 0,1,2... etc. loops closed solve:
min_H|[M; (Hy) ||
where M, = WP anddim(u2) =

dim (y2) = no. of loops closed.

By comparing the value of ||M; (Hy) || with
different number of loops closed (i.e., with differ-
ent H), we can then decide on an appropriate reg-
ulatory layer structure. For example, assume that
we find that the value of J, is 110 (0 loops closed),
0.2 (1 loop), and 0.02 (2 loops), and assume we
have scaled the disturbances and states such that
a Jo-value less than about 1 is acceptable, then
closing 1 regulatory loop is probably the best
choice.
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In principle, this is straightforward, but there
are three remaining issues: (1) We need to choose
an appropriate norm, (2) we should include
measurement noise to avoid selecting insensitive
measurements and (3) the problem must be
solvable numerically.

Issue 1. The norm of M, should be evalu-
ated in the frequency range between the “slow”
bandwidth of the supervisory control layer (wg;)
and the “fast” bandwidth of the regulatory control
layer (wpy). However, since it is likely that the
system sometimes operates without the supervi-
sory layer, it is reasonable to evaluate the norm
of P} in the frequency range from O (steady state)
to wgy. Since we want H, to be a constant (not
frequency-dependent) matrix, it is reasonable to
choose H, to minimize the norm of M, at the
frequency where ||M;|| is expected to have its
peak. For some mechanical systems, this may
be at some resonance frequency, but for process
control applications it is usually at steady state
(o = 0), that is, we can use the steady-state
gain matrices when computing P}. In terms of
the norm, we use the 2-norm (Frobenius norm),
mainly because it has good numerical proper-
ties, and also because it has the interpretation of
giving the expected variance in x for normally
distributed disturbances.

Issues 2 and 3. If we include also measurement
noise n¥, which we should, then the expected
value of J, is minimized by solving the problem
min_H, |[M,(H;)||, where (Yelchuru and Sko-
gestad 2013)

M, (Hy) = J)2(H,GY) ™' HL Y,

2uu

d
Y, = [Fsz Wn]; F, = Yopt
ad
=G I3 Ty, — G
where Jo, = %{} = 26" WTWG*, 24 2
25 _ x"ywT
WB?{ == 2G W WGdX,

Note that this is the same mathematical prob-
lem as the “exact local method” presented for se-
lecting CV; = H,y for minimizing the economic
cost J, but because of the specific simple form
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for the cost Jy, it is possible to obtain analytical
formulas for the optimal sensitivity, F,. Again,
Wy and W,,,, are diagonal matrices, expressing
the expected magnitude of the disturbances (d)
and noise (for y).

For the case when H, is a “full” matrix, this
can be reformulated as a convex optimization
problem and an explicit solution is

H! = (YY) 'GY (G (Y.Y))™'6) ™' Jy2

2uu

and from this we can find the optimal value of
J,. It may seem restrictive to assume that H, is a
“full” matrix, because we usually want to control
individual measurements, and then H,should be
a selection matrix, with 1’s and 0’s. Fortunately,
since we in this case want to control as many
measurements (y;) as inputs (u;), we have that
H, is square in the selected set, and the opti-
mal value of J, when H, is a selection matrix
is the same as when H, is a full matrix. The
reason for this is that specifying (controlling) any
linear combination of y,, uniquely determines
the individual y,’s, since dim(u;) = dim(y;).
Thus, we can find the optimal selection matrix
H,, by searching through all the candidate square
sets of y. This can be effectively solved using
the branch and bound approach of Kariwala and
Cao, or alternatively it can be solved as a mixed-
integer problem with a quadratic program (QP) at
each node (Yelchuru and Skogestad 2012). The
approach of Yelchuru and Skogestad can also be
applied to the case where we allow for disjunct
sets of measurement combinations, which may
give a lower J, in some cases.

Comments on the state drift approach.

1. We have assumed that we perfectly control y,
using u,, at least within the bandwidth of the
regulatory control system. Once one has found
a candidate control structure (H;), one should
check that it is possible to achieve acceptable
control. This may be done by analyzing the
input-output controllability of the system y, =
Gouy + Gyg d, based on the transfer matrices
G, = HyGY and Gyq = Hszl. If the control-
lability of this system is not acceptable, then
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one should consider the second-best matrix H,
(with the second-best value of the state drift
J») and so on.

2. The state drift cost drift J, = ||Wx]| is in
principle independent of the economic cost
(J). This is an advantage because we know
that the economically optimal operation (e.g.,
active constraints) may change, whereas we
would like the regulatory layer to remain un-
changed. However, it is also a disadvantage,
because the regulatory layer determines the
initial response to disturbances, and we would
like this initial response to be in the right
direction economically, so that the required
correction from the slower supervisory layer
is as small as possible. Actually, this issue
can be included by extending the state vector
X to include also the economic controlled
variables, CV, which is selected based on the
economic cost J. The weight matrix W may
then be used to adjust the relative weights
of avoiding drift in the internal states x and
economic controlled variables CV.

3. The above steady-state approach does not con-
sider input-output pairing, for which dynamics
are usually the main issue. The main pairing
rule is to “pair close” in order to minimize the
effective time delay between the selected input
and output. For a more detailed approach, de-
centralized input-output controllability must
be considered.

Summary and Future Directions

Control structure design involves the structural
decisions that must be made before designing
the actual controller, and it is in most cases a
much more important step than the controller
design. In spite of this, the theoretical tools for
making the structural decisions are much less
developed than for controller design. This chapter
summarizes some approaches, and it is expected,
or at least hoped, that this important area will
further develop in the years to come.

The most important structural decision is
usually related to selecting the economic con-
trolled variables, CV; = H;y, and the stabilizing
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controlled variables, CV, = H,y. However,
control engineers have traditionally not used
the degrees of freedom in the matrices H; and
H,, and this chapter has summarized some
approaches.

There has been a belief that the use of “ad-
vanced control,” e.g., MPC, makes control struc-
ture design less important. However, this is not
correct because also for MPC must one choose
inputs (MV; = CVy) and outputs (CVy). The
selection of CV| may to some extent be avoided
by use of “Dynamic Real-Time Optimization
(DRTO)” or “Economic MPC,” but these opti-
mizing controllers usually operate on a slower
time scale by sending setpoints to the basic con-
trol layer (MV| = CVy), which means that se-
lecting the variables CV, is critical for achieving
(close to) optimality on the fast time scale.
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Abstract

State controllability and observability are key
properties in linear input—output systems in state-
space form. In the state-space approach, the re-
lation between inputs and outputs is represented
using the state variables of the system. A natural
question is then to what extent it is possible
to manipulate the values of the state vector by
means of an appropriate choice of the input func-
tion. The concepts of controllability, reachability,
and null controllability address this issue. An-
other important question is whether it is possible
to uniquely determine the values of the state
vector from knowledge of the input and output
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signals over a given time interval. This question
is dealt with using the concept of observability.

Keywords
Controllability; Duality; Indistinguishability;
Input—output systems in state-space form;

Observability; Reachability

Introduction

In the state-space approach to input—output
systems, the relation between input signals
and output signals is represented by means of
two equations. In the continuous-time case, the
first of these equations is a first-order vector
differential equation driven by the input signal
and is often called the state equation. The second
equation is an algebraic equation, often called the
output equation. The unknown in the differential
equation is called the state vector of the system.
Given a particular input signal and initial value
of the state vector, the state equation generates
a unique solution, called the state trajectory of
the system. The output equation determines the
corresponding output signal as a function of this
state trajectory and the input signal. Thus, in the
state space approach, the input—output behavior
of the system is obtained using the state vector as
an intermediate variable.

In the context of input—output systems in state-
space form, the properties of controllability and
observability characterize the interaction between
the input, the state, and the output. In particular,
controllability describes the ability to manipulate
the state vector of the system by applying ap-
propriate input signals. Observability describes
the ability to determine the values of the state
vector from knowledge of the input and output
over a certain time interval. The properties of
controllability and observability are fundamental
properties that play a major role in the analysis
and control of linear input—output systems in
state-space form.



216

Systems with Inputs and Outputs

Consider a continuous-time, linear, time-
invariant, input—output system in state-space

form represented by the equations

X()=Ax(t)+ Bu(?), )

y(@)=Cx @)+ Du(t).
This system is referred to as ¥. In Eq.(1), A4,
B, C, and D are maps (or matrices), and the
functions x, u, and y are considered to be defined
on the real axis R or on any subinterval of it.
In particular, one often assumes the domain of
definition to be the nonnegative part of R, which
is without loss of generality since the system is
time-invariant. The function u is called the input,
and its values are assumed to be given. The class
of admissible input functions is denoted by U. Of-
ten, U is the class of piecewise continuous or lo-
cally integrable functions, but for most purposes,
the exact class from which the input functions are
chosen is not important. We assume that input
functions take values in an m-dimensional space
U, which we often identify with R”. The first
equation of X is an ordinary differential equation
for the variable x. For a given initial value of x
and input function u, the function x is completely
determined by this equation. The variable x is
called the state variable and it is assumed to
take values in an n-dimensional space X. The
space X is called the state space. It is usually
identified with R”. Finally, y is called the output
of the system and takes values in a p-dimensional
space ), which we identify with R?. Since the
system X is completely determined by the maps
(or matrices) 4, B, C, and D, we identify X with
the quadruple (4, B, C, D).

The solution of the differential equation of X
with initial value x(0) = x¢ is denoted as x,, (¢, xo).
It can be given explicitly using the variation-of-
constants formula, namely,

t
x, (1, x0) = e xo + / eAIBy () dr. ()
0

The corresponding value of y is denoted by
vu(t, x0). As a consequence of (2), we have
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t
yu (. x0) = Ce™'xg +/ K@t —1t)u(r)dr
0

+Du(t), 3)

where K(t): = Ce?' B. In the case D = 0, it is
customary to call K(¢) the impulse response. In
the general case, one would call the distribution
K(t) + Dé(t) the impulse response.

Controllability

Controllability is concerned with the ability to
manipulate the state by choosing an appropriate
input signal, thus steering the current state to a
desired future state in a given finite time. Thus, in
particular, in the differential equation in (1), we
study the relation between u and x. We investi-
gate to what extent one can influence the state x
by a suitable choice of the input u.

For this purpose, we introduce the (at time
T) reachable space Wr, defined as the space of
points x; for which there exists an input u such
that x,(T,0) = xi, i.e., the set of points that can
be reached from the origin at time 7'. It follows
from the linearity of the differential equation that
Wr is a linear subspace of X'. In fact, (2) implies

T
Wr = {/ AT Bu(r)de
0

MGU}. 4)

We call system X reachable at time T if
every point can be reached from the origin,
ie, if Wr = X. It follows from (2)
that if the system is reachable at time T,
every point can be reached from every point
at time 7, because the condition for the
point x; to be reachable from x( at time T
is
X1 — eATX() e Wr.

The property that every point is reachable
from any point in a given time interval [0,
T] is called controllability (at T). Finally, we
have the concept of null controllability, i.e.,
the possibility to reach the origin from an
arbitrary initial point. According to (2), for a
point xp to be null controllable at 7', we must
have
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T
el xo + / AT Bu(r)dr =0
0

for some u € U. We observe that xo is null
controllable at 7' (by the control u) if and only
if —e4T xy is reachable at T (by the control u).
Since €47 is invertible, we see that ¥ is null
controllable at 7' if and only if ¥ is reachable
at T. Henceforth, we refer to the equivalent
properties reachability, controllability, null con-
trollability simply as controllability (at 7'). It
should be remarked that the equivalence of these
concepts does not hold in other situations, e.g.,
for discrete-time systems. We intend to obtain
an explicit expression for the space Wr and,
based on this, an explicit condition for control-
lability. This is provided by the following re-
sult.

