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Abstract

The operating point of a typical chemical process is determined by solving a nonlinear optimization problem
where the objective is to minimize an economic cost subject to constraints. Often, some or all of the
constraints at the optimal solution are active, i.e, the solution is constrained. Though it is profitable to
operate at the constrained optimal point, it might lead to infeasible operation due to uncertainties. Hence,
industries try to operate the plant close to the optimal point by backing-off to achieve the desired economic
benefits. Therefore, the primary focus of this paper is to present an optimization formulation for solving the
dynamic back-off problem based on an economic cost function. In this regard, we work within a stochastic
framework that ensures feasible dynamic operating region within the prescribed confidence limit. In this
work, we aim to reduce the economic loss due to the back-off by simultaneously solving for the operating
point and a compatible controller that ensures feasibility. Since the resulting formulation is non-linear and
non-convex, we propose a novel two-stage iterative solution procedure such that a convex problem is solved
at each step in the iteration. Finally, the proposed approach is demonstrated using case studies.

Keywords: Feasibility, dynamic back-off, linear matrix inequality, profit control

1. Background

Profitability is the major concern of a chemical plant and one approach to achieve this is to operate
the plant at the optimal point obtained from a non-linear steady state optimizer. The optimizer minimizes
a suitable cost function subject to equality and inequality constraints. Often, the solution of the opti-
mizer is constrained at some of the inequalities, that is, there are several active constraints. Typically, it
is assumed that these active constraints should be controlled at their limiting values to achieve economic
benefits. However, the presence of uncertainties in the form of measurement noise, modeling error, paramet-
ric uncertainties and disturbances might cause constraint violations. Therefore, it is important to find an
operating point close to the active constraints such that the plant remains feasible for the expected range of
uncertainties. Thus, the focus of our work is to propose an optimization formulation that obtains the best
trading-off between feasibility and profitability.

Optimal process operations depend on process design and safety thresholds, etc. These constraints define
the feasible operating window to the optimizer. To ensure feasible operation under uncertain conditions, it
may be necessary to “back-off” from the active constraints which however results in loss of achievable profit.
Hence, the optimizer minimizes a loss function for backing - off from the active constraints. The term “back
- off” is defined as,

Back − off = |Actual steady state operating point
−Nominally optimal steady state operating point| (1)

Based on the notion of back-off, Narraway et al. [13] presented a method to assess the economic performance
of the plant in the presence of disturbances. To ensure feasibility, the maximum amplitude of the disturbance
for a certain range of frequency was used to determine the necessary back-off and alternate designs were
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evaluated. They assume the set of measurements are perfectly controlled and controllability is tested after
obtaining the solution.

Later, Narraway and Perkins [14] extended their frequency response based method of estimating the
closed loop constraint back off on the assumption of perfect control hypothesis to select the optimal set of
measurements and manipulated inputs. This was accomplished by introducing the binary decision variable
into the bounds of all possible measurements and manipulations. Also, the method was extended for the
case of realistic PI controllers. Although the formulation is an Mixed Integer Linear Program (MILP),
the dimension of the problem is very high owing to the number of frequencies considered for each of the
constraints. To solve this, a solution algorithm was presented where the obtained solution is compared with
the open loop (without control) solution to quantify the prof itability that would achieved by the controller
and the controller with less benefits are eliminated[6]. All of the above methods were developed to handle
single disturbance only.

To address the case of multiple disturbances, Bahri et al. [1] addressed the back off problem for control
of active constraints in the regulatory layer by solving the open loop problem. Figueroa et al. [4] extended
the above approach to the closed-loop case where the figure of merit “maximum percentage recovery” is
defined to choose between alternative control configurations. In summary, disturbance is the only source of
uncertainty considered in evaluating the different control structures. However, in some cases measurement
noise and control error also play a significant role.

Disturbances are typically categorized based on the time scale or frequency of occurrence as fast or
high-frequency disturbance and slow or low-frequency disturbance. The lower regulatory layer generally
handles the fast disturbances whereas the slow disturbances are handled by the steady state optimizer. The
objective of the optimization layer is to provide set points to the control layer. These set points depend on
the set of design variables and measurements selected for estimating the model parameters. And, the choice
of measurements have a profound impact in the steady state economics. In this regard, de Hennin et al.
[7] presented a method for estimating the likely economic benefit that could be achieved by implementing
a steady state optimizer. The cost of instrumentation is also included in addition to the operational cost to
determine the best optimal measurements.

