
Krist V. Gernaey, Jakob K. Huusom and Rafiqul Gani (Eds.), 12th International Symposium
on Process Systems Engineering and 25th European Symposium on Computer Aided Process
Engineering.
31 May - 4 June 2015, Copenhagen, Denmark. © 2015 Elsevier B.V. All rights reserved.

Improved Optimization-based Design of PID Con-
trollers Using Exact Gradients
Chriss Grimholt and Sigurd Skogestad∗

Department of Chemical Engineering; NTNU; Trondheim, Norway
∗e-mail: skoge@ntnu.no

Abstract
Finding good controller settings that satisfy complex design criteria is not trivial, even for
the simple three parameter proportional-integral-derivative (pid) controller. One strategy
is to formulate the design problem into an optimization problem. However, when using
gradient based optimization with finite differences to estimate the gradients, the algorithm
often fails to converge to the optimal solution. This is thought to be a result of inaccuracies
in the estimation of the gradients. In this paper we show exact gradients for a typical
performance (iae) versus robustness (MS , MT ) design problem. We demonstrate increased
accuracy in the optimization when using exact gradients compared with forward finite
differences.
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1. Introduction

The simple three parameter proportional-integral-derivative (pid) controller is the most
adopted controller in the process industry. However, finding good parameter values by
trial and error is not only difficult, but also time consuming. In combination with simple
models, good parameters are usually found using tuning rules like Ziegler-Nichols or SIMC.

When the design complexity increases, in the form of process model complexity or spe-
cial requirements on controller performance or robustness, it is beneficial to switch to
optimization-based design. Our optimization problem can be stated as follows,

minimize:
parmeters

performance cost (J)

subject to: required robustness

The background for this study was to find optimal pid controller settings for a first-order
plus delay process, and also to find optimal settings for a Smith Predictor controller. Here,
the performance requirements were to minimize integrated absolute error (iae) for input
and output disturbances, and the robustness criterion was to have a given sensitivity peak
(MS). A similar design formulation has been proposed by Shinskey (1990) where load
disturbance was optimized when subjected to sensitivity constraints. By using the link
between integral error and integral gain (ie = 1/ki), Åström et al. (1998) and Panagopoulos
et al. (2002) formulated the optimization problem as a set of algebraic equations which
could be efficiently solved. However, using ie as the performance criterion can lead to
oscillatory response, especially for pid controllers.
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Initially, we solved this optimization problem using gradient-free optimization similar to
the work done by Garpinger and Hägglund (2008). Natively, gradient-free approaches, like
the simplex method, does not explicitly handle constraints. To bypass this, the constraints
are handled internal by an internal solver. For our application, generating optimal trade-off
curves for pid controllers, requiring hundreds of accurate sequential optimizations, the
gradient-free method was too slow due to the internal solver and the number of iterations
required to converge. In addition, the optimal point was slightly inaccurate

By switching to gradient based methods, using finite-differences to estimate the gradients,
we achieved faster convergence. However, the optimization algorithm frequently failed
to converge to the solution. Surprisingly, this also happens even though the initial guess
is very close to the local optimum. In our case, it seems that the main problem is not
necessarily the non-convexity of the problem and the possibility for local minima, but
rather inaccuracies in the estimation of the gradients when using finite-differences. We
found that the robustness of the optimization was significantly improved by supplying the
exact gradients.

In this paper we show and use exact gradients for iae of the time response and the peak of
the sensitivity functions MS , and MT . The main advantage of using accurate gradients is
that we improve the convergence properties and make the problem less sensitive to the
initial point. The approach has been successfully used to find optimal pid on a first-order
with delay processes. But the method can also easily be extended to other processes and
controllers.

2. The closed-loop system

In this paper we consider the linear feedback system as shown in Figure 1. Disturbances
can enter the system at two different locations, at the plant input (du) and the plant output
(dy). The disturbance at the plant output is equivalent to a setpoint change. However,
unlike setpoint changes, the output disturbance is not known in advance. Measurement
noise (n) enters the system at the measured output (y). This system is represented by four
transfer functions nicknamed the gang of four,

S(s) =
1

1 +G(s)K(s)
T (s) = 1− S(s)

GS(s) = G(s)S(s) KS(s) = K(s)S(s)

where their effect on the control error and plant input is,

−e = S(s) dy +GS(s) du + T (s)n (1)
−u = KS(s) dy + T (s) du +KS(s)n (2)

Though we could use any fixed-order controller, we chose in this paper to use the parallel
pid controller as an example;