Theorem 1 Let n be an n-dimensional row vec-
tor and T > 0. Then the following statements are
equivalent:

1. n LWr (i.e,, nx =0 for all x € Wr).

2. ne“B=0for0<t <T.

3. nA¥B =0fork=0,1,2,....

4. n(BAB--- A"'B)=0.

Proof (i) <& (ii) If n LWr, then by Eq. (4):

T
/ ne? T Bu(t)dr =0 (5)
0

for every u € U. Choosing u(t) =
BTeA"T=0nT for0 < ¢ < T yields

T 2
[ e oe =
0

from which (ii) follows. Conversely, assume
that (ii) holds. Then (5) holds and hence (i)
follows.

(i) < (iii) This is obtained by power series
expansion of e (: Y2, Ak

(iii)) < (iv) This follows immediately from the
evaluation of the vector-matrix product.

(iv) < (iii) This implication is based on the
Cayley-Hamilton Theorem. According to
this theorem, A" is a linear combination
of I,A,... A", By induction, it follows

217

that A¥ (k > n) is a linear combination

of I,A,...,A" ! as well. Therefore,

nA¥*B =0 fork = 0,1,...,n — 1 implies

that 7A¥ B =0 for all k € N. a

As an immediate consequence of the previous

theorem, we find that at time T reachable sub-

space Wr can be expressed in terms of the maps
A and B as follows.

Corollary 1

Wr =im(B AB A"'B).

This implies that, in fact, WWr is independent of
T, for T > 0. Because of this, we often use YV in-
stead of Wr and call this subspace the reachable
subspace of . This subspace of the state space
has the following geometric characterization in
terms of the maps A and B.

Corollary 2 W is the smallest A-invariant sub-
space containing B:=imB. Explicitly, W is A-
invariant, B C W, and any A-invariant sub-
space L satisfying B C L also satisfies VW C
L. We denote the smallest A-invariant subspace
containing B by (A|B), so that we can write
W = (A|B). For the space (A|B), we have the
following explicit formula
(AIBy =B+ AB+---+ A" 'B.

Corollary 3 The following statements are equiv-

alent.

1. There exists T > 0 such that system X is
controllable at T

2. (A|B) = A.

3. Rank (B AB---A""'B) = n.

4. The system X is controllable at T for all T > 0.

We say that the matrix pair (4, B) is controllable
if one of these equivalent conditions is satisfied.

Example 1 Let A and B be defined by
-2 —6 -3
= (27). 8= ()
3-6
N 4) , rank(B AB) =1,
and consequently, (4, B) is not controllable. The
reachable subspace is the span of (B AB), i.e., the

Then (B AB) = (_
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line given by the equation 2x; 4 3x, =0. This
can also be seen as follows. Let z:= 2x; + 3x»,
then z = z. Hence, if z(0) = 0, which is the case
if x(0) =0, we must have z(¢) =0 for all ¢ > 0.

Observability

In this section, we include the second of equa-
tions (1), y =Cx + Du, in our considerations.
Specifically, we investigate to what extent it is
possible to reconstruct the state x if the input
u and the output y are known. The motivation
is that we often can measure the output and
prescribe (and hence know) the input, whereas
the state variable is hidden.

Definition 2 Two states xy and x; in X are
called indistinguishable on the interval [0, T'] if
for any input u we have y,(z, xo) = y.(t, x1),
forall0 <t <T.

Hence, x( and x; are indistinguishable if they
give rise to the same output values for every
input u. According to (3), for xy and x; to be
indistinguishable on [0, T'], we must have that

Ce'xg + /t K (t —1)u(r)dr + Du(r)
0

= Cellx; +/IK(l—t)u(r)dt+Du(t)
0

for 0 < ¢t < T and for any input signal u. We
note that the input signal does not affect distin-
guishability, i.e., if one u is able to distinguish
between two states, then any input is. In fact,
xo and x; are indistinguishable if and only if
Cet'xy =Ce?x, (0 <t < T). Obviously, xo
and x; are indistinguishable if and only if v :=
Xxo — x; and O are indistinguishable. By applying
Theorem 1 with n=v" nonzero and transposing
the equations, it follows that Ce?’xy = Ce'x,
(0 <t < T) if and only if Ce'v =0 (0
< t < T) and hence if and only if CAkv =0
(k =0,1,2,...). The Cayley-Hamilton Theorem
implies that we need to consider the first n terms
only, i.e.,
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C
CA

cA® |y =o. (6)

CA.n—l

As a consequence, the distinguishability of two
vectors does not depend on 7. The space of
vectors v for which (6) holds is denoted (ker
C|A) and called the unobservable subspace. 1t is
equivalently characterized as the intersection of
the spaces ker CA* fork =0,...,n—1,ie.,

n—1
(ker C|A) = () ker CA*.
k=0

Equivalently, (ker C |A) is the largest A-invariant
subspace contained in ker C. Finally, another
characterization is “v € (ker C|A) if and only if
yo(t, v) is identically zero,” where the subscript
“0” refers to the zero input.

Definition 3 System X is called observable if
any two distinct states are not indistinguishable.

The previous considerations immediately lead to
the result.

Theorem 2 The following statements are equiv-

alent.

1. The system X is observable.

2. Every nonzero state is not indistinguishable
from the origin.

3. (ker C|A) =0.
4. Cev =0(0<t<T)=v =0.
C
CA
5. Rank cA? =n.
cA!

Since observability is completely determined
by the matrix pair (C, A), we will say “(C, A4) is
observable” instead of “system X is observable.”

There is a remarkable relation between the
controllability and observability properties,
which is referred to as duality. This property
is most conspicuous from the conditions (3) in
Corollary 3 and (5) in Theorem 2, respectively.
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Specifically, (C, A) is observable if and only if
(AT, CT) is controllable. As a consequence of
duality, many theorems on controllability can
be translated into theorems on observability and
vice versa by mere transposition of matrices.

Example 2 Let

e (2) o= ()

cC:=(1 -1,

Then

C 1 -1
rank(CA) —rank(_8 3 ) =1,

hence, (C, A) is not observable. Notice thatif v €
(ker C| A) and u =0, identically, then y =0,
identically. In this example, (ker C|A) is the span
of (I, )T,

Summary and Future Directions

The property of controllability can be tested by
means of a rank test on a matrix involving the
maps A and B appearing in the state equation of
the system. Alternatively, controllability is equiv-
alent to the property that the reachable subspace
of the system is equal to the state space. The prop-
erty of observability allows a rank test on a matrix
involving the maps A and C appearing in the
system equations. An alternative characterization
of this property is that the unobservable subspace
of the system is equal to the zero subspace. Con-
cepts of controllability and observability have
also been defined for discrete-time systems and,
more generally, for time-varying systems and
for continuous-time and discrete-time nonlinear
systems.

Cross-References
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Recommended Reading

The description of linear systems in terms of
a state space representation was particularly
stressed by R. E. Kalman in the early 1960s (see
Kalman 1960a,b, 1963), Kalman et al. (1963).
See also Zadeh and Desoer (1963) and Gilbert
(1963). In particular, Kalman introduced the
concepts of controllability and observability and
gave the conditions expressed in Corollary 3,
time (3), and Theorem 5, item (5). Alternative
conditions for controllability and observability
have been introduced in Hautus (1969) and
independently by a number of authors; see Popov
(1966) and Popov (1973). Other references are
Belevitch (1968) and Rosenbrock (1970).
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Abstract

Process control performance is a cornerstone of
operational excellence in a broad spectrum of
industries such as refining, petrochemicals, pulp
and paper, mineral processing, power and waste
water treatment. Control performance assessment
and monitoring applications have become main-
stream in these industries and are changing the
maintenance methodology surrounding control
assets from predictive to condition based. The
large numbers of these assets on most sites com-
pared to the number of maintenance and control
personnel have made monitoring and diagnosing
control problems challenging. For this reason, au-
tomated controller performance monitoring tech-
nologies have been readily embraced by these
industries.

This entry discusses the theory as well as
practical application of controller performance
monitoring tools as a requisite for monitoring and
maintaining basic as well as advanced process
control (APC) assets in the process industry. The
section begins with the introduction to the theory
of performance assessment as a technique for
assessing the performance of the basic control
loops in a plant. Performance assessment al-
lows detection of performance degradation in the
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basic control loops in a plant by monitoring the
variance in the process variable and compar-
ing it to that of a minimum variance controller.
Other metrics of controller performance are also
reviewed. The resulting indices of performance
give an indication of the level of performance
of the controller and an indication of the ac-
tion required to improve its performance; the
diagnosis of poor performance may lead one to
look at remediation alternatives such as: retuning
controller parameters or process reengineering to
reduce delays or implementation of feed-forward
control or attribute poor performance to faulty
actuators or other process nonlinearities.

Keywords

Time series analysis; Minimum variance control;
Control loop performance assessment; Perfor-
mance monitoring; Fault detection and diagnosis

Introduction

A typical industrial process, as in a petroleum
refinery or a petrochemical complex, includes
thousands of control loops. Instrumentation tech-
nicians and engineers maintain and service these
loops, but rather infrequently. However, industrial
studies have shown that as many as 60% of
control loops may have poor tuning or config-
uration or actuator problems and may therefore
be responsible for suboptimal process perfor-
mance. As a result, monitoring of such control
strategies to detect and diagnose cause(s) of un-
satisfactory performance has received increasing
attention from industrial engineers. Specifically
the methodology of data-based controller per-
formance monitoring (CPM) is able to answer
questions such as the following: Is the controller
doing its job satisfactorily and if not, what is the
cause of poor performance?

The performance of process control assets is
monitored on a daily basis and compared with in-
dustry benchmarks. The monitoring system also
provides diagnostic guidance for poorly perform-
ing control assets. Many industrial sites have



Controller Performance Monitoring

established reporting and remediation workflows
to ensure that improvement activities are carried
out in an expedient manner. Plant-wide perfor-
mance metrics can provide insight into company-
wide process control performance. Closed-loop
tuning and modeling tools can also be deployed
to aid with the improvement activities. Survey ar-
ticles by Thornhill and Horch (2007) and Shardt
et al. (2012) provide a good overview of the over-
all state of CPM and the related diagnosis issues.
CPM software is now readily available from most
DCS vendors and has already been implemented
successfully at many large-scale industrial sites
throughout the world.

Univariate Control Loop Performance
Assessment with Minimum Variance
Control as Benchmark

It has been shown by Harris (1989) that for a
system with time delay d, a portion of the output
variance is feedback control invariant and can be
estimated from routine operating data. This is the
so-called minimum variance output. Consider the
closed-loop system shown in Fig. 1, where Q is
the controller transfer function, T is the process
transfer function, d is the process delay (in terms
of sample periods), and N is the disturbance
transfer function driven by random white-noise
sequence, d;.