Loeblein and Perkins [9] proposed a measure of average deviation from optimum that allows the esti-
mation of economic value of different online optimization structures. In addition to measurement selection,
their work addressed the impact of model uncertainty on the economics of the optimizer. To analyse this
issue, the authors considered a simple model, approximate model and rigorous model and concluded that
approximate model is appropriate for on-line optimization. Later, Loeblein and Perkins [10, 11] extended
their method of average deviation from optimum to analyse the dynamic economics of regulatory layer
which is assumed to be implemented using Model Predictive Control (MPC) system. However, fixed control
structures are assumed to rank between the alternatives.

Peng et al. [17] proposed a stochastic formulation for the determination of back-off points based on the
notion of expected dynamic operating region. The basic idea in their approach is that the simultaneous
selection of controller and back off point will find a optimal controller that minimizes the variability of the
active constrained variables. Since the disturbances are assumed to be stochastic, the dynamic operation is
defined in terms of variance. Extensions of the method to discrete time and partial state information case do
not alter the formulation. Despite this, the final form of the optimization problem contains a set of reverse
convex constraints which make the problem difficult to solve. Therefore, a branch and bound type algorithm
was proposed. Further, Peng and Chmielewski [16] extended the formulation to select sensors for control.
Chmielewski and Manthanwar [3] found that the optimal multivariable feedback controller obtained can be
used to tune the objective function weights of the MPC controller.

In this work, we propose a stochastic formulation of the dynamic back-off problem that ensures feasible
operation for the prescribed confidence limit. Following Peng et al. [17], the dynamic operating region is
defined for the given disturbances which follow from the closed loop covariance analysis of the state space
model of the process. The loss function, is a measure of departure from optimality and we develop a
theoretically and conceptually sound loss function. Controller selection also plays a crucial role in shaping
the dynamic operating region while the size of the region is characterized by the prescribed confidence limit
and variance of the disturbance considered. Thus, consideration of the controller gain as a decision variable
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is important in determining the optimal operating point which minimizes the loss in profit. Therefore,
the focus of our work is to propose an optimization formulation that determines the economic backed-off
operating point by finding at the same time a suitable controller gain.

The current formulation contains an explicit representation of the ellipsoid to describe the system dy-
namics and can handle partially constrained cases. Unlike our previous work [12], the formulation presents
a back-off term as slack variable in terms of the respective variances. Furthermore, a novel solution method-
ology has been presented to solve the non-linear non-convex problem.

This paper is organized as follows. In the next section, we define the problem and present a development
of stochastic formulation and convex relaxations of the constraints. Next, a solution algorithm has been
developed. Finally, illustrations are provided to demonstrate the approach.

2. Formulation of dynamic back-off problem

The objective of this section is to present an optimization formulation that determines the most profitable
steady state operating point given that the plant has to remain feasible for the expected set of disturbances
affecting the process. Hence, the optimization formulation should also include differential constraints that
characterize the dynamic operating region of the plant. The feasibility becomes an important issue while
operating the plant at the constrained optimal point. Therefore, we need to solve a dynamic back-off
problem.

2.1. Optimization formulation

We start by determining the Optimal steady state Operating Point (OOP) by minimizing the economic
cost (the negative of the operating profit) J(x0, u0, d0) where x0,u0 and d0 denote the states, manipulated
inputs and nominal value of disturbances. Thus, the steady state optimizer solves the nonlinear steady state
optimization problem of the form,

min
x0,u0

J(x0, u0, d0) (2a)

s.t. g(x0, u0, d0) = 0 (2b)

h(x0, u0, d0) ≤ 0 (2c)

At OOP, the states and manipulated inputs are denoted as x∗0 and u∗0 respectively. At OOP, there are three
possible cases: unconstrained optimum (no active constraints), partially constrained (the number of active
constraints is less than the number of manipulated inputs) and fully constrained (the number of active
constraints equals the number of manipulated inputs). Peng et al. [17] has addressed the problem for fully
constrained case and the back-off from the linearized optimal solution is determined. In the present work,
the focus is on the more general partially constrained case. In contrast to the fully constrained case where
a linear approximation of the cost function around the optimal point is valid, the partially constrained
case requires one to include a quadratic penalty for the inputs to account for the unconstrained degrees of
freedom.