KPID(s; p) = kp +
ki
s

+ kds = Kc

(
1 +

1

τIs
+ τDs

)
; p =

(
kp ki kd

)T (3)

where kp = Kc, ki = Kc/τI , and kd = Kc τD is the proportional, integral, and derivative
gain, respectively. The parallel pid controller can have complex zeros, which we have
observed can result in several peaks or plateaux for the magnitude of sensitivity function
in the frequency domain |S(jω)|. This becomes important when adding specifications on
the frequency behaviour, which we will show later.
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3. Quantifying the optimal controller

3.1. Performance

In this paper we chose one of the most popular ways of quantifying controller performance,
the integrated absolute error (iae);

IAE (p) =

∫ tf

0

|e(t; p)| dt (4)

when subjecting the system to a disturbance. We take both input and output disturbances
into account and choose the weighted cost function,

J(p) = 0.5

(
ϕdy IAEdy(p) + ϕdu IAEdu(p)

)
; ϕdu =

1

IAE◦du
; ϕdy =

1

IAE◦dy
(5)

where both terms are weighted equally with 0.5 to get a good balance. The ϕdy and ϕdu

are scaling factors from IAE-optimal pid controllers for a step load change on the input
and output, respectively. To ensure robust reference controllers, they are required to have
MS = MT = 1.59. Note that two different controllers are used to obtain the reference
IAE◦ values, whereas a single controller K(s; p) is used to find IAEdy(p) and IAEdu(p).

3.2. Robustness

In this paper we have choosen to quantify robustness in terms of MS and MT ;

MS = max
ω
|S(jω)| = ‖S(jω)‖∞

MT = max
ω
|T (jω)| = ‖T (jω)‖∞

where ‖ · ‖∞ is the H∞-norm. In the Nyquist plot, MS is the inverse of the closest distance
between the critical point (−1, 0) and the loop transfer function L(s) = G(s)K(s).

The closed-loop system is insensitive to small process variations for frequencies where the
sensitivity function

∣∣S(jω)
∣∣ is small (Åström and Hägglund, 2006). On the other hand,

small values of the complementary sensitivity function |T (jω)| tells us that the closed-loop
system is insensitive to larger process variation. The system is most sensitive at the peak
of the sensitivity functions (MS and MT ).

From experience, using only the peaks can lead to cycling between iterations. This is
typical for pid control on first order models, where the optimal controller has several peaks
of equal magnitude in S(jω). The optimizer then discreetly jumps from using one peak to
the other between iterations. It is assumed that this results from the peaks having different
gradients. To avoid this problem, instead of putting the upper bounds on the peaks, e.g.

K(s) Σ
u

G(s)

du

Σ

dy

y

−1 Σ n

Σ
e(ys = 0)

Figure 1: Block diagram of the closed loop system, with controller K(s) and plant G(s).
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MS ≤Mub
S , we choose to require∣∣S(jω)

∣∣ ≤Mub
S for all ω

which in addition to handling multiple peaks and plateaux, also improves convergence
for infeasible initial controllers. The constrain is approximated by gridding the frequency
domain within the interesting region, resulting an inequality constraint for each grid point;∣∣S(jω)

∣∣ ≤Mub
S for all ω in Ω

where Ω is the set of selected frequency points during the gridding of the frequency domain.
This results in reduced accuracy and increased computational load. However, the benefit
gained towards improved convergence properties makes up for this.

4. Implementation of the optimization problem

The optimization problem can be stated as follows,

minimize
p

J(p) = 0.5

(
ϕdy IAEdy(p) + ϕdu IAEdu(p)

)
subject to cs(p) = |S(jω; p)| −Mub

S ≤ 0 for all ω in Ω

ct(p) = |T (jω; p)| −Mub
T ≤ 0 for all ω in Ω

where Mub
S and Mub

T are the upper bounds on
∣∣S(jω)

∣∣ and ∣∣T (jω)
∣∣. If there is a trade-off

between performance and robustness, at least one robustness constraint will be active.

5. Gradients

The gradient of a function ∇f(p) with respects to p is defined as

∇pf(p) =
(

∂f
∂p1

∂f
∂p2

. . . ∂f
∂pn

)T
(6)

where np is the number of parameters. In this paper, pi reference to the parameter i, and
the partial derivative ∂f

∂pi
is called the sensitivity of f . The sensitivities can be approximated

by forward finite differences,

∂f
∂pi
≈ f(pi + ∆pi)− f(pi)

∆pi
(7)

requiring (1 + np) perturbations. For our problem this results in 2(1 + np) step response
simulations. The accuracy can be improved by using central differences, which requires
(1 + 2np) perturbations.