In the regulatory mode (when the set point
is constant), the closed-loop transfer function
relating the process output and the disturbance is
given by

N
Closed-loop response: y;, = (—~) a;
14+¢79TQ

Controller Performance Monitoring, Fig. 1 Block di-
agram of a regulatory control loop
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Note that all transfer functions are expressed for
the discrete time case in terms of the backshift op-
erator, ¢ ~'. N represents the disturbance trans-
fer function with numerator and denominator
polynomials in ¢~!. The division of the numera-
tor by the denominator can be rewritten as: N =
F+ q_dR, where the quotient term, F = Fy +
Fig™" + -+ + F;_1g7“7Y is a polynomial of
order (d — 1) and the remainder, R is a transfer
function. The closed-loop transfer function can
be reexpressed, after algebraic manipulation as

(7))
"o
_(F—l—q_dR)a
“\14¢4T0/)"
_(F(+q7'T0) +4~* (R-FTQ))
B 14+¢4TQ ’
B 4« R—FTQ

_(F—l—q —l—i—q—dTQ)at

= Fya; + Fra;—1 + -+ Fg_1a,—q+1

e

+ Loai—q + Liaj—qg—1 + -+

Wi—d

The closed-loop output can then be expressed as
Ve =€ +Wi—g

where ¢, = Fa, corresponds to the first d — 1
lags of the closed-loop expression for the output,
¥, and more importantly is independent of the
controller, Q, or it is controller invariant, while
w;—41s dependent on the controller. The variance
of the output is then given by

Var(y,) = Var(e;) + Var(w,—q) > Var(e;)

Since e; is controller invariant, it provides the
lower bound on the output variance. This is nat-
urally achieved if w,—; = 0, that is, when
R=F TQ or when the controller is a minimum
variance controller with 0 = %. If the total

output variance is denoted as Var (y,) = o2, then
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the lowest achievable variance is Var (e;) = o2,
To obtain an estimate of the lowest achievable
variance from the time series of the process
output, one needs to model the closed-loop output
data y, by a moving average process such as

Ve = foaz + flat—l +---+ fd—lat—(d—l)

e

+ fai—a + favr10i—@a+1) + -

ey

The controller-invariant term e, can then be esti-
mated by time series analysis of routine closed-
loop operating data and subsequently used as
a benchmark measure of theoretically achiev-
able absolute lower bound of output variance to
assess control loop performance.Harris (1989),

Oy =G+ R+ ST+ + )0

Controller Performance Monitoring

Desborough and Harris (1992), and Huang and
Shah (1999) have derived algorithms for the cal-
culation of this minimum variance term.

Multiplying Eq.(1) by a;,a,—1,...,a1—a+1,
respectively, and then taking the expectation of
both sides of the equation yield the sample co-
variance terms:

rva (0) = E [yia] = foo
rya (1) = E [yia,-1] = fio?

rva (2) = E [yia,0] = foo? )

T'ya (d—1)=E[ya-a+1] = fd—la,f

The minimum variance or the invariant portion of
output variance is

3)

« (00’ rva (1)) rva 2)) o (d =1\
=[(ryoz ) () + () (2 )}"5

= [0 + 72, () + 72,0+ + r2,d = D] /o2

A measure of controller performance index can
then be defined as

n(d)=o,,/0; )

Substituting Eq. (3) into Eq. (4) yields

1) =12, ) + 12, () +72,@) + -+ 12, (d = 1)] /020

=03, (0) + poy () + 0} ) + -+ po, (d — 1)

=zzT

where Z is the vector of cross correlation coeffi-
cients between y, and a, for lags 0 to d — 1 and
is denoted as

Z = [pyu (0) pya (1) pya (2) ... pya (d — 1)]

Although a; is unknown, it can be replaced by
the estimated innovation sequence d;. The es-
timate d; is obtained by whitening the process
output variable y; via time series analysis. This
algorithm is denoted as the FCOR algorithm
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for Filtering and CORrelation analysis (Huang
and Shah 1999). This derivation assumes that
the delay, d, be known a priori. In practice,
however, a priori knowledge of time delays may
not always be available. It is therefore useful to
assume a range of time delays and then calculate
performance indices over this range of the time
delays. The indices over a range of time delays
are also known as extended horizon performance
indices (Thornhill et al. 1999). Through pattern
recognition, one can tell the performance of the
loop by visualizing the patterns of the perfor-
mance indices versus time delays. There is a clear
relation between performance indices curve and
the impulse response curve of the control loop.

Consider a simple case where the process is
subject to random disturbances. Figure 2 is one
example of performance evaluation for a control
loop in the presence of disturbances. This fig-
ure shows time-series of process variable data
for both loops in the left column, closed-loop
impulse responses (middle column) and corre-
sponding performance indices (labeled as PI on
the right column). From the impulse responses,
one can see that the loop under the first set
of tuning constants (denoted as TAG1.PV) has
better performance; the loop under the second
set of tuning constants (denoted as TAGS5.PV)
has oscillatory behavior, indicating a relatively
poor control performance. With performance in-
dex “1” indicating the best possible performance
and index “0” indicating the worst performance,
performance indices for the first controller tuning
(shown on the upper-right plot) approach “1”
within 4 time lags, while performance indices
for the second controller tuning (shown on the
bottom-right plot) take 10 time lags to approach
“0.7” In addition, performance indices for the
second tuning show ripples as they approach an
asymptotic limit, indicating a possible oscillation
in the loop.

Notice that one cannot rank performance of
these two controller settings from the noisy time-
series data. Instead, we can calculate performance
indices over a range of time delays (from 1 to 10).
The result is shown on the right column plots of
Fig. 2. These simulations correspond to the same
process with different controller tuning constants.
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It is clear from these plots that performance
indices trajectory depends on dynamics of the
disturbance and controller tuning.

It is important to note that the minimum vari-
ance is just one of several benchmarks for obtain-
ing a controller performance metric. It is seldom
practical to implement minimum variance control
as it typically will require aggressive actuator ac-
tion. However, the minimum variance benchmark
serves to provide an indication of the opportunity
in improving control performance; that is, should
the performance index 7n(d) be near or just above
zero, then it gives the user an idea of the benefits
possible in improving the control performance of
that loop.

Performance Assessment and
Diagnosis of Univariate Control Loop
Using Alternative Performance
Indicators

In addition to the performance index for perfor-
mance assessment, there are several alternative
indicators of control loop performance. These are
discussed next.

Autocorrelation function: The autocorrelation
function (ACF) of the output error, shown in
Fig. 3, is an approximate measure of how close
the existing controller is to minimum variance
condition or how predictable the error is over the
time horizon of interest. If the controller is under
minimum variance condition then the autocorre-
lation function should decay to zero after “d —1”
lags where “d” is the delay of the process. In
other words, there should be no predictable infor-
mation beyond time lag d — 1. The rate at which
the autocorrelation decays to zero after “d — 17
lags indicates how close the existing controller
is to the minimum variance condition. Since it is
straightforward to calculate autocorrelation using
process data, the autocorrelation function is often
used as a first-pass test before carrying out further
performance analysis.

Impulse response: An impulse response func-
tion curve represents the closed-loop impulse



224 Controller Performance Monitoring

Trend Plot of TAG1.PV

Value

182 364 546 728 910 1092 1274 1456 1638 1820

Sample

Trend Plot of TAGS5.PV

[0}
2
g
182 364 546 728 910 1092 1274 1456 1638 1820
Sample
Impulse Response - TAG1.PV PI(var) vs. Delay: TAG1.PV
09 SET | g
08¢ - 1 11 111
0.7 S 06+ 111111
g 06+ o5k P11 niai
S 05-E T 04 E 1 11111
g 04+ 0.3 111111
E o3E 0.0 1 11111
02E 0.1 1 1 1 1 0111
0.1£ 0.0 - 1 1 1 1011
-0.0 £ Delay 1 2 3 4 5 6 7 8 9
B8 I S T TN el T N N TR TR N B Pl(var)[__0.484 0.813 0.934 0.971 0.982 0.984 0.985 0.985 0.987 0.988 |
I I I I I I I I I I I I
3 6 9 12 15 18 21 24 27 30 33 36
Lag
Impulse Response - TAGS5.PV PI(var) vs. Delay: TAGS5.PV
1.00 & 0.7 € [
0.75 0.6 g
0.50 £ = g'i
E g 04
8 025E = E
i E o 0.3 E
E 0.00 E 0.2 +
025 01
-0.50 £ 0.0 £
_075E Dely 1 2 3 4 5 6 7 8 9 10
E I I I I I I I I I I Pl(var)\ 0.169 0.284 0.286 0.398 0.482 0.483 0.565 0.628 0.628 0.684 I

I | I | | | | | I
9 18 27 36 45 54 63 72 81 90 99
Lag

Controller Performance Monitoring, Fig. 2 Time series of process variable (top), corresponding impulse responses
(left column) and their performance indices (right column).
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response between the whitened disturbance se-
quence and the process output. This function is
a direct measure of how well the controller is
performing in rejecting disturbances or tracking
set-point changes. Under stochastic framework,
this impulse response function may be calculated
using time series model such as an Autoregres-
sive Moving Average (ARMA) or Autoregres-
sive with Integrated Moving Average (ARIMA)
model. Once an ARMA type of time series model
is estimated, the infinite-order moving average
representation of the model shown in Eq. (1) can
be obtained through a long division of the ARMA
model. As shown in Huang and Shah (1999), the
coefficients of the moving average model, Eq. (1),
are the closed-loop impulse response coefficients
of the process between whitened disturbances
and the process output. Figure 4 shows closed-
loop impulse responses of a control loop with two
different control tunings. Clearly they denote two
different closed-loop dynamic responses: one is
slow and smooth, and the other one is relatively
fast and slightly oscillatory. The sum of square of
the impulse response coefficients is the variance
of the data.

Spectral analysis: The closed-loop frequency
response of the process is an alternative way to
assess control loop performance. Spectral analy-
sis of output data easily allows one to detect oscil-
lations, offsets, and measurement noise present in
the process. The closed-loop frequency response
is often plotted together with the closed-loop fre-
quency response under minimum variance con-
trol. This is to check the possibility of perfor-
mance improvement through controller tunings.
The comparison gives a measure of how close
the existing controller is to the minimum vari-
ance condition. In addition, it also provides the
frequency range in which the controller signif-
icantly deviates from minimum variance condi-
tion. Large deviation in the low-frequency range
typically indicates lack of integral action or weak
proportional gain. Large peaks in the medium-
frequency range typically indicate an overtuned
controller or presence of oscillatory disturbances.
Large deviation in the high-frequency range typ-
ically indicates significant measurement noise.
As an illustrative example, frequency responses
of two control loops are shown in Fig.5. The
left graph of the figure shows that closed-loop
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frequency response of the existing controller is
almost the same as the frequency response under
minimum variance control. A peak at the mid-
frequency indicates possible overtuned control.
The right graph of Fig. 5 shows that the frequency
response of the existing controller is oscillatory,
indicating a possible overtuned controller or the
presence of an oscillatory disturbance at the peak
frequency; otherwise the controller is close to
minimum variance condition.

Segmentation of performance indices: Most
process data exhibit time- varying dynamics; i.e.,
the process transfer function or the disturbance
transfer function is time variant. Performance
assessment with a non-overlapping sliding data
window that can track time-varying dynamics

is therefore often desirable. For example, seg-
mentation of data may lead to some insight into
any cyclical behavior of the process variation in
controller performance during, e.g., day/night or
due to shift change. Figure 6 is an example of
performance segmentation over a 200 data point
window.

