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1. Introduction 

Consider the generalized controller design problem in Figure 1 where P denotes the generalized plant model. 
Here, the objective is to design the controller K, which, based on the sensed outputs v, computes the inputs 
(MVs) u  such that the variables z are kept small, in spite of variations in the variables w, which include 
disturbances (d), varying setpoints/references (CVs) and measurement noise (n), 

w = [d, CVs, n] 

The variables z, which should be kept small, typically include the control error for the selected controlled 
variables (CV) plus the plant inputs (u), 

 z = [CV-CVs; u] 

The variables v, which are the inputs to the controller, include all known variables, including measured outputs 
(ym), measured disturbances (dm) and setpoints, 

v = [ym; dm; CVs].  

The cost function for designing the optimal controller K is usually the weighted control error, J’ = ||W’ z||. The 
reason for using a prime on J (J’), is to distinguish it from the economic cost J which we later use for selecting 
the controlled variables (CV). 

Notice that it assumed in Figure 1 that we know what to measure (v), manipulate (u), and, most importantly, 
which variables in z we would like to keep at setpoints (CV), that is, we have assumed a given control structure. 
The term ”constrol structure selection”  (CSS) and its synonym ”control structure design” (CSD) is associated 
with the overall control philosophy for the system with emphasis on the structural decisions which are a 
prerequisite for the controller design problem in Figure 1: 

1. Selection of controlled variables  (CVs, “outputs”, included in z in Figure 1)  
2. Selection of manipulated variables (MVs, “inputs”, u in Figure 1)  
3. Selection of  measurements y (included in v in Figure 1) 
4. Selection of control configuration (structure of overall controller K that interconnects the controlled, 

manipulated and measured variables; structure of K in Figure 1) 
5. Selection of type of controller K (PID, MPC, LQG, H-infinity, etc.) and objective function (norm) used 

to design and analyze it. 
 

Decisions 2 and 3 (selection of u and y) are sometimes referred to as the input/output (IO) selection problem.   In 

practice, the controller (K) is usually divided into several layers, operating on different time scales (see 

Figure 2), which implies that we in addition to selecting the (primary) controlled variables (CV1≡CV) must 

also select the (secondary) variables that interconnect the layers (CV2).  
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Figure 1. General formulation for designing the controller K.  The plant P is controlled by manipulating u, and is 
disturbed by the signals w. The controller uses the measurements v, and the control objective is to keep the outputs 
(weighted control error) z as small as possible.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Typical control hierarchy, as illustrated for a process plant. 

Control structure selection includes all the structural decisions that the engineer needs to make when designing a 
control system, but it does not involve the actual design of each individual controller block. Thus, it involves  the 
decisions necessary to make a block diagram (Figure 1; used by control engineers) or process & instrumentation 
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diagram (used by process engineers) for the entire plant, and provides the starting point for a detailed controller 
design. 

The term “plantwide control”, which is a synonym for “control structure selection”, is used in the field of process 
control. Controls structure selection is particularly important for process control because of the complexity of large 
processing plants, but it applies to all control applications, including vehicle control, aircraft control, robotics, power 
systems, biological systems, social systems and so on. 

It may be argued that control structure selection is more important than the controller design itself. Yet, control 
structure selection is hardly covered in most control courses. This is probably related to the complexity of the 
problem, which requires the knowledge from several engineering fields. In the mathematical sense, the control  
structure selection problem is a formidable combinatorial problem which involves a large number of discrete 
decision variables.  

2. Overall objectives for control and structure of the control layer 

The starting point for control system design is to define clearly the operational objectives. There are usually two 
main objectives for control: 

1. Longer-term  economic operation (minimize economic cost J subject to satisfying operational constraints)  

2. Stability and shorter-term regulatory control 

The first objective is related to “making the system operate as intended”, where economics are an important issue. 
Traditionally, control engineers have not been much involved in this step. The second objective is related to “making 
sure the system stays operational”, where stability and robustness are  important issues,  and this has traditionally 
been the main domain of control engineers  In terms of designing the control system, the second objective 
(stabilization) is usually considered first. An example is bicycle riding; we first need to learn how to stabilize the 
bicycle (regulation), before trying to use for something useful (optimal operation), like riding to work and selecting 
the shortest path.   

We use the term “economic” cost, because usually the cost function J can be given a monetary value, but more 
generally, the cost J could be any scalar cost. For example, the cost J could be the “environmental impact” and the 
economics could then be given as constraints.   