As mentioned previously, operating at OOP is usually not possible because of disturbances leading to
infeasible operation. Therefore it is necessary to back off from the OOP. We introduce the deviation variables
with respect to the nominally optimal point: x̃ = x0 − x∗0, ũ = u0 − u∗0 and d̃ = d0 − d0. In the deviation
variable space, the optimal operating point is the origin as shown in Fig. 1. Now, linearizing the steady
state process models (2b) yield,

Ax̃ss +Bũss = 0 (3)

where A and B are the partial derivative of g evaluated at (x∗0, u
∗
0, d0). Eq (3) defines the set of feasible

back-off operating points (x̃ss, ũss). This is shown as the dashed line in Fig.2 for a single input and single
output system. Now, the inequality performance limits (2c) are linearized around (x∗0, u

∗
0, d0) and writing

in bounded form by defining a new variable z0 as:

z0 = Zxx0 + Zuu0 + Zdd0 (4a)

zmin ≤ z0 ≤ zmax (4b)

3



𝑢  
(𝑥 𝐵𝑂𝑃, 𝑢 𝐵𝑂𝑃) 

𝑥  

𝑢 𝑚𝑎𝑥 𝑢 𝑚𝑖𝑛 

𝑥 𝑚𝑎𝑥 

𝑥 𝑚𝑖𝑛 

OOP 

BOP 

Figure 1: Feasible region: Dynamic (box) and steady state (dashed line)

where Zx, Zu and Zd are the partial derivative of h evaluated at (x∗0, u
∗
0, d0). Re-writing in terms of deviation

variables, we get

z̃ = Zxx̃+ Zuũ+ Zdd̃ (5a)

z̃min ≤ z̃ ≤ z̃max (5b)

where z̃min = zmin − Zxx∗0 − Zuu∗0 − Zdd and z̃max = zmax − Zxx∗0 − Zuu∗0 − Zdd. It is important to note
that, d̃ = 0 at steady state.

In order to formulate the dynamic back-off problem, we need to define the system dynamics around the
back-off point which has to be determined such that the economic loss is minimum. We address the problem
in stochastic framework as we have assumed random disturbances. Also, we assume that disturbances are
rejected by the linear multivariable controller and full information about the state is available. Now, the
dynamic model is rewritten in terms of the new deviation variables around the BOP (x̃ss,ũss,d) and is given
by

ẋ = Ax+Bu+Gd (6)

z = Zxx+ Zuu+ Zdd (7)

z̃min − z̃ss ≤ z ≤ z̃max − z̃ss (8)

where x = x̃ − x̃ss,u = ũ − ũss and d = d0 − d0. The above set of equations define the dynamic operating
region around the BOP.

The optimal operating point determined using (2) is the maximum achievable profit. As mentioned
previously, we need to back-off from this optimal point to ensure dynamic feasibility. Hence, we need to
define the loss function that minimizes the loss in achievable profit due to backing-off from the non-linear
constrained optimal point. Therefore, we propose a linear approximation of the cost plus a quadratic penalty
term to account for input usage,

Jx
T x̃ss + Ju

T ũss + ũTssJuuũss (9)

This is contrary to the linear cost function proposed by Peng et al. [17] where the optimal steady state
operating point is the result of the linearized model and not the non-linear optimal solution. This quadratic
term forces the backed-off point to be closer to the non-linear optimal solution. It is also important to note
that the cost function considers only the steady state effect on economics to determine the dynamically
feasible steady state operating point. Now, we can pose the dynamic back-off problem for linear systems as
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min Jx
T x̃ss + Ju

T ũss + ũTssJuuũss (10)

s.t. 0 = Ax̃ss +Bũss (11)

ẋ = Ax+Bu+Gd (12)

z = Zxx+ Zuu+ Zdd (13)

z̃min − z̃ss ≤ z ≤ z̃max − z̃ss (14)

u = Lx (15)

The formulation is still semi-infinite dimensional and non-linear. Therefore, in the next section, we present
a stochastic framework for addressing the dynamic back-off problem.