Performance Assessment of
Univariate Control Loops Using
User-Specified Benchmarks

The increasing level of global competitive-
ness has pushed chemical plants into high-
performance operating regions that require
advanced process control technology. See the
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articles » Control Hierarchy of Large Processing
Plants: An Overview and » Control Structure
Selection. Consequently, the industry has an
increasing need to upgrade the conventional
PID controllers to advanced control systems.
The most natural questions to ask for such an
upgrading are as follows. Has the advanced
controller improved performance as expected?
If yes, where is the improvement and can it
be justified? Has the advanced controller been
tuned to its full capacity? Can this improvement
also be achieved by simply retuning the existing
traditional (e.g., PID) controllers? (see » PID
Control). In other words, what is the cost
versus benefit of implementing an advanced
controller? Unlike performance assessment using
minimum variance control as benchmark, the
solution to this problem does not require a
priori knowledge of time delays. Two possible
relative benchmarks may be chosen: one is the
historical data benchmark or reference data set
benchmark, and the other is a user-specified
benchmark.

The purpose of reference data set benchmark-
ing is to compare performance of the existing
controller with the previous controller during the
“normal” operation of the process. This reference
data set may represent the process when the
controller performance is considered satisfactory
with respect to meeting the performance objec-
tives. The reference data set should be represen-
tative of the normal conditions that the process is
expected to operate at; i.e., the disturbances and
set-point changes entering into the process should
not be unusually different. This analysis provides
the user with a relative performance index (RPI)
which compares the existing control loop perfor-
mance with a reference control loop benchmark
chosen by the user. The RPI is bounded by
0 < RPI < oo, with “<1” indicating dete-
riorated performance, “1” indicating no change
of performance, and “>1" indicating improved
performance. Figure 6 shows a result of reference
data set benchmarking. The impulse response
of the benchmark or reference data smoothly
decays to zero, indicating good performance of
the controller. After one increases the propor-
tional gain of the controller, the impulse response
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shows oscillatory behavior, with an RPI = 0.4,
indicating deteriorated performance due to the
oscillation.

In some cases one may wish to specify cer-
tain desired closed-loop dynamics and carry out
performance analysis with respect to such desired
dynamics. One such desired dynamic benchmark
is the closed-loop settling time. As an illustrative
example, Fig. 8 shows a system where a settling
time of ten sampling units is desired for a process
with a delay of five sampling units. The impulse
responses show that the existing loop is close to
the desired performance, and the value of RPI =
0.9918 confirms this. Thus no further tuning of
the loop is necessary.

Diagnosis of Poorly Performing
Loops

Whereas detection of poorly performing loops
is now relatively simple, the task of diagnos-
ing reason(s) for poor performance and how to
“mend” the loop is generally not straightforward.
The reasons for poor performance could be any
one of interactions between various control loops,
overtuned or undertuned controller settings, pro-
cess nonlinearity, poor controller configuration
(meaning the choice of pairing a process (or
controlled) variable with a manipulative variable
loop), or actuator problems such as stiction, large
delays, and severe disturbances. Several studies
have focused on the diagnosis issues related to
actuator problems (Haagglund 2002; Choudhury
et al. 2008; Srinivasan and Rengaswamy 2008;
Xiang and Lakshminarayanan 2009; de Souza
et al. 2012). Shardt et al. (2012) has given an
overview of the overall state of CPM and the
related diagnosis issues.

Industrial Applications of CPM
Technology

As remarked earlier, CPM software is now read-
ily available from most DCS vendors and has
already been implemented successfully at several
large-scale industrial sites. A summary of just
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two of many large-scale industrial implementa-
tions of CPM technology appears below. It gives
a clear evidence of the impact of this control
technology and how readily it has been embraced
by industry (Shah et al. 2014).

BASF Controller Performance Monitoring
Application

As part of its excellence initiative OPAL 21
(Optimization of Production Antwerp and Lud-
wigshafen), BASF has implemented the CPM
strategy on more than 30,000 control loops at
its Ludwigshafen site in Germany and on over
10,000 loops at its Antwerp production facility
in Belgium. The key factor in using this technol-
ogy effectively is to combine process knowledge,
basic chemical engineering, and control expertise
to develop solutions for the indicated control
problems that are diagnosed in the CPM software
(Wolff et al. 2012).

Saudi Aramco Controller Performance
Monitoring Practice

As part of its process control improvement ini-
tiative, Saudi Aramco has deployed CPM on
approximately 15,000 PID loops, 50 MPC appli-
cations, and 500 smart positioners across multiple
operating facilities.

The operational philosophy of the CPM en-
gine is incorporated in the continuous improve-
ment process at BASF and Aramco, whereby all
loops are monitored in real-time and a holistic
performance picture is obtained for the entire
plant. Unit-wide performance metrics are dis-
played in effective color-coded graphic forms to
effectively convey the analytics information of
the process.

Concluding Remarks

In summary, industrial control systems are de-
signed and implemented or upgraded with a par-
ticular objective in mind. The controller perfor-
mance monitoring methodology discussed here
will permit automated and repeated reviews of
the design, tuning, and upgrading of the control
loops. Poor design, tuning, or upgrading of the
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control loops can be detected, and repeated per-
formance monitoring will indicate which loops
should be retuned or which loops have not been
effectively upgraded when changes in the dis-
turbances, in the process, or in the controller
itself occur. Obviously better design, tuning, and
upgrading will mean that the process will operate
at a point close to the economic optimum, leading
to energy savings, improved safety, efficient uti-
lization of raw materials, higher product yields,
and more consistent product qualities. This entry
has summarized the major features available in
recent commercial software packages for control
loop performance assessment. The illustrative ex-
amples have demonstrated the applicability of
this new technique when applied to process data.

This entry has also illustrated how controllers,
whether in hardware or software form, should
be treated like ‘“capital assets” and how there
should be routine monitoring to ensure that they
perform close to the economic optimum and that
the benefits of good regulatory control will be
achieved.
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Abstract

This chapter presents an overview of the main
issues related to modeling and control of coop-
erative robotic manipulators. A historical path
is followed to present the main research results

on cooperative manipulation. Kinematics and dy-
namics of robotic arms cooperatively manipu-
lating a tightly grasped rigid object are briefly
discussed. Then, this entry presents the main
strategies for force/motion control of the cooper-
ative system.

Keywords

Cooperative task space; Coordinated motion;
Force/motion control; Grasping; Manipulation;
Multi-arm systems

Introduction

Since the early 1970s, it has been recognized that
many tasks, which are difficult or even impossi-
ble to execute by a single robotic manipulator,
become feasible when two or more manipulators
work in a cooperative way. Examples of typical
cooperative tasks are the manipulation of heavy
and/or large payloads, assembly of multiple parts,
and handling of flexible and articulated objects
(Fig. 1).

In the 1980s, research achieved several the-
oretical results related to modeling and control
of to single-arm robots; this further fostered re-
search on multi-arm robotic systems. Dynamics

Cooperative Manipulators, Fig. 1 An example of a
cooperative robotic work cell composed by two industrial
robot arms
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and control as well as force control issues have
been widely explored along the decade.

In the 1990s, parameterization of the
constraint forces/moments acting on the object
has been recognized as a key to solving control
problems and has been studied in several
papers (e.g., Sang et al. 1995; Uchiyama and
Dauchez 1993; Walker et al. 1991; Williams
and Khatib 1993). Several control schemes for
cooperative manipulators based on the sought
parameterizations have been designed, including
force/motion control (Wen and Kreutz-Delgado
1992) and impedance control (Bonitz and Hsia
1996; Schneider and Cannon 1992). Other
approaches are adaptive control (Hu et al. 1995),
kinematic control (Chiacchio et al. 1996), task-
space regulation (Caccavale et al. 2000), and
model-based coordinated control (Hsu 1993).
Other important topics investigated in the 1990s
were the definition of user-oriented task-space
variables for coordinated control (Caccavale et al.
2000; Chiacchio et al. 1996), the development of
meaningful performance measures (Chiacchio
et al. 1991a,b) for multi-arm systems, and the
problem of load sharing (Walker et al. 1989).

Most of the abovementioned works assume
that the cooperatively manipulated object is
rigid and tightly grasped. However, since
the 1990s, several research efforts have
been focused on the control of cooperative
flexible  manipulators (Yamano et al. 2004),
since flexible-arm robot merits (lightweight
structure, intrinsic compliance, and hence safety)
can be conveniently exploited in cooperative
manipulation. Other research efforts have been
focused on the control of cooperative systems
for the manipulation of flexible objects (Yukawa
et al. 1996) as well.

Modeling, Load Sharing,
and Performance Evaluation

The first modeling goal is the definition of
suitable variables describing the kinetostatics of
a cooperative system. Hereafter, the main results
available are summarized for a dual-arm system
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composed by two cooperative manipulators
grasping a common object.

The Kkinetostatic formulation proposed by
Uchiyama and Dauchez (1993), i.e., the so-called
symmetric formulation, is based on kinematic
and static relationships between generalized
forces/velocities acting at the object and their
counterparts acting at the manipulators end
effectors. To this aim, the concept of virtual
stick is defined as the vector which determines
the position of an object-fixed coordinate frame
with respect to the frame attached to each robot
end effector (Fig.2). When the object grasped
by the two manipulators can be considered rigid
and tightly attached to each end effector, then the
virtual stick behaves as a rigid stick fixed to each
end effector.

According to the symmetric formulation, the
vector, h, collecting the generalized forces (i.e.,
forces and moments) acting at each end effector
is given by

h=Whg+ Vhy, (1)

where W is the so-called grasp matrix, the
columns of V span the null space of the

Cooperative Manipulators, Fig. 2 Grasp geometry
for a two-manipulator cooperative system manipulating
a common object. The vectors r; and r, are the virtual
sticks, T. is the coordinate frame attached to the object,
and 7; and 75 are the coordinate frames attached to each
end effector
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grasp matrix, and h; is the generalized force
vector which does not contribute to the object’s
motion, i.e., it represents internal loading of the
object (mechanical stresses) and is termed as
internal forces, while h represents the vector of
external forces, i.e., forces and moments causing
the object’s motion. Later, a fask-oriented
formulation has been proposed (Chiacchio et al.
1996), aimed at defining a cooperative task space
in terms of absolute and relative motion of
the cooperative system, which can be directly
computed from the position and orientation of
the end-effector coordinate frames.

The dynamics of a cooperative multi-arm sys-
tem can be written as the dynamics of the single
manipulators together with the closed-chain con-
straints imposed by the grasped object. By elimi-
nating the constraints, a reduced-order model can
be obtained (Koivo and Unseren 1991).

Strongly related to kinetostatics and dynamics
of cooperative manipulators is the load sharing
problem, i.e., distributing the load among the
arms composing the system, which has been
solved, e.g., in Walker et al. (1989). A very rele-
vant problem related to the load sharing is that of
robust holding, i.e., the problem of determining
forces/moments applied to object by the arms, in
order to keep the grasp even in the presence of
disturbing forces/moments.

A major issue in robotic manipulation is the
performance evaluation via suitably defined
indexes (e.g., manipulability ellipsoids). These
concepts have been extended to multi-arm robotic
systems in Chiacchio et al. (1991a,b). Namely, by
exploiting the kinetostatic formulations described
above, velocity and force manipulability
ellipsoids can be defined, by regarding the whole
cooperative system as a mechanical transformer
from the joint space to the cooperative task space.
The manipulability ellipsoids can be seen as
performance measures aimed at determining the
attitude of the system to cooperate in a given
configuration.

Finally, it is worth mentioning the strict re-
lationship between problems related to grasping
of objects by fingers/hands and those related
to cooperative manipulation. In fact, in both
cases, multiple manipulation structures grasp
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a commonly manipulated object. In multifingered
hands, only some motion components are
transmitted through the contact point to the
manipulated object (unilateral constraints), while
cooperative manipulation via robotic arms is
achieved by rigid (or near-rigid) grasp points and
interaction takes place by transmitting all the
motion components through the grasping points
(bilateral constraints). While many common
problems between the two fields can be tackled
in a conceptually similar way (e.g., kinetostatic
modeling, force control), many others are specific
of each of the two application fields (e.g., form
and force closure for multifingered hands).