In theory, the optimal strategy is to combine the control tasks of optimal economic operation and 

stabilization/regulation in a single centralized controller K, which at each time step collects all the information 

and computes the optimal input changes. In practice, simpler controllers are used. The main reason for this is 

that in most cases one can obtain acceptable control performance with simple structures, where each 

controller block involves only a few variables. Such control systems can be designed and tuned with much 

less effort, especially when it comes to the modelling and tuning effort.  

So how are large-scale systems controlled in practise? Usually, the controller K is decomposed into several 

subcontrollers, using two two main principles 

– Decentralized (local) control. This “horizontal decomposition” of the control layer is usually based on 

separation in space, for example, by using local control of individual units. 

 

– Hierarchical (cascade) control. This “vertical decomposition” is usually based on time scale separation, 

as illustrated for a process plant in Figure 2. The upper three layers in Figure 2 deal explicitly with 

economic optimization and are not considered here. We are concerned with the two lower control layers, 

where the main objective is to track the setpoints specified by the layer above. 



 

In accordance with the two main objectives for control, the control layer is in most cases divided 

hierarchically in two layers (Figure 2):   

 

1. A  “slow” supervisory  (economic) layer  

2. A  “fast”  regulatory  (stabilization)  layer   

 

Another reason for the separation in two control layers, is that the tasks of economic operation and 

regulation are fundamentally different. Combining the two objectives in a single cost function, which is 

required for designing a single centralized controller K, is like trying to compare apples and oranges. For 

example, how much is an increased stability margin worth in monitory units [$]?  Only if there is a 

reasonable benefit in combining the two layers, for example, because there is limited time scale separation 

between the tasks of regulation and optimal economics, should one consider combining them into a single 

controller. 
 

3. Notation and matrices H1 and H2 for controlled variable selection 

The most important notation is summarized in Table 1 and Figure 3. To distinguish between the two control layers, 
we use “1” for the upper supervisory (economic) layer and “2” for  the regulatory layer, which is “secondary” in 
terms of its place in the control hierarchy.  

 

Table 1. Important notation  

u = [u1; u2] = set of all available physical plant inputs  

u1 = inputs used directly by supervisory control layer 

u2 = inputs used by regulatory layer  

ym = set of all measured outputs   

y = [ym; u] = combined set of measurements and inputs  

y2 = controlled outputs in regulatory layer (subset or combination of y); dim(y2)=dim(u2) 

CV1 = H1 y = controlled variables in supervisory layer; dim(CV1)=dim(u) 

CV2 = [y2; u1] = H2 y = controlled variables in regulatory layer; dim (CV2)=dim(u)  

MV1 = CV2s = [y2s; u1] = manipulated variables in supervisory layer; dim(MV1)=dim(u) 

MV2 = u2 = manipulated variables in regulatory layer; dim (MV2)=dim(u2)≤dim(u) 

 

There is often limited possibility to select the input set (u) as it is usually constrained by the plant design. 

However, there may be a possibility to add inputs or to move some to another location, for example, to avoid 

saturation or to reduce the time delay and thus improve the input-output controllability. 

There is much more flexibility in terms of output selection, and the most important structural decision is 

related to the selection of controlled variables in the two control layers, as given by the decision matrices H1 

and H2 (see Figure 3). 

CV1 = H1 y 

CV2 = H2 y 

Note from the definition in Table 1 that y = [ym; u]. Thus, y  includes, in addition to the candidate measured 

outputs (ym), also the physical inputs u. This allows for the possibility of selecting an input u as a 



”controlled” variable, which means that this input is kept constant (or, more precisely, the input is left 

”unused” for control in this layer).   

In general, H1 and H2 are ”full” matrices, allowing for measurement combinations as controlled variables. 

However, for simplicity, especially in the regulatory layer, we often pefer to control individual 

measurements, that is, H2 is usually a “selection matrix”, where each row in H2 contains one 1-element (to 

identify the selected variable) with the remaining elements set to 0. In this case, we can write  CV2 = H2 y = 

[y2; u1], where y2 denotes the actual controlled variables in the regulatory layer, whereas u1 denotes the 

“unused” inputs (u1), which are left as degrees of freedom for the supervisory layer. Note that this indirectly 

determines the inputs u2 used in the regulatory layer to control y2, because u2 is what remains in the set u 

after selecting u1. To have a simple control structure, with as few regulatory loops as possible, it is desirable 

that H2 is selected such that there are many inputs (u1) are left “unused” in the regulatory layer. 