2.2. Stochastic framework

In this section, we develop a stochastic formulation that ensures feasible operation modulo, a prescribed
confidence limit i.e., the probability that the constraints are satisfied is greater than or equal to the confidence
limit [17]. We make the following assumptions in formulating the problem

• Disturbances are the only source of uncertainty considered and they are characterized by Gaussian
white noise process with zero mean and known variances.

• A linear multi-variable controller with full state information (u = Lx) is available for feedback.

• A linear state space model to describe the dynamic operation of the system is given.

The differential equations that define the dynamic operating region can be expressed using the closed loop
covariance analysis of the state space model of the process. Under the above mentioned assumptions, the
dynamic operating region can be expressed as ellipsoids with the BOP as center and the size and orientation
determined by the covariance. Therefore, the current objective is to formulate the optimization problem
that aims at determining the center of the ellipsoid (Back-off operating point) and also orient the ellipsoid
(i.e., finding a suitable controller) such that the dynamic operating region remains feasible for the given
confidence limit while minimizing the loss in profit.

Following Peng et al. [17], we develop closed loop covariance expressions that describe the expected
dynamic operating region (EDOR). In this framework, the EDOR is a region such that the probability
that the system is confined to the EDOR is greater than the prescribed confidence limits. This covariance
matrix depends on the process dynamics, controller and also on the set of measurement. Assuming full state
information and linear feedback, u = Lx, the closed-loop steady state covariance matrix of the state vector
(Σx := lim

t→∞
E[x(t)Tx(t)]) is given by the Lyapunov equation

(A+BL)Σx + Σx(A+BL)T +GΣdG
T = 0 (16)

where Σx is the symmetric positive semi-definite solution to the Lyapunov equation. Correspondingly, the
covariance of the output signal z is given by

Σz = (Zx + ZuL)Σx(Zx + ZuL)T + ZdΣdZd
T (17)

Given the center, z̃ss, and the covariance Σz = P 2, the ellipsoidal EDOR is expressed as

E = {z̃ss + αPz | ‖z‖2 ≤ 1} (18)

where P is the positive square root of Σz and α depends on the confidence limit. It is important to
note that z̃ = z̃ss + αPz. Therefore, we describe the dynamic feasibility as finding the ellipsoid within the
performance bounds which is given by

E = {(z̃min ≤ z̃ss + αPz ≤ z̃max) | ‖z‖2 ≤ 1} (19)

5



This representation ensures that the whole ellipsoid should lie within the performance bounds. Thus, the
problem can restated as finding the center of the ellipsoid close to the optimal operating point such that the
ellipsoid is contained within performance bounds. Thus, we write the EBOP selection problem as

min Jx
T x̃ss + Ju

T ũss + ũTssJuuũss (20a)

s.t. 0 = Ax̃ss +Bũss (20b)

(A+BL)Σx + Σx(A+BL)T +GΣdG
T = 0 (20c)

Σz = (Zx + ZuL)Σx(Zx + ZuL)T + ZdΣdZd
T (20d)

P = Σ1/2
z (20e)

z̃ := z̃ss + αPz ∀ ‖z‖2 ≤ 1 (20f)

z̃min ≤ z̃ ≤ z̃max (20g)

where x̃ss, ũss, z̃ss , L, Σx � 0, Σz � 0 and P � 0 are the decision variables. There are especially two
factors that make the above optimization problem challenging. First, equations (20c) - (20e) are non-linear
in the decision variables. Second, the formulation is infinite-dimensional due to the explicit description of
the ellipsoid (20f). In other words, we need to find the ellipsoid centered at the BOP for an infinite set of
z. Hence, we present convex relaxations of the constraints in the next section.

2.3. Convex relaxations

Convex optimization tools are highly useful in transforming “difficult-to-solve” non linear constraints into
solvable Linear Matrix Inequality (LMI) forms[2]. First, we present a list of facts from convex optimization
and control theory used in this work.