Control

When a cooperative multi-arm system is em-
ployed for the manipulation of a common object,
it is important to control both the absolute motion
of the object and the internal stresses applied
to it. Hence, most of the control approaches to
cooperative robotic systems can be classified as
force/motion control schemes.

Early approaches to the control of cooperative
systems were based on the master/slave concept.
Namely, the cooperative system is decomposed
in a position-controlled master arm, in charge
of imposing the absolute motion of the object,
and the force-controlled slave arms, which are
to follow (as smoothly as possible) the motion
imposed by the master. A natural evolution of the
above-described concept has been the so-called
leader/follower approach, where the follower
arm reference motion is computed via closed-
chain constraints. However, such approaches
suffered from implementation issues, mainly due
to the fact that the compliance of the slave arms
has to be very large, so as to smoothly follow the
motion imposed by the master arm. Moreover,
the roles of the master and slave (leader and
follower) may need to be changed during the task
execution.

Due to the abovementioned limitations, more
natural nonmaster/slave approaches have been
pursued later, where the cooperative system is
seen as a whole. Namely, the reference motion
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of the object is used to determine the motion of
all the arms in the system and the interaction
forces are measured and fed back so as to be
directly controlled. To this aim, the mappings
between forces and velocities at the end effector
of each manipulator and their counterparts at the
manipulated object are considered in the design
of the control laws.

An approach, based on the classical hybrid
force/position control scheme, has been proposed
in Uchiyama and Dauchez (1993), by exploiting
the symmetric formulation described in the pre-
vious section.

In Wen and Kreutz-Delgado (1992) a
Lyapunov-based approach is pursued to devise
force/position PD-type control laws. This
approach has been extended in Caccavale et al.
(2000), where kinetostatic filtering of the control
action is performed, so as to eliminate all the
components of the control input which contribute
to internal stresses at the object.

A further improvement of the PD plus
gravity compensation control approach has
been achieved by introducing a full model
compensation, so as to achieve feedback
linearization of the closed-loop system. The
feedback linearization approach formulated at
the operational space level is the base of the so-
called augmented object approach (Sang et al.
1995). In this approach, the system is modeled
in the operational space as a whole, by suitably
expressing its inertial properties via a single
augmented inertia matrix Mo, i.e.,

Mo(xg)Xg +coxg,Xg) +8oxE) = hg, (2)

where Mo, co, and g, are the operational space
terms modeling, respectively, the inertial proper-
ties of the whole system (manipulators and ob-
ject), the Coriolis/centrifugal/friction terms, and
the gravity terms, while xg is the operational
space vector describing the position and orien-
tation of the coordinate frame attached to the
grasped object. In the framework of feedback lin-
earization (formulated in the operational space),
the problem of controlling the internal forces can
be solved, e.g., by resorting to the virtual linkage
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model (Williams and Khatib 1993) or according
to the scheme proposed in Hsu (1993).

An alternative control approach is based on
the well-known impedance concept (Bonitz and
Hsia 1996; Schneider and Cannon 1992). In fact,
when a manipulation system interacts with an
external environment and/or other manipulators,
large values of the contact forces and moments
can be avoided by enforcing a compliant behavior
with suitable dynamic features. In detail, the fol-
lowing mechanical impedance behavior between
the object displacements and the forces due to the
object-environment interaction can be enforced
(external impedance):

Mgrag +DgvE + Keeg = heny, (3)
where eg represents the vector of displacements
between object’s desired and actual pose, Vg is
the difference between the object’s desired and
actual generalized velocities, ag is the difference
between the object’s desired and actual gener-
alized accelerations, and h.,, is the generalized
force acting on the object, due to the interaction
with the environment. The impedance dynamics
is characterized in terms of given positive definite
mass, damping, and stiffness matrices (Mg, Dg,
Kr). A mechanical impedance behavior between
the ith end-effector displacements and the in-
ternal forces can be imposed as well (internal
impedance):

M;;a;+D;;vi+Kiiei =hg;, (4)
where e; is the vector expressing the displace-
ment between the commanded and the actual
pose of the ith end effector, ¥; is the vector
expressing the difference between commanded
and actual generalized velocities of the ith end
effector, a; is the vector expressing the difference
between commanded and actual generalized ac-
celerations of the ith end effector, and &/ ; is the
contribution of the i th end effector to the internal
force. Again, the impedance dynamics is charac-
terized in terms of given positive definite mass,
damping, and stiffness matrices (M7 ;, Dy, Ky ;).
More recently, an impedance scheme for control
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of both external forces and internal forces has
been proposed (Caccavale et al. 2008).

Summary and Future Directions

This entry has provided a brief survey of the
main issues related to cooperative robots, with
special emphasis on modeling and control prob-
lems. Among several open research topics in
cooperative manipulation, it is worth mentioning
the problem of cooperative transportation and
manipulation of objects via multiple mobile ma-
nipulators. In fact, although notable results have
been already devised in Khatib et al. (1996),
the foreseen use of robotic teams in industrial
settings (hyperflexible robotic work cells) and/or
in collaboration with humans (robotic coworker
concept) raises new challenges related to auton-
omy and safety of multiple mobile manipulators.
Also, an emerging application field is given by
cooperative systems composed by multiple aerial
vehicle-manipulator systems (see, e.g., Fink et al.
2011).
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Recommended Reading

An overview of the field of cooperative ma-
nipulation can be found also in Caccavale and
Uchiyama (2008), where a more extended lit-
erature review and further technical details are
provided. Seminal contributions to control of co-
operative manipulators can be found in Chiacchio
et al. (1991a), Koivo and Unseren (1991), Sang
et al. (1995), Uchiyama and Dauchez (1993),
Walker et al. (1989), Wen and Kreutz-Delgado
(1992), and Williams and Khatib (1993).
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Abstract

This article presents the fundamental elements of
the theory of cooperative games in the context
of dynamic systems. The concepts of Pareto op-
timality, Nash bargaining solution, characteristic
function, cores, and C-optimality are discussed,
and some fundamental results are recalled.

Keywords
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Introduction

Solution concepts in game theory are regrouped
in two main categories called noncooperative
and cooperation solutions, respectively. In the
seminal book of von Neumann and Morgen-
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stern (1944) this categorization is already made.
These authors discuss zero-sum (matrix) games
in normal form, where the noncooperative so-
lution concept of saddle-point was defined and
characterized, and games in characteristic func-
tion form, where solution concepts for games
of coalitions were introduced. In this article we
present the fundamental solution concepts of the
theory of cooperative games in the context of
dynamical systems. The article is organized as
follows: we first recall the papers, which mark
the origin of development of a theory of dy-
namic games; then we recall the basic concept of
Pareto optimality proposed as a cooperative so-
lution concept; we present the scalarization tech-
nique and the necessary or sufficient optimality
conditions for Pareto optimality in mathematical
programming and optimal control settings; we
then explore the difficulties encountered when
one tried to extend the Nash bargaining solution,
characteristic function and cores concept to dy-
namic games; we show the links that exist with
the theory of reachability for perturbed dynamic
systems.

The Origins

One may consider that the first introduction of
a cooperative game solution concept in systems
and control science is due to L.A. Zadeh (1963).
Two-player zero-sum dynamic games have been
studied by R. Isaacs (1954) in a deterministic
continuous time setting and by L. Shapley (1953)
in a discrete time stochastic setting. Nonzero-sum
and m player differential games were introduced
by Y.C. Ho and A.W. Starr (1969) and J.H. Case
(1969). For these games cooperative solutions
can be looked for to complement the noncoop-
erative Nash equilibrium concept.

Cooperation Solution Concept

In cooperative games one is interested in non-
dominated solution. This solution type is re-
lated to a concept introduced by the well-known
economist V. Pareto (1869) in the context of
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welfare economics. Consider a system with de-
cision variables x € X C IR" and m performance
criteria x — ¥;(x) € R, j = 1,...,m that one
tries to maximize.

Definition 1 The decision x* € X is nondomi-
nated or Pareto optimal if the following condition
holds:

Vi(x)=y;(x*) Vj=1,...m
= Y;(x)=vy,;(x*) Vj=1...m.

In other words it is impossible to give one cri-
terion j a value greater than v;(x*) without
decreasing the value of another criterion, say £,
which then takes a value lower than v, (x™*).

This vector-valued optimization framework cor-
responds to a situation where m players are en-
gaged in a game, described in its normal form,
where the strategies of the m players constitute
the decision vector x and their respective payoffs
are given by the m performance criteria ¥ (x),
j = 1,...,m. One assumes that these players
jointly take a decision that is cooperatively op-
timal, in the sense that no player can improve
his/her payoff without deteriorating the payoff of
at least one other player.

The Scalarization Technique

Letr = (ry,r2,...,7y) be a given m-vector com-
posed of normalized weights that satisfy r; > 0,
j=1l...omand ) _ ri =1

Lemmal Let x* € X be a maximum in
X for the scalarized criterion ¥V(x;r) =
Z;’;l rjyi(x). Then x* is a nondominated
solution for the multi-objective problem.

The proof is very simple. Suppose x* is
dominated, then there exists x° € X such
that ¥; (x°) > v¢;(x*), Vj = 1,...,m, and
¥ (x°) > ¥ (x*) forone i € {1,...,m}. Since
all the r; are > 0, this yields > 7, r; v, (x°) >
ZT:I rjy;(x*), which contradicts the maxi-
mizing property of x*. This result shows that it
will be very easy to find many Pareto optimal

solutions by varying a strictly positive weighting
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of the criteria. But this procedure will not find all
of the nondominated solutions.

Conditions for Pareto Optimality

in Mathematical Programming

N.O. Da Cunha and E. Polak (1967b) have ob-
tained the first necessary conditions for multi-
objective optimization. The problem they con-
sider is

Pareto Opt. ;(x) j=1,...m
S.t.
o(x) =0 k=1,...p

where the functions x € R" +— ¥;(x) € R,
j =1,....omand x > ¢(x) € R, k =
1,..., p are continuously differentiable (C') and
where we assume that the constraint qualification
conditions of mathematical programming hold
for this problem too. They proved the following
theorem.

Theorem 1 Let x* be a Pareto optimal solution
of the problem defined above. Then there exists a
vector A of p multipliers A\, k = 1,...,p, anda
vector v # 0 of m weights r; > 0, such that the
following conditions hold

a *, L. —
a[ﬁ(x ;) =0
r(x*) <0

lk (pk(x*) =0
A >0,

where L (x*;r; L) is the weighted Lagrangian
defined by

m p

LOGmA) =Y ri v () + ) Ak gr(x).
j=1 k=1

So there is a local scalarization principle for

Pareto optimality.

Maximum Principle

The extension of Pareto optimality concept to
control systems was done by several authors
(Basile and Vincent 1970; Bellassali and Jourani
2004; Binmore et al. 1986; Blaquiere et al. 1972;
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Leitmann et al. 1972; Salukvadze 1971; Vincent
and Leitmann 1970; Zadeh 1963), the main result
being an extension of the maximum principle of
Pontryagin. Let a system be governed by state
equations:

x(1) = f(x(1), u(r)) ey

u(ty e U 2
X(O) = Xo (3)
t €[0,7T] 4

where x € R”" is the state variable of the system,
u € U C R with U compact is the control
variable, and [0, T'] is the control horizon. The
system is evaluated by m performance criteria of
the form

T
1O = [ (RO, a6 (6T,
(5
for j = 1,...,m. Under the usual assumptions
of control theory, i.e., f(-,-) and g;(-,*), j =
1,...,m, being C! in x and continuous in u,
G (-) being C! in x, one can prove the following.