Example.  Assume there are 3 candidate output measurements (temperatures T) and 2 inputs (flowrates q), 

ym = [Ta Tb Tc], u = [qa  qb] 

and we have by definition y = [ym; u]. Then the choice 

H2 = [0 1 0 0 0; 0 0 0 0 1] 

means that we have selected CV2 = H2 y = [Tb; qb]. Thus, u1=qb is an unused input for regulatory control, and in the 
regulatory layer we close one loop, using u2=qa to control y2=Tb.. If we instead select 

H2 = [1 0 0 0 0; 0 0 1 0 0] 

then we have CV2= [Ta; Tc].  None of these are inputs, so u1 is an empty set in this case. This means that we need to  
close two regulatory loops, using  u2 = [qa; qb] to control y2 = [Ta; Tc].  



 

Figure 3: Block diagram of a typical control hierarchy, emphasizing the selection of controlled variables for 

supervisory (economic) control (CV1 = H1 y) and regulatory control (CV2=H2 y).  

 

 

Table 2. Objectives of supervisory control layer 
 
O1. Control primary “economic” variables CV1 at setpoint using as degrees of freedom MV1, which includes the 
setpoints to the regulatory layer (y2s= CV2s) as well as any ”unused” degrees of freedom (u1). 
O2. Switch controlled variables (CV1) depending on operating region, for example, because of change in active 
constraints.  
O3. Supervise the regulatory layer, for example, to avoid input saturation (u2), which may destabilize the system 
O4. Coordinate control loops (multivariable control) and reduce effect of interactions (decoupling) 
O5. Provide feedforward action from measured disturbances 
O6. Make use of additional inputs, for example, to improve the dynamic performance (usually combined with input 
midranging control) or to extend the steady-state operating range (split range control) 
O7. Make use of extra measurements, for example, to estimate the primary variables CV1. 

 

4. Supervisory control layer and selection of economic controlled variables (CV1) 
 



Some objectives for the supervisory control layer are given in Table 2. The main structural issue for the supervisory 
control layer, and probably the most important decision in the design of any control system, is the selection of the 
primary (economic) controlled variable CV1. In many case, a good engineer can make a reasonable choice based on 
process insight and experience. However, the control engineer must realize that this is a critical decision. The main 
rules and issues for selecting CV1 are 

CV1-Rule 1. Control active constraints (almost always) 

 Active constraints may often be identified by engineering insight, but more generally requires 
optimization based on a detailed model.  

For example, consider the problem of minimizing the driving time between two cities (cost J=T).  
There is a single input (u=fuel flow f [l/s]) and the optimal solution is often constrained. When driving 
a fast car, the active constraint may be the speed limit (CV1 = v [km/h] with setpoint vmax, e.g. vmax = 
100 km/h). When driving an old car, the active constraint maybe the maximum fuel flow (CV1 = f [l/s] 
with setpoint fmax). The latter corresponds to an input constraint (umax = fmax) which is trivial to 
implement (“full gas”); the former corresponds to an output constraint (ymax = vmax) which  requires a 
controller (“cruise control”). 

  For “hard” output constraints, which cannot be violated at any time, we need to introduce a backoff 
(safety margin) to guarantee feasibility. The backoff is defined as the difference between the optimal 
value and the actual setpoint, for example, we need to back off from the speed limit because of the 
possibility for measurement error and imperfect control 

CVs = CVmax – backoff 

For example, to avoid exceeding the speed limit of 100 km/h, we may set backoff = 5 km/h, and use a 
setpoint vs=95 km/h rather than 100 km/h. 

CV1-Rule 2. For the remaining unconstrained degrees of freedom, look for “self-optimizing” variables which 
when held constant, indirectly lead to close-to-optimal operation, in spite of disturbances.  

 Self-optimizing variables (CV1=H1y) are variables which when kept constant, indirectly (through 
the action of the feedback control system) lead to close-to optimal adjustment of the inputs (u) 
when there are disturbances (d).  

 An ideal self-optimizing variable is the gradient of the cost function with respect to the 
unconstrained input. CV1 = dJ/du = Ju  

 More generally, since we rarely can measure the gradient Ju, we select CV1 = H1y. The selection of a 

good H1 is a non-trivial task, but some quantitative approaches are given below.  

For example, consider again the problem of driving between two cities, but assume that the objective is to 
minimize the total fuel, J = F [liters., Here, driving at maximum speed will consume too much fuel, and driving too 
slow is also non-optimal. This is an unconstrained optimization problem, and identifying a good CV1 is not 
obvious. One option is to maintain a constant speed (CV1= v), but the optimal value of v may vary depending on 
the slope of the road. A more “self-optimizing” option, could be to keep a constant fuel rate (CV1 = q [l/s]), which 
will imply that we drive slower uphill and faster downhill. More generally, one can control combinations, CV1 = 

H1y, where H1 is a “full” matrix. 