5.1. Cost function gradient

The gradient of the cost function ∇pJ(p) is then expressed in terms of the sensitivities,

∂J(p)

∂pi
= 0.5

(
ϕdy

∂ IAEdy(p)
∂pi

+ ϕdu
∂ IAEdu(p)

∂pi

)
(8)

For even relatively simple systems with time delay, these integrals becomes quite compli-
cated, if not impossible, to solve. However, the sensitivities can be found in a fairly straight
forward manner by developing them such that the integrals can be numerically evaluated.
The sensitivity of iae can be expressed as,

∂ IAE(p)
∂pi

=

∫ tf

0

sign
{
e(t; p)

}(∂e(t;p)
∂pi

)
dt (9)
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where e(t; p) = L−1
{
e(s; p)

}
and ∂e(t;p)

∂pi
= L−1

{
∂e(s;p)
∂pi

}
For the case given in Figure 1 with unit steps load disturbances, the error e(s; p) is S(s;p)/s
for the output disturbance dy and GS(s;p)/s for the input disturbance du. The transient
∂ e(t;p)/∂p can then easily found by step response simulations of

∂S(s)
∂pi

= −GS(s) S(s) ∂K(s)
∂pi

(10)
∂GS(s)

∂pi
= −GS(s) GS(s) ∂K(s)

∂pi
(11)

The gradient of iae is then calculated by evaluating (9) using numerical integration, and
the method is closely related to using direct sensitivities in optimal control problems. This
results in 2(1 + np) step response simulations, which is the same as the forward finite
differences approximation in (7).

5.2. Constraint gradients

The gradient of the robustness constraints ∇cs(p) and ∇ct(p) expressed in terms of the
parameter sensitivities are,

∂cs(jω)

∂pi
=
∂ |S(jω)|
∂pi

=
1∣∣S(jω)
∣∣ Re

{
S(−jω)

∂S(jω)

∂p

}
for all ω in Ω (12)

∂ct(jω)

∂pi
=
∂ |T (jω)|
∂pi

=
1∣∣T (jω)
∣∣ Re

{
T (−jω)

∂T (jω)

∂p

}
for all ω in Ω (13)

If the constrains were instead expressed in terms of the peaks of the transfer functions (e.g.
MS ≤Mub

S ) the gradients become as follows,
d
dpi
‖G(jω; p)‖∞ = ∂

∂pi
|G(jωpeak; p)| (14)

where ωpeak is the frequency of the peak.

6. Case study

The exact gradients were implemented for the problem;

G(s) =
e−s

s+ 1
; IAE◦dy = 1.56; IAE◦du = 1.42; Mub

S = Mub
T = 1.3; p0 =

 0.2
0.02
0.3

 (15)

To make the loop function proper, a first order filter with filter time constant τF = 0.001
was added to the controller. The error response and parameter sensitivity was found by
fixed step integration (tf = 25, nsteps = 104), with the initial point p0. The problem was
solved using Matlab’s fmincon with the active set algorithm. For comparison, forward
finite differences was used to approximate the gradients. This problem has two equal MS

peaks at the optimum (Figure 2), and is a typical example of a problem exhibiting cyclic
behaviour when using the MS ≤Mub

S constraint. The optimal error response is shown in
Figure 3.

The exact gradients performed better than the finite differences (Table 1). The exact cost
function gradients give the best improvement. This signals that the optimum is relatively
flat, and that the approximated cost function gradients are not precise enough to find the
true local optimum. The same test was performed for different numbers of time steps during
the integration. Even with nsteps = 105, the forward finite differences failed to converge to
the local optimum (controller parameter error in the second digit). On the other hand,
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Figure 2: Nyquist plot of L(jω) with the
optimal controller for the problem given in
(15).
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Figure 3: Optimal error response for the
problem given in (15).

the exact gradient could still converge to the local optimum with as low as nsteps = 500
(control parameters error in the fifth digit). The exact gradient converged for most stable
initial guesses, but the forward finite differences failed to find the optimum even when
started very close to the optimum p0 =

(
1.001p?1 p?2 p?3

)T . When using central finite
differences, the accuracy was increased. However, this requires 2(1 + 2np) step simulations.

Table 1: Comparison between optimal solutions with different combinations of gradients.

Gradient type Cost function Optimal parameters number of
Cost-function Constraints J(p?) kp ki kd iterations

exact exact 2.0598 0.5227 0.5327 0.2172 13
fin.dif. exact 2.1400 0.5204 0.4852 0.1812 16
exact fin.dif. 2.0598 0.5227 0.5327 0.2172 13
fin.dif. fin.dif. 2.9274 0.3018 0.3644 0.2312 11

7. Conclusion

In this paper we have successfully applied the exact gradients for a typical performance
(iae) versus robustness (MS , MT ) optimization problem. The exact gradients improved
the convergence to the true optimal point when compared to gradients approximated by
forward finite difference.
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