Theorem 2 Let {x*(t) : t € [0, T]} be a Pareto
optimal trajectory, generated at initial state x° by
the Pareto optimal control {u*(t) : t € [0,T]}.
Then there exist costate vectors {A*(t) : t €
[0, T} and a vector of positive weights r # 0 €

R", with components r; > 0, Z?:l"j = 1,

such that the following relations hold:

9
X*(t) = ﬁH(X*(t),u*(t);k(t);r) (6)

: 0
Ar) = —EH(X*(Z)M*(Z):/\(Z):F) (N

X*(O) = Xo (8)

m a
MT) = rj -G(x(T)) ©)

Jj=1
with

H(x*(t), u*(t): A(t);r)

= max H(x*(t),u; A(2);r)
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where the weighted Hamiltonian is defined by

H(x,u;A;r) = Z rjg;i(x,u) + AT f(x,u).

j=1

The proof of this result necessitates some addi-
tional regularity assumptions. Some of these con-
ditions imply that there exist differentiable Bell-
man value functions (see, e.g., Blaquiere et al.
1972); some others use the formalism of nons-
mooth analysis (see, e.g., Bellassali and Jourani
2004).

The Nash Bargaining Solution

Since Pareto optimal solutions are numerous (ac-
tually since a subset of Pareto outcomes are in-
dexed over the weightings r, r; > 0, Z;’;l rj =
1), one can expect, in the payoff m-dimensional
space, to have a manifold of Pareto outcomes.
Therefore, the problem that we must solve now
is how to select the “best” Pareto outcome’?
“Best” is a misnomer here, because, by their
very definition, two Pareto outcomes cannot be
compared or gauged. The choice of a Pareto
outcome that satisfies each player must be the
result of some bargaining. J. Nash addressed this
problem very early, in 1951, using a two-player
game setting. He developed an axiomatic ap-
proach where he proposed four behavior axioms
which, if accepted, would determine a unique
choice for the bargaining solution. These ax-
ioms are called respectively, (i) invariance to
affine transformations of utility representations,
(ii) Pareto optimality, (iii) independence of irrel-
evant alternatives, and (iv) symmetry. Then the
bargaining point is the Pareto optimal solution
that maximizes the product

x* = argmax, (Y1 (x) =91 (x°)) (Y2 (x) —¥2(x°))

where x° is the status quo decision, in case
bargaining fails, and (¥;(x°)), j = 1,2 are
the payoffs associated with this no-accord deci-
sion (this defines the so-called threat point). It
has been proved (Binmore et al. 1986) that this
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solution could be obtained also as the solution of
an auxiliary dynamic game in which a sequence
of claims and counterclaims is made by the two
players when they bargain.

When extended directly to the context of
differential or multistage games, the Nash
bargaining solution concept proved to lack
the important property of time consistency.
This was first noticed in Haurie (1976). Let a
dynamic game be defined by Egs. (1)-(5), with
j = 1,2. Suppose the status quo decision,
if no agreement is reached at initial state
(t = 0,x(0) = x?9), consists in playing an
open-loop Nash equilibrium, defined by the
controls ujy(-) : [0,T] - U;, j = 1,2 and
generating the trajectory xV () : [0,T] — R”",
with x¥(0) = x,. Now applying the Nash
bargaining solution scheme to the data of this
differential game played at time ¢ = 0 and state
x(0) = x,, one identifies a particular Pareto
optimal solution, associated with the controls
u*(-) 1 [0,T] = Uj;, j = 1,2 and generating the
trajectory x*(-) : [0, T] — R", with x*(0) = x,.
Now assume the two players renegotiate the
agreement to play u;‘ () at an intermediate point
of the Pareto optimal trajectory (z,x*(7)),
t € (0,T). When computed from that point,
the status quo strategies are in general not the
same as they were at (0, x,); furthermore, the
shape of the Pareto frontier, when the game is
played from (7, x*(t)), is different from what it
is when the game is played at (0, x,). For these
two reasons the bargaining solution at (z, x* (7))
will not coincide in general with the restriction to
the interval [z, T'] of the bargaining solution from
(0, x,). This implies that the solution concept is
not time consistent. Using feedback strategies,
instead of open-loop ones, does not help, as
the same phenomena (change of status quo and
change of Pareto frontier) occur in a feedback
strategy context.

This shows that the cooperative game solu-
tions proposed in the classical theory of games
cannot be applied without precaution in a dy-
namic setting when players have the possibil-
ity to renegotiate agreements at any interme-
diary point (¢, x*(¢)) of the bargained solution
trajectory.
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Cores and C-Optimality in Dynamic
Games

Characteristic functions and the associated so-
Iution concept of core are important elements
in the classical theory of cooperative games. In
two papers (Haurie 1975; Haurie and Delfour
1974) the basic definitions and properties of the
concept of core in dynamic cooperative games
were presented. Consider the multistage system,
controlled by a set M of m players and defined
by

x(k+1) = fHeek),up (b)),
k=0,1,...., K—1

x(i)=x"ie{0,1,....K~1}

un (k)2 (u; (k) jen € Un()2 [T U, ().

jeM

From the initial point (i, x’) a control sequence
(up (@), ..., upy (K — 1)) generates for each
player j a payoff defined as follows:

TG x i un (i), . uy (K — 1)) 2
K—1

D@ (k). up (k) + Y (x(K)).

k=i

A subset S of M is called a coalition. Let ;ng :
x(k) — us(k) € ]_[jes Uj(k) be a feedback
control for the coalition defined at each stage k.
A player j € S considers then, from any initial
point (i, x), his guaranteed payoff:

K—1\ A
’ /’LS 1) =
infy ()€U —s (i) oroittrs—s (K—1)EUp—s (K—1)

Soht @y (e (k). [k (e (k). up—s (k) ])
+7,; (x(K)).

W, Xk, ...

Definition 2 The characteristic function at stage
i for coalition S C M is the mapping v’
(S, x") — v (S, x') C R defined by

ws 2 (wj)jes € vi(S,xi) &
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Elufg,...,uf_l:VjeS

N K—1
W, xs s, o pug ) > o).
In other words, there is a feedback law for the
coalition S which guarantees at least @; to each
player j in the coalition.

Suppose that in a cooperative agreement, at point
(i, x"), the coalition S is proposed a gain vector
ws which is interior to v (S, x"). Then coalition
S will block this agreement, because using an ap-
propriate feedback, the coalition can guarantee a
better payoff to each of its members. We can now
extend the definition of the core of a cooperative
game to the context of dynamic games, as the set
of agreement gains that cannot be blocked by any
coalition.

Definition 3 The core Q(i,x') at point (i,x")
is the set of gain vectors wys 2 (wj)jem such
that:

1. There exists a Pareto optimal control
wy(@),...,uy, (K — 1) for which w; =
JiG,xul, (i), .. ul (K — 1)),

2. VS C M the projection of wy in RS is not
interior to v’ (S, x)

Playing a cooperative game, one would be inter-
ested in finding a solution where the gain-to-go
remains in the core at each point of the trajectory.
This leads us to define the following.

Definition 4 A control ii° £ w5, 0), ..., um
(K — 1)) is C-optimal at (0, x°) if &#° is Pareto
optimal generating a state trajectory

{x°(0) = x°, x°(1),...,x°(K)}
and a sequence of gain-to-go values

w9() = J; (. x°(@):ufy (). ... uf (K — 1)),

i=0,...,K-1

such that Vi = 0,1,...,K — 1, the m-vector
w4, (i) is element of the core (i, x°(i)).

A C-optimal control generates an agreement
which cannot be blocked by any coalition along
the Pareto optimal trajectory. It can be shown on

239

examples that a Pareto optimal trajectory which
has the gain-to-go vector in the core at initial
point (0, x¢) is not C-optimal.

Links with Reachability Theory for
Perturbed Systems

The computation of characteristic functions can
be made using the techniques developed to study
reachability of dynamic systems with set con-
strained disturbances (see Bertsekas and Rhodes
1971). Consider the particular case of a linear
system

x(k+1) = Ax(k)+ > Bhujk)  (10)

jeM

where x € R", u; € Ujl? C RP/, where Uj’.‘ is
a convex-bound set and A, B}‘ are matrices of

appropriate dimensions. Let the payoff to player
j be defined by:

JiG X up (i), up (K — 1) 2
K—1

D h () + v (i (k) + 1 (x(K)).

k=i

[I>

Algorithm Here we use the notations ¢/§
(¢§?)jeg and Bfug £ > jes Bfuj. Also we
denote {u + V'}, where u is a vector in R and
V c R", the set of vectors u + v, Yv € V.
Then

1. VxK vK(S, xK)& {ws e RY : Ts(xK) > ws}
2. Vx EFFI(S, x) £ Nv € Up_g vFH!

(S, x + B} v)

3. Vxk 1R (S, xk) & yE(u) + £

ue US {
(S, A*x* + BEu)}
4. Vxk vR (S, xF) = {pf (xF) + HF(S. X))

In an open-loop control setting, the calculation
of characteristic function can be done using the
concept of Pareto optimal solution for a sys-
tem with set constrained disturbances, as shown
in Goffin and Haurie (1973, 1976) and Haurie
(1973).
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Conclusion

Since the foundations of a theory of cooperative
solutions to dynamic games, recalled in this ar-
ticle, the research has evolved toward the search
for cooperative solutions that could be also equi-
librium solution, using for that purpose a class of
memory strategies Haurie and Towinski (1985),
and has found a very important domain of appli-
cation in the assessment of environmental agree-
ments, in particular those related to the climate
change issue. For example, the sustainability of
solutions in the core of a dynamic game mod-
eling international environmental negotiations is
studied in Germain et al. (2003). A more encom-
passing model of dynamic formation of coalitions
and stabilization of solutions through the use of
threats is proposed in Breton et al. (2010). These
references are indicative of the trend of research
in this field.
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Abstract

We discuss the utilization of distributed energy
resources (DERSs) to provide active and reactive
power support for ancillary services. Though the
amount of active and/or reactive power provided
individually by each of these resources can be
very small, their presence in large numbers in
power distribution networks implies that, under
proper coordination mechanisms, they can col-
lectively provide substantial active and reactive
power regulation capacity. In this entry, we pro-
vide a simple formulation of the DER coordina-
tion problem for enabling their utilization to pro-
vide ancillary services. We also provide specific
architectures and algorithmic solutions to solve
the DER coordination problem, with focus on
decentralized solutions.
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Introduction

On the distribution side of a power system,
there are many distributed energy resources
(DERs), e.g., photovoltaic (PV) installations,
plug-in hybrid electric vehicles (PHEVs), and
thermostatically controlled loads (TCLs), that
can be potentially used to provide ancillary
services, e.g., reactive power support for voltage
control (see, e.g., Turitsyn et al. (2011) and
the references therein) and active power up and

down regulation for frequency control (see, e.g.,
Callaway and Hiskens (2011) and the references
therein). To enable DERs to provide ancillary
services, it is necessary to develop appropriate
control and coordination mechanisms. One
potential solution relies on a centralized control
architecture in which each DER is directly
coordinated by (and communicates with) a
central decision maker. An alternative approach
is to distribute the decision making, which
obviates the need for a central decision maker
to coordinate the DERs. In both cases, the
decision making involves solving a resource
allocation problem for coordinating the DERs
to collectively provide a certain amount of a
resource (e.g., active or reactive power).