CV1-Rule 3. For the unconstrained degrees of freedom, one should never control a variable that reaches its 
maximum or minimum value at the optimum, for example, never try to control directly the cost J. Violation of 



this rule gives either infeasibility (if attempting to control J at a lower value than Jmin) or non-uniqueness (if 
attempting to control J at higher value than Jmin).  

Assume again that we want to minimize the total fuel needed to drive between two cities, J=F l]. Then one should 

avoid fixing the total fuel , CV1=F [l ],or, alterntively, avoid fixing the fuel consumption( ”gas mileage”) in liters pr. km 

(CV1 = f [l/km]). Attempting  to control the fuel consumption[l/km]  below the car's minimum value  is obviously not 

possible (infeasible). Alternatively, attempting to control the fuel consumption above its minimum value has two 

possible solutions; driving slower or faster than the optimum. Note that the policy of controlling the fuel rate q [l/s] at 

a fixed value will never become infeasible. 

For CV1-Rule 2, it is always possible to find good variable combinations (i.e., H1 is a “full” matrix), at least locally, 
but whether or not it is possible to find good individual variables (H1 is a selection matrix), is not obvious. To 
help identify potential “self-optimizing” variables (CV1=c), the following requirements may be used: 

Requirement 1.  The optimal value of c is insensitive to disturbances, that is, dcopt/dd = H1F is small.  

Requirement 2.  The variable c is easy to measure and control accurately  

Requirement 3.  The value of c is sensitive to changes in the manipulated variable, u; that is, the gain, G=HGy, 
from u to c is large (so that even a large error in controlled variable, c, results in only a small variation in u.)  
Equivalently, the optimum should be ‘flat’ with respect to the variable, c. 

Requirement 4.  For cases with two or more controlled variables c, the selected variables should not be closely 
correlated. 

All four requirements should be satisfied.  For example, for the operation of a marathon runner, the heart rate 
may be a good “self-optimizing” controlled variable c (to keep at constant setpoint).  Let us check this against 
the four requirements.  The optimal heart rate is weakly dependent on the disturbances (requirement 1) and 
the heart rate is easy to measure (requirement 2).  The heart rate is quite sensitive to changes in power input 
(requirement 3).  Requirement 4 does not apply since this is a problem with only one unconstrained input (the 
power). In summary, the heart rate is a good candidate. 

 

Regions and switching. If the optimal active constraints vary depending on the disturbances, new controlled 

variables (CV1) must be identified (offline) for each active constraint region, and on-line switching is 

required to maintain optimality. In practise, it is easy to identify when to switch when one reaches a 

constraint. It is less obvious when to switch out of a constraint, but actually one simply has to monitor the 

value of the unconstrained CVs from the neighbouring regions and switch out of the constraint region when 

the unconstrained CV reaches its setpoint.   

In general, one would like to simplify the control structure and reduce need for switching. This may require 

using a suboptimal CV1 in some regions of active constraints. In this case the setpoint for CV1 may not be its 

nominally optimal value (which is the normal choice), but rather a “robust setpoint” (with backoff) which 

reduces the loss when we are outside the nominal constraint region.  

Structure of supervisory layer. The supervisory layer may either be centralized, e.g. using model 

predictive control (MPC), or decomposed into simpler subcontrollers using standard elements, like 

decentralized control (PID), cascade control, selectors, decouplers, feedforward elements, ratio control, split 

range control and input midrange control (also known as input resetting, valve position control or habituating 
control). In theory, the performance is better with the centralized approach (e.g. MPC), but the difference can be 
small when designed by a good engineer.  The main reasons for using simpler elements is that (1) the system can be 
implemented in the existing “basic” control system, (2) it can be implemented with little model information, and (3) 



it can be build up gradually. However, such systems can quickly become complicated  and difficult to understand for 
other than the engineer who designed it. Therefore, model-based centralized solutions (MPC) are often preferred 
because the design is more systematic and easier to modify. 

 

5. Quantitative approach for selecting economic controlled variables, CV1 
 

A quantitative approach for selecting economic controlled variables is to consider the effect of the choice 
CV1=H1y on the economic cost J when disturbances d occur. One should also include noise/errors (ny) related to 
the measurements and inputs. 

Step S1. Define operational objectives (economic cost function J and constraints)  
We first quantify the operational objectives in terms of a scalar cost function J [$/s] that should be minimized 
(or equivalently, a scalar profit function, P = -J, that should be maximized). For process control applications, this 
is usually easy, and typically we have  

J = cost feed + cost utilities (energy) – value products  [$/s] 

Note that the economic cost function J is used to select the controlled variables (CV1), and another cost function 
(J’), typically involving the deviation in CV1 from their optimal setpoints CV1s, is used for the actual controller 
design (e.g., using MPC). 

Step S2. Find optimal operation for expected disturbances  

Mathematically, the optimization problem can be formulated as 

minu  J(u,x,d) 

subject to: 

 Model equations:  dx/dt=f(u,x,d)  

 Operational constraints:  g(u,x,d) ≤ 0 

In many cases, the economics are determined by the steady-state behaviour, so we can set dx/dt=0.  The 
optimization problem should be resolved for the expected disturbances (d) to find the truly optimal operation 
policy, uopt(d). The nominal solution (dnom) may be used to obtain the setpoints (CV1s) for the selected controlled 
variables. In practise, the optimum input uopt(d) cannot be realized, because of model error and unknown 
disturbances d, so we use a feeback implementation where u is adjusted to keep the selected variables CV1 at 
their nominally optimal setpoints.  

Together with obtaining the model, the optimization step S2 is often the most time consuming step in the entire 
plantwide control procedure.  

Step S3. Select supervisory (economic) controlled variables, CV1 

5.1 CV1-rule 1. Control active constraints 

A primary goal for solving the optimization problem is to find the expected regions of active constraints, and a 
constraint is said to be “active” if g=0 at the optimum. The optimally active constraints will vary depending on 
disturbances (d) and market conditions (prices).  

5.2 CV1-rule 2. Control self-optimizing variables 



After having identified (and controlled) the active constraints, one should consider the remaining lower-
dimension unconstrained optimization problem, and for the remaining unconstrained degrees of freedom one 
should search for control “self-optimizing” variables c.   

1. “Brute force” approach. Given a set of controlled variables CV1=c=H1y, one computes the cost J(c,d) when 
we keep c constant (c = cs + H1ny) for various disturbances (d) and measurement errors (ny). In practise, this is 
done by running a large number of steady-state simulations to try to cover the expected future operation.  

2.“Local” approaches based on a quadratic approximation of the cost J. Linear models are used for the effect of 
u and d  on y.  

y=  Gy u  +  Gy
d d   (xa) 

This is discussed in more detail in Alstad et al. (2009) and references therein. The main local approaches are: 

2A. Maximum gain rule: maximize the minimum singular value of G=H1Gy. In words, the  maximum gain 
rule, which essentially is a quantitative version of Requirements 1 and 3 given above, says that one should 
control  “sensitive” variables, with a large scaled gain G from the inputs (u) to c=H1y. This rule is good for pre-
screening and also yields good insight. 

2B. Nullspace method. This method yields optimal measurement combinations for the case with no noise, 
ny=0. One must first obtain the optimal measurement sensitivity matrix F, defined as  

 F = dyopt/dd.  

Each column in F expresses the optimal change in the y’s when the independent variable (u) is adjusted so that 
the system remains optimal with respect to the disturbance d. Usually, it is simplest to obtain F numerically by 
optimizing the  model. Alternatively, we can obtain F from a quadratic approximation of the cost function 

 F = Gyd – Gy Juu-1 Jud 

Then, assuming that we have at least as many (independent) measurements y as the sum of the number of 
(independent) inputs (u) and disturbances (d), the optimal is to select c=H1y such that  

 H1F=0  

Note that H1 is a nonsquare matrix, so H1F=0 does not require that H1=0 (which is a trivial uninteresting 

solution), but rather that H1 is in the nullspace of FT. 

2C. Exact local method (loss method). This extends the nullspace method to include noise (ny) and allows for 
any number of measurements.  The noise and disturbances are normalized by introducing weighting matrices 
Wny and Wd (which have the expected magnitudes along the diagonal) and then the expected loss, L = J – Jopt(d), 
is minimized by selecting H1 to solve the following problem 

Min_H1  ||M(H1)||2 

where 2 denotes the Frobenius norm and  

M(H1) = Juu1/2 (H1Gy)−1H1Y ,   Y = [FWd  Wny].  