In a practical setting, whether a centralized or
a distributed architecture is adopted, the control
of DERs for ancillary services provision will
involve some aggregating entity that will gather
together and coordinate a set of DERs, which
will provide certain amount of active or reac-
tive power in exchange for monetary benefits. In
general, these aggregating entities are the ones
that interact with the ancillary services market,
and through some market-clearing mechanism,
they enter a contract to provide some amount of
resource, €.g., active and/or reactive power over a
period of time. The goal of the aggregating entity
is to provide this amount of resource by properly
coordinating and controlling the DERs, while
ensuring that the total monetary compensation
to the DERs for providing the resource is below
the monetary benefit that the aggregating entity
obtains by selling the resource in the ancillary
services market.

In the context above, a household with a so-
lar PV rooftop installation and a PHEV might
choose to offer the PV installation to a renew-
able aggregator so it is utilized to provide re-
active power support (this can be achieved as
long as the PV installation power electronics-
based grid interface has the correct topology
Dominguez-Garcia et al. 2011). Additionally, the
household could offer its PHEV to a battery ve-
hicle aggregator to be used as a controllable load
for energy peak shaving during peak hours and
load leveling at night (Guille and Gross 2009).
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Finally, the household might choose to enroll in
a demand response program in which it allows a
demand response provider to control its TCLs to
provide frequency regulation services (Callaway
and Hiskens 2011). In general, the renewable
aggregator, the battery vehicle aggregator, and the
demand response provider can be either separate
entities or they can be the same entity. In this
entry, we will refer to these aggregating entities
as aggregators.

The Problem of DER Coordination

Without loss of generality, denote by x; the
amount of resource provided by DER i without
specifying whether it is active or reactive power.
[However, it is understood that each DER pro-
vides (or consumes) the same type of resource,
i.e., all the x;’s are either active or reactive
power] Let0 < x; < X;, fori = 1,2,...,n,
denote the minimum (x;) and maximum (x;)
capacity limits on the amount of resource Xx;
that node i can provide. Denote by X the total
amount of resource that the DERs must collec-
tively provide to satisfy the aggregator request.
Let 7;(x;) denote the price that the aggregator
pays DER i per unit of resource x; that it pro-
vides. Then, the objective of the aggregator in
the DER coordination problem is to minimize the
total monetary amount to be paid to the DERs for
providing the total amount of resource X while
satisfying the individual capacity constraints of
the DERs. Thus, the DER coordination problem
can be formulated as follows:

minimize le- 7 (x;)
i=1
n
(H
subject to Zx,- =X

i=1

O<x; <=x;i <Xx;, Vj.

By allowing heterogeneity in the price per
unit of resource that the aggregator offers to
each DER, we can take into account the fact
that the aggregator might value classes of DERs
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differently. For example, the downregulation ca-
pacity provided by a residential PV installation
(which is achieved by curtailing its power) might
be valued differently from the downregulation
capacity provided by a TCL or a PHEV (both
would need to absorb additional power in order
to provide downregulation).

It is not difficult to see that if the price func-
tions 7; (-), i = 1,2...,n, are convex and non-
decreasing, then the cost function > ;_, x;7; (x;)
is convex; thus, if the problem in (1) is feasi-
ble, then there exists a globally optimal solu-
tion. Additionally, if the price per unit of re-
source is linear with the amount of resource, i.e.,
wi(x;) =c¢ixi, i =1,2,...,n, then x;7m; (x;) =
¢ix?, i = 1,2,...,n, and the problem in (1)
reduces to a quadratic program. Also, if the price
per unit of resource is constant, i.e., w;(x;) =

¢i, i =1,2,...,n, then x;m;(x;) = ¢;x;, I =
1,2,...,n, and the problem in (1) reduces to a
linear program. Finally, if 7;(x;) = n(x;) =
c, i = 1,2,...,n, for some constant ¢ > 0,

i.e., the price offered by the aggregator is constant
and the same for all DERs, then the optimization
problem in (1) becomes a feasibility problem of
the form

find x1,x2,...,X,

n
subject to Zx,- =X (2)

i=1

O0<x; =xi <Xx;, VJ.

If the problem in (2) is indeed feasible (i.e.,
Yooix, < X < Y%, then there is an
infinite number of solutions. One such solution,
which we refer to as fair splitting, is given by

X—En X
1=12Z]
xi_xi+—

Xi—x;), Yi. (3
7:1(Xl—£/)(x x), Vi )

The formulation to the DER coordination
problem provided in (2) is not the only possible
one. In this regard, and in the context of PHEVs,
several recent works have proposed game-
theoretic formulations to the problem (Ghare-
sifard et al. 2013; Ma et al. 2013; Tushar et al.
2012). For example, in Gharesifard et al. (2013),
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the authors assume that each PHEV is a decision
maker and can freely choose to participate after
receiving a request from the aggregator. The
decision that each PHEV is faced with depends
on its own utility function, along with some
pricing strategy designed by the aggregator. The
PHEVs are assumed to be price anticipating in
the sense that they are aware of the fact that
the pricing is designed by the aggregator with
respect to the average energy available. Another
alternative is to formulate the DER coordination
problem as a scheduling problem (Chen et al.
2012; Subramanian et al. 2012), where the DERs
are treated as tasks. Then, the problem is to
develop real-time scheduling policies to service
these tasks.

Architectures

Next, we describe two possible architectures that
can be utilized to implement the proper algo-
rithms for solving the DER coordination problem

as formulated in (1). Specifically, we describe a
centralized architecture that requires the aggre-
gator to communicate bidirectionally with each
DER and a distributed architecture that requires
the aggregator to only unidirectionally communi-
cate with a limited number of DERs but requires
some additional exchange of information (not
necessarily through bidirectional communication
links) among the DERs.

Centralized Architecture

A solution can be achieved through the
completely centralized architecture of Fig. la,
where the aggregator can exchange information
with each available DER. In this scenario,
each DER can inform the aggregator about
its active and/or reactive capacity limits and
other operational constraints, e.g., maintenance
schedule. After gathering all this information,
the aggregator solves the optimization program
in (1), the solution of which will determine
how to allocate among the resources the total

amount of active power P/ and/or reactive
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power Q7 that it needs to provide. Then, the
aggregator sends individual commands to each
DER so they modify their active and or reactive
power generation according to the solution
of (1) computed by the aggregator. In this
centralized solution, however, it is necessary
to overlay a communication network connecting
the aggregator with each resource and to maintain
knowledge of the resources that are available at
any given time.

Decentralized Architecture

An alternative is to use the decentralized control
architecture of Fig. 1b, where the aggregator re-
lays information to a limited number of DERs
that it can directly communicate with and each
DER is able to exchange information with a
number of other close-by DERs. For example,
the aggregator might broadcast the prices to be
paid to each type of DER. Then, through some
distributed protocol that adheres to the commu-
nication network interconnecting the DERs, the
information relayed by the aggregator to this
limited number of DERs is disseminated to all
other available DERs. This dissemination pro-
cess may rely on flooding algorithms, message-
passing protocols, or linear-iterative algorithms
as proposed in Dominguez-Garcia and Hadji-
costis (2010, 2011). After the dissemination pro-
cess is complete and through a distributed com-
putation over the communication network, the
DERs can solve the optimization program in (1)
and determine its active and/or reactive power
contribution.

A decentralized architecture like the one in
Fig. b may offer several advantages over the cen-
tralized one in Fig. 1b, including the following.
First, a decentralized architecture may be more
economical because it does not require commu-
nication between the aggregator and the various
DERs. Also, a decentralized architecture does
not require the aggregator to have a complete
knowledge of the DERs available. Additionally, a
decentralized architecture can be more resilient to
faults and/or unpredictable behavioral patterns by
the DERs. Finally, the practical implementation
of such decentralized architecture can rely on
inexpensive and simple hardware. For example,
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the testbed described in Dominguez-Garcia et al.
(2012a), which is used to solve a particular in-
stance of the problem in (1), uses Arduino mi-
crocontrollers (see Arduino for a description)
outfitted with wireless transceivers implementing
a ZigBee protocol (see ZigBee for a description).

Algorithms

Ultimately, whether a centralized or a decentral-
ized architecture is adopted, it is necessary to
solve the optimization problem in (1). If a cen-
tralized architecture is adopted, then solving (1)
is relatively straightforward using, e.g., standard
gradient-descent algorithms (see, e.g., Bertsekas
and Tsitsiklis 1997). Beyond the DER coordina-
tion problem and the specific formulation in (1),
solving an optimization problem is challenging if
a decentralized architecture is adopted (especially
if the communication links between DERs are
not bidirectional); this has spurred significant
research in the last few years (see, e.g., Bertsekas
and Tsitsiklis 1997, Xiao et al. 2006, Nedic et al.
2010, Zanella et al. 2011, Gharesifard and Cortes
2012, and the references therein).

In the specific context of the DER coordi-
nation problem as formulated in (1), when the
cost functions are assumed to be quadratic and
the communication between DERs is not bidirec-
tional, an algorithm amenable for implementation
in a decentralized architecture like the one in
Fig. 1b has been proposed in Dominguez-Garcia
et al. (2012a). Also, in the context of Fig. 1b,
when the communication between DERs are bidi-
rectional, the DER coordination problem, as for-
mulated in (1), can be solved using an algorithm
proposed in Kar and Hug (2012).

As mentioned earlier, when the price offered
by the aggregator is constant and identical for
all DERs, the problem in (1) reduces to the
feasibility problem in (2). One possible solution
to this feasibility problem is the fair-splitting so-
lution in (3). Next, we describe a linear-iterative
algorithm — originally proposed in Dominguez-
Garcia and Hadjicostis (2010, 2011) and referred
to as ratio consensus — that allows the DERs to
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individually determine its contribution so that the
fair-splitting solution is achieved.

Ratio Consensus: A Distributed Algorithm
for Fair Splitting
We assume that each DER is equipped with a
processor that can perform simple computations
and can exchange information with neighboring
DERs. In particular, the information exchange
between DERs can be described by a directed
graph G = {V, &}, where V = {1,2,...,n}isthe
vertex set (each vertex — or node — corresponds to
aDER) and £ C V x V is the set of edges, where
(i, j) € £ if node i can receive information from
node j. We require G to be strongly connected,
i.e., for any pair of vertices [ and I, there exists
a path that starts in / and ends in !’. Let Lt c
V, LT # @ denote the set of nodes that the
aggregator is able to directly communicate with.
The processor of each DER i maintains two
values y; and z;, which we refer to as internal
states, and updates them (independently of each
other) to be, respectively, a linear combination of
DER i’s own previous internal states and the pre-
vious internal states of all nodes that can possibly
transmit information to node i (including itself).
In particular, for all k > 0, each node i updates
its two internal states as follows:

1

il +11= 3 eyl @
JENT T
1

zilk +1] = Z ,D__‘,,_Zj[k]v (5)
JENT T

where N7 = {j € V : (i,j) € &}, ie,
all nodes that can possibly transmit information
to node i (including itself); and Di+ is the out-
degree of node i, i.e., the number of nodes to
which node i can possibly transmit information
(including itself). The initial conditions in (4)
are set to y;[0] = X/m — x; ifi € LT, and
¥i[0] = —x; otherwise and the initial conditions
in (5) are set to z; [0] = X; — x;. Then, as shown
in Dominguez-Garcia and Hadjicostis (2011), as
longas Y )_,X; < X < Y /_, X, each DER i
can asymptotically calculate its contribution as
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xi =X; +y(&xi —x;) (6)

where for all i
1L b B N TR

k—o0 Zi[k] N Z;,:l(f[ _11) o

It is important to note that the algorithm in
(4)—(7) also serves as a primitive for the algorithm
proposed in Dominguez-Garcia et al. (2012a),
which solves the problem in (1) when the cost
function is quadratic. Also, the algorithm in
(4)—(7) is not resilient to packet-dropping com-
munication links or imperfect synchronization
among the DERs, which makes it difficult
to implement in practice; however, there are
robustified variants of this algorithm that address
these issues Dominguez-Garcia et al. (2012b)
and have been demonstrated to work in practice
(Dominguez-Garcia et al. 2012a).
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Abstract

Modeling of credit risk is concerned with con-
structing and studying formal models of time
evolution of credit ratings (credit migrations) in
a pool of credit names, and with studying various
properties of such models. In particular, this in-
volves modeling and studying default times and
their functionals.
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Introduction

Modeling of credit risk is concerned with con-
structing and studying formal models of time
evolution of credit ratings (credit migrations) in
a pool of N credit names (obligors), and with
studying various properties of such models. In
particular, this involves modeling and studying
default times and their functionals. In many ways,
modeling techniques used in credit risk are sim-
ilar to modeling techniques used in reliability
theory. Here, we focus on modeling in continuous
time.