Note here that the optimal choice with Wny=0 (no noise) is to choose H1 such that H1F=0, which is the nullspace 
method. For the general case, when H1 is a “full” matrix, this is a convex problem and the optimal solution is H1’ 
=  (YY’)−1Gy Q where Q is any non-singular matrix. 

6. Regulatory control layer 



 

The main purpose of the regulatory layer is to “stabilize” the plant, preferably using a simple control 

structure (e.g. single-loop PID controllers) which does not require changes during operation.  “Stabilize” is 

here used in a more extended sense to mean that the process does not “drift” too far away from acceptable 

operation when there are disturbances. The regulatory layer should make it possible to use a “slow” 

supervisory control layer that does not require a detailed model of the high-frequency dynamics. Therefore, 

in addition to track the setpoints given by the supervisory layer (e.g., MPC), the regulatory layer may 

directly control primary variables (CV1) that require fast and tight control, like economically important 

active constraints. 
 

In  general,  the  design  of  the  regulatory  layer  involves  the  following  structural decisions: 

1. Selection  of  controlled outputs  y2 (among all candidate measurements ym). 

2.  Selection  of  inputs  MV2=u2 (a subset of all available inputs u) to  control  the  outputs y2. 

3. Pairing  of  inputs  u2 and  outputs y2 (since  decentralized  control  is  normally  used). 

Note  that  we  do  not  “use  up”  any  degrees  of  freedom  in  the  regulatory  layer  because  the  set  points  (y2s) 
become  manipulated variables  (MV1)  for  the  supervisory  layer  (see  Figure 3).  Furthermore, since  the  set  points  
are  set  by  the  supervisory  layer  in  a  cascade  manner ,  the  system  eventually approaches the  same steady-
state  (as  defined  by  the  choice  of  economic  variables  CV1)  regardless of  the  choice  of  controlled variables in  
the  regulatory  layer. 

The inputs for the regulatory layer (u2) are selected as a subset of all the available inputs (u). For stability reasons, 
one should avoid input saturation in the regulatory layer. In particular, one should avoid using inputs (in the set u2) 
that are optimally constrained  in some disturbance region. Otherwise, in order to avoid input saturation, one needs 
to include a backoff for the input when entering this operational region, and doing so will have an economic penalty.   

In the regulatory layer, the outputs (y2) are usually selected as individual measurements and they are often not 
important variables in themselves. Rather, they are “extra outputs” that are controlled in order to “stabilize” the 
system, and their setpoints (y2s) are changed by the layer above, to obtain economical optimal operation. For 
example, in a distillation column one may control a temperature somewhere in the middle of the column (y2=T) in 
order to “stabilize” the column profile. Its setpoint (y2s=Ts) is adjusted  by the supervisory layer to obtain the desired 
product composition (y1=c).  

 

7. Input-output (IO) selection for regulatory control (u2, y2) 

Finding the truly optimal control structure, including selecting inputs and outputs for regulatory control, 
requires finding also the optimal controller parameters. This is an extremely difficult mathematical 
problem, at least if the controller K is decomposed into smaller controllers. In this section, we consider 
some approaches which does not require that the controller parameters be found. This is done by making 
assumptions related to achievable control performance (controllability) or perfect control.   

Before we look at the approaches, note again that the IO-selection for regulatory control may be combined into a 
single decision, by considering the selection of 

CV2= [y2; u1] 



where  u1 denotes  the  inputs  that  are  not used  by  the  regulatory control  layer.  This follows because we want to 
use all inputs u for control, so assuming that that the set u is given, “selection of inputs u2” (decision 2) is by 
elimination equivalent to “selection of inputs u1”.  Note that CV2 include all variables that we keep at desired  
(constant) values within the fast time horizon of the regulatory control layer, including the “unused” inputs u1 

 

7.1 Survey by Van de wal and Jager 

Van de Wal and Jager provide an overview of methods for input-output selection, some of which include: 

1. “Accessibility” based on guaranteeing a cause-effect relationship between the selected inputs (u2) and 
outputs y2). Use of such measures may eliminate unworkable control structures. 

2. “State controllability and state observability” to ensure that any unstable modes can be stabilized using the 
selected inputs and outputs.  

3. “Input-output controllability” analysis to ensure that y2 can be acceptably controlled using u2. This is based 
on scaling the system, and then analysing the transfer matrices  G2(s) (from u2 to y2) and Gd2 (from expected 
disturbances d to y2). Some important controllability measures are right half plane zeros (unstable dynamics 
of the inverse), condition number, singular values, relative gain array, etc. One problem here is that there are 
many different measures, and it is not clear which should be given most emphasis. 