Models of credit risk are used for the purpose
of valuation and hedging of credit derivatives, for
valuation and hedging of counter-party risk, for
assessment of systemic risk in an economy, or
for constructing optimal trading strategies involv-
ing credit-sensitive financial instruments, among
other uses.

Evolution of credit ratings for a single obligor,
labeled as i, where i € {l,...,N}, can be
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modeled in many possible ways. One popular
possibility is to model credit migrations in terms
of a jump process, say C' = (C/);>o, taking
values in a finite set, say X' := {0,1,2,..., K/ —
1, K'}, representing credit ratings assigned to
obligor i . Typically, the rating state K’ represents
the state of default of the i-th obligor, and typi-
cally it is assumed that process C' is absorbed at
state K'.

Frequently, the case when K’ = 1, that is
K := {0,1}, is considered. In this case, one
is only concerned with jump from the pre-
default state 0 to the default state 1, which
is usually assumed to be absorbing — the
assumption made here as well. It is assumed that
process C I starts from state 0. The (random)
time of jump of process C’ from state 0
to state 1 is called the default time, and is
denoted as t'. Process C' is now the same as
the indicator process of 7!, which is denoted
as H' and defined as H; = 1gicy. for
t > 0. Consequently, modeling of the process
C' is equivalent to modeling of the default
time 7'.

The ultimate goal of credit risk modeling is
to provide a feasible mathematical and compu-
tational methodology for modeling the evolution
of the multivariate credit migration process C :=
(C',...,C"), so that relevant functionals of
such processes can be computed efficiently. The
simplest example of such functional is P(C;; €
Aj,j = 1,2,...,J|G), representing the con-
ditional probability, given the information G; at
time s > 0, that process C takes values in
the set A; at time ¢t; > 0, j = 1,2,...,J.
In particular, in case of modeling of the de-

fault times ¢/, i = 1,2,...,N, one is con-
cerned with computing conditional survival prob-
abilities P(t! > t1,....7¥ > ty|G,), which

are the same as probabilities P(H,’; = 0,i =
1,2,...,N|Gy).

Based on that, one can compute more com-
plicated functionals, that naturally occur in the
context of valuation and hedging of credit risk—
sensitive financial instruments, such as corporate
(defaultable) bonds, credit default swaps, credit
spread options, collateralized bond obligations,
and asset-based securities, for example.
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Modeling of Single Default Time
Using Conditional Density

Traditionally, there were two main approaches to
modeling default times: the structural approach
and the reduced approach, also known as the
hazard process approach. The main features of
both these approaches are presented in Bielecki
and Rutkowski (2004).

We focus here on modeling a single default
time, denoted as 7, using the so-called condi-
tional density approach of El Karoui et al. (2010).
This approach allows for extension of results that
can be derived using reduced approach.

The default time 7 is a strictly positive random
variable defined on the underlying probability
space (§2,F, P), which is endowed with a ref-
erence filtration, say F = (F;);>0, representing
flow of all (relevant) market information available
in the model, not including information about
occurrence of t. The information about occur-
rence of 7 is carried by the (right continuous)
filtration H generated by the indicator process
H = (H; = 1;<);>0. The full information in
the model is represented by filtration G := FVvH.

It is postulated that

P(t € dO|F) = a,(0)d0,

for some random field «.(-), such that o,(:) is

Fi ® B(R4) measurable for each ¢. The family

o (-) is called F;-conditional density of t. In

particular, P(t > 60) = [ ao(u)du. The

following survival processes are associated with

T,

* Si(0) = P(r > 0|F) = feoo o (u) du,
which is an F-martingale,

e S = 8,(t) = P(t > t|F), which is an F-
supermartingale (Azéma supermartingale).

In particular, So() = P(r > 0) =

J5° @o(u) du, and S;(0) = S, = 1.

As an example of computations that can be
done using the conditional density approach
we give the following result, in which notation
“bd” and “ad” stand for before default and
at-or-after default, respectively.
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Theorem 1 Let Y7 (t) be a Fr Vv o(t) measur-
able and bounded random variable. Then

EXYr(0)|F) = Y, + YT, 01,5,

where
yo = S Y@ @)dd
S
and
EYr(0 0
yir gy = EQr@a@iF)

o (0)

There is an interesting connection between
the conditional density process and the so-called
default intensity processes, which are ones of the
main objects used in the reduced approach. This
connection starts with the following result,

Theorem 2 (i) The Doob-Meyer (additive)
decomposition of the survival process S is
given as

t
S, =1+ MtF —/ a,(u)du,
0

where MF = —fot(af(u) — o, (u)du =
E([y° au(u)du|Fy) — 1.

(ii) Let § := inf{t > 0 : S, = 0}. Define
AF = O%f)fort < Eand \F = )Lgfort > £.
Then, the multiplicative decomposition of S
is given as

S, = LFeJoXidu,
where
dLF = ehhidugpF  LF = 1.

The process A¥ is called the T intensity of T.

The G-compensator of t is the G-predictable
increasing process A® such that the process

ME = H, — A®

Credit Risk Modeling

is a G-martingale. If A® is absolutely continuous,
the G-adapted process A€ such that

t
A‘S:/ ACdu
0

is called the G-intensity of 7. The G-compensator
is stopped at 7, i.e., A® = AS, . Hence, A® = 0
when ¢ > 7. In particular, we have

A =1,.AF = (1 - H)AL.

The conditional density process and the G-
intensity of 7 are related as follows: Forany ¢ < &
and 6 > t we have

a(0) = EQG|F).
Example 1 This is a structural-model-like
example
» Suppose F = FX is a filtration of a default
driver process, say X, and @ is the default bar-
rier assumed to be independent of X . Denote
G(t) = P(O >1).
* Define

t:=inf{t >0 : I, > O},

with I := sup,., X;. We then have S,(6) =
G(I)if 6 < t and S;(0) = E(G(I)|FX) if
0>t

* Assume that F = 1 — G and I" are ab-
solutely continuous w.r.t. Lebesgue measure,
with respective densities f and y. We then
have

o (0) = f(To)ye =g, 1 =0,
and F¥ intensity of 7 is

_ o) _ o)
TGy S
* Inparticular, if @ is a unit exponential r.v., that
is, if G(t) = e~ for t > 0, then we have that
a (1)

A=y =%~

Example 2 This is a reduced-form-like example.
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* Suppose S is a strictly positive process. Then,
the F-hazard process of 7 is denoted by I'*
and is given as

r'f=—ms, ¢>0.
In other words,
S[ = e_[}]F, t = 0.

e In particular, if I Fis absolutely continuous,
thatis, I7* = f; yFduthen

L F
S;=e fo”“d”, t>0 and

@ (0) = y;Ss, t = 6.

Modeling Evolution of Credit Ratings
Using Markov Copulae

The key goal in modeling of the joint migration
process C is that the distributional laws of
the individual migration components C’, i €
{1,..., N}, agree with given (predetermined)
laws. The reason for this is that the marginal laws
of C, that is, the laws of C*, i € {1,...,N},
can be calibrated from market quotes for prices
of individual (as opposed to basket) credit
derivatives, such as the credit default swaps,
and thus, the marginals of C should have laws
agreeing with the market data.

One way of achieving this goal is to model
C as a Markov chain satisfying the so-called
Markov copula property. For brevity we present
here the simplest such model, in which the refer-
ence filtration F is trivial, assuming additionally,
but without loss of generality, that N = 2 and
that K! = K* =K :={0,1,...,K}.

Here we focus on the case of the so-called
strong Markov copula property, which is reflected
in Theorem 3.

Let us consider two Markov chains Z' and Z>
on (§2, F, P), taking values in a finite state space
K, and with the infinitesimal generators 4! :=
[a,.lj] and A2 := [aﬁk], respectively.

Consider the system of linear algebraic equa-

. . C
tions in unknowns a;;, e
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c  _ 1
2 :aih,jk =4,

ke

Vi,j,he K, i #j, (1)

Y af i =ap. VihkeK. h#k (2
jek

It can be shown that this system admits at least
one positive solution.

Theorem 3 Consider an arbitrary positive so-
lution of the system (1)-(2). Then the matrix
AC = [ai)/(’l,jk]ivhvjvkE/C (where diagonal elements
are defined appropriately) satisfies the condi-
tions for a generator matrix of a bivariate time-
homogeneous Markov chain, say C = (C', C?),
whose components are Markov chains in the
filtration of C and with the same laws as Z"' and
z2.

Consequently, the system (1)—(2) serves as a
Markov copula between the Markovian margins
C', C? and the bivariate Markov chain C.

Note that the system (1)—(2) can contain more
unknowns than the number of equations, there-
fore being underdetermined, which is a crucial
feature for ability of calibration of the joint mi-
gration process C to marginal market data.

Example 3 This example illustrates modeling
joint defaults using strong Markov copula theory.

Let us consider two processes, Z' and Z2,
that are time-homogeneous Markov chains, each
taking values in the state space {0, 1}, with re-
spective generators

0 1
n =(1) (—(a0+c) a—(;—c) 3)
and
0 1
A2=(1) (—(bo—l—c) b—(i)—c), @

fora,b,c > 0.
The off-diagonal elements of the matrix A
below satisfy the system (1)—(2),
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(0,0) 0, 1) (1,00 (1,1
0,0) [ —(a+b+c) b a ¢
4C — 0,1) 0 —(a+c¢) 0 a+c 5)
(1,0) 0 0 —(b+c) b+c
1,1) 0 0 0 0
Thus, matrix A€ generates a Markovian joint Bibliography

migration process C = (C!,C?), whose com-
ponents C'' and C? model individual default with
prescribed default intensities @ + ¢ and b + c,
respectively.

For more information about Markov copulae
and about their applications in credit risk we,
refer to Bielecki et al. (2013).

Summary and Future Directions

The future directions in development and applica-
tions of credit risk models are comprehensively
laid out in the recent volume Bielecki et al.
(2011). One additional future direction is mod-
eling of systemic risk.

Cross-References
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We do not give a long list of recommended reading here.
That would be in any case incomplete. Up—to—date
references can be found on www.defaultrisk.com.
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