4.  “Achievable robust performance”. This may be viewed as a more detailed version of input-output 
controllability, where several relevant issues are combined into a single measure. However, this requires that 
the control problem can actually be formulated clearly, which may be very difficult, as already mentioned. In 
addition, it requires finding the optimal robust controller for the given problem, which may be very difficult.   

Most of these methods are useful for analyzing a given structure (u2, y2) but less suitable for selection. Also, the list 
of methods is also incomplete, as disturbance rejection, which is probably the most important issue for the 
regulatory layer, is hardly considered. 

7.2 A systematic approach for IO-selection based on minimizing state drift caused by disturbances 

The objectives of the regulatory control layer are many, and Yelchuru and Skogestad (2013) list 13 partly conflicting 
objectives. To  have  a  truly systematic  approach  to  regulatory  control design,  including IO-selection, we would  
need  to  quantify  all these  partially  conflicting  objectives  in terms  of  a  scalar  cost  function  J2. We here consider 
a fairly general cost function, 

J2 = ||Wx|| 

which may be interpreted as the weighted state drift. One justification for considering the state drift, is that the 
regulatory layer should ensure that the system, as measured by the weighted states Wx, does not drift too far away 
from the desired state, and thus stays in the “linear region” when there are disturbances.   Note that the  cost J2 is 
used to select controlled variables (CV2) and not to  design the controller (for which the cost may be the control 

error, J2’ = ||CV2  - CV2s||). 

Within this framework, the IO-selection problem for the regulatory layer is then to select the non-square matrix H2,  

CV2 = H2 y  

where y = [ym; u], such that the cost J2 is minimized.  The cause for changes in J2 are disturbances d, and we consider 
the linear model (in deviation variables) 



y=  Gy u  +  Gy
d d    

x=  Gxu+  Gx
d d     

where the G-matrices are transfer matrices. Here, Gx
d gives the effect of the disturbances on the states with no 

control, and the idea is to reduce the disturbance effect by closing the regulatory control loops. Within the “slow” 
time scale of the supervisory layer, we can assume that CV2 is perfectly controlled and thus constant, or  CV2 =  0 in 
terms of deviation variables.  This gives 

CV2 = H2 G
y u + H2 G

y
d d = 0 

and solving with respect to u gives 

u  =  −(H2G
y)−1(H2G

y
d)d   

and we have  

x  =  Px
d(H2) d   

where    

Px
d(H2)=   Gx

d−  Gx(H2G
y)−1H2Gy

d    

is the disturbance effect for the “partially” controlled system with only the regulatory loops closed.  Note that it is 
not generally possible to make Px

d =0  because  we have more states than we have available inputs.To have a small 
“state drift”, we want J2 =||W Pd d|| to be small, and to have a simple regulatory control system we want to close as 
few regulatory loops as possible. Assume that we have normalized the disturbances so that the norm of d is 1, then 
we can solve the following problem 

For 0, 1, 2… etc. loops closed solve:  min_H2 || M2(H2)||    

where M2 = W Px
d and dim(u2)=dim(y2)=no. of loops closed.  

By comparing the value of || M2(H2)||  with different number of loops closed (i.e., with different H2), we can then 
decide on an appropriate regulatory layer structure. For example, assume that we find that the value of J2 is 110 (0 
loops closed), 0.2 (1 loop), and 0.02 (2 loops), and assume we have scaled the disturbances and states such that a J2-
value less than about 1 is acceptable,  then closing 1 regulatory loop is probably the best choice.  

In principle, this is straightforward, but there are three remaining issues: 1) We need to choose an appropriate norm, 
2) we should include measurement noise to avoid selecting insensitive measurements and 3) the problem must be 
solvable numerically.  

Issue 1. The norm of M2 should be evaluated in the frequency range between the “slow” bandwidth of the 
supervisory control layer (ωB1) and  the “fast” bandwidth of the regulatory control layer (ωB2). However, since it is 
likely that the system sometimes operates without the supervisory layer, it is reasonable to evaluate the norm of Px

d 

in the frequency range from 0 (steady state) to ωB2.   Since we want H2 to be a constant (not frequency-dependent) 
matrix, it is reasonable to choose H2 to minimize the norm of M2 at the frequency where ||M2|| is expected to have 
its peak. For some mechanical systems, this may be at some resonance frequency, but for process control 
applications it is usually at steady state (ω=0), that is ,we can use the steady-state gain matrices when  computing 
Px

d. In terms of the norm, we use the 2-norm (Frobenius norm), mainly because it has good numerical properties, and 
also because it has the interpretation of giving the expected variance in x for normally distributed disturbances. 



Issues 2 and 3. If we include also measurement noise ny, which we should, then the expected value of J2 is minimized 

by solving the problem  min_H2 ||M2(H2)||2 where (Yelchuru and Skogestad, 2013) 

 

Note that this is the same mathematical problem as the “exact local method” presented for selecting CV1=H1y for 
minimizing the economic cost J, but because of the specific simple form for the cost J2, it is possible to obtain 
analytical formulas for the optimal sensitivity, F2. Again, Wd and Wny are diagonal matrices, expressing the expected 
magnitude of the disturbances (d) and noise (for y).  

For the case when H2 is a “full” matrix, this can be reformulated as a convex optimization problem and an explicit 
solution is 

 

  

and from this we can find the optimal value of J2. It may seem restrictive to assume that H2 is a “full” matrix, because 
we usually want to control individual measurements, and then H2 should be a selection matrix, with 1’s and 0’s. 
Fortunately, since we in this case want to control as many measurements (y2) as inputs (u2), we have that H2 is 
square in the selected set, and the optimal value of J2 when H2 is a selection matrix is the same as when H2 is a full 
matrix! The reason for this is that specifying (controlling) any linear combination of y2, uniquely determines the 
individual y2’s, since dim(u2)=dim(y2). Thus, we can find the optimal selection matrix H2, by searching through all the 
candidate square sets of y. This can be effectively solved using the branch and bound approach of Kariwala and Cao, 
or alternatively it can be solved as a mixed-integer problem with a quadratic program (QP) at each node (Yelchuru 
and Skogestad, 2012). The approach of Yelchuru and Skogestad can also be applied to the case where we allow for 
disjunct sets of measurement combinations, which may give a lower J2 in some cases.  

Comments on the state drift approach. 

1. We have assumed that we perfectly control y2 using u2, at least within the bandwidth of the regulatory control 
system. Once one has found a candidate control structure (H2), one should check that it is possible to achieve 
acceptable control. This may be done by analyzing the input-output controllability of the system y2 = G2 u2 + G2d 
d, based on the transfer matrices G2 = H2 G

y and G2d = H2 G
y
d.  If the controllability of this system is not 

acceptable, then one should consider the second-best matrix H2 (with the second-best value of the state drift  J2) 
and so on. 

2. The state drift cost drift J2 = ||Wx|| is in principle independent of the economic cost (J). This is an advantage 
because we know that the economically optimal operation (e.g., active constraints) may change, whereas we 
would like the regulatory layer to remain unchanged. However, it is also a disadvantage, because the regulatory 
layer determines the initial response to disturbances, and we would like this initial response to be in the right 
direction economically, so that the required correction from the slower supervisory layer is as small as possible.  



Actually, this issue can be included by extending the state vector x to include also the economic controlled 
variables, CV1, which is selected based on the economic cost J. The weight matrix W may then be used to adjust 
the relative weights of avoiding drift in the internal states x and economic controlled variables CV1.  

3. The above steady-state approach does not consider input-output pairing, for which dynamics are usually the 
main issue. The main pairing rule is to “pair close” in order to minimize the effective time delay between the 
selected input and output. For a more detailed approach, decentralized input-output controllability must be 
considered.   

8. Summary and Future Directions 

Control structure design involves the structural decisions that must be made before designing the actual 

controller, and it is in most cases a much more important step than the controller design. In spite of this, the 

theoretical tools for making the structural decisions are much less developed than for controller design.  This 

chapter summarizes some approaches, and it is expected, or at least hoped, that this important area will 

further develop in the years to come.   

The most important structural decision is usually related to selecting the economic controlled variables, CV1 

= Hy, and the stabilizing controlled variables, CV2 = H2 y. However, control engineers have traditionally not 

used the degrees of freedom in the matrices H1 and H2, and this chapter has summarized some approaches.   

There has been a belief that the use of “advanced control”, e,.g., MPC, makes control structure design less 

important. However, this is not correct because also for MPC must one choose inputs (MV1=CV2s) and 

outputs (CV1). The selection of CV1 may to some extent be avoided by use of “Dynamic Real-Time 

Optimization (DRTO)” or “Economic MPC”, but these optimizing controllers usually operate on a slower 

time scale by sending setpoints to the basic control layer (MV1=CV2s), which means that selecting the 

variables CV2 is critical for the achieving (close to) optimality on the fast time scale.  
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