Fact 01 Schur complement[2]. If C is positive-definite, i.e., C � 0, then the matrix S = A − BC−1BT

is called the Schur complement of C in the matrix X =

[
A B
BT C

]
. Then the condition for positive

semi-definiteness of block X is: If C � 0, then X � 0 if and only if S � 0.

Fact 02 S - procedure[2]. The implication

xTF1x+ 2g1
Tx+ h1 ≤ 0⇒ xTF2x+ 2g2

Tx+ h2 ≤ 0,

where Fi ∈ Sn,gi ∈ Rn,hi ∈ R, holds if and only if there exists a τ such that

τ ≥ 0;

[
F2 g2
g2
T h2

]
� τ

[
F1 g1
g1
T h1

]
,

provided there exists a point x̂ with x̂TF1x̂+ 2g1
T x̂+ h1 < 0.

Theorem 1[17] ∃ stabilizing L, Σx � 0 s.t. (A + BL)Σx + Σx(A + BL)T + GΣdG
T = 0 and Σz =

(Zx + ZuL)Σx(Zx + ZuL)T + ZdΣdZd
T if and only if ∃ Y ,X � 0 and Z � 0 s.t.

(AX +BY ) + (AX +BY )T +GΣdG
T ≺ 0[

Z − ZdΣdZdT ZxX + ZuY
(ZxX + ZuY )T X

]
� 0

where Y = LX and X = Σx � 0 (� 0) denotes that X is positive definite (respectively positive semi-
definite). For proof of the above theorem, the reader is referred to Chmielewski et al.[17].
Theorem 2[2] The ellipsoid E = {z̃ := αPz + z̃ss | ‖z‖2 ≤ 1} contained inside a polytope described by a
set of linear equalities hTi z̃ + ti ≤ 0; i = 1, . . . ,m is given by the second order cone constraints of the form
‖αPhi‖2 + hTi z̃ss + ti ≤ 0
Proof. Let C be a polytope given by C = {z̃| hTi z̃ + ti ≤ 0, i = 1, . . . ,m} where hi’s, ti’s are the respective
rows and elements of the matrix H = [I;−I] and vector t = [z̃max;−z̃min]. Recall that the feasibility
condition, hTi z̃ + ti ≤ 0∀αPz + z̃ss, | ‖z‖2 ≤ 1. This can be rewritten as

sup
‖z‖2≤1

hTi (αPz + z̃ss) + ti ≤ 0, i = 1, . . . ,m
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⇐⇒ sup
‖z‖2≤1

(hTi αPz) + hTi z̃ss + ti ≤ 0, i = 1, . . . ,m

⇐⇒ ‖αPhi‖2 + hTi z̃ss + ti ≤ 0, i = 1, . . . ,m

Let us consider the covariance constraint (20d) of the output z

Σz = (Zx + ZuL)ΣxΣ−1x Σx(Zx + ZuL)T + ZdΣdZd
T (21)

Now we can write the equation as

Σz = (ZxΣx + ZuLΣx)Σ−1x (ZxΣx + ZuLΣx)T + ZdΣdZd
T (22)

This form allows one to write it as an LMI using change of variables and Schur complement (see Fact
01). Next, let us consider the ellipsoidal constraint (20f) and the output bounds defined by the polytopic
constraint (20g). As mentioned previously, these two constraints make the EBOP selection problem as
an infinite dimensional one. However, we can represent them using finite number of second order cone
constraints using Theorem 2

‖αPhi‖2 + hTi z̃ss + ti ≤ 0, i = 1, . . . ,m (23)

Now the EBOP selection problem is reformulated in terms of LMI constraints as :

min Jx
T x̃ss + Ju

T ũss + ũTssJuuũss (24a)

s.t. 0 = Ax̃ss +Bũss (24b)

z̃ss = Zxx̃ss + Zuũss (24c)

(AX +BY ) + (AX +BY )T +GΣdG
T ≺ 0 (24d)[

Z − ZdΣdZdT ZxX + ZuY
(ZxX + ZuY )T X

]
� 0 (24e)

P = Z1/2 (24f)

‖αPhi‖2 + hTi z̃ss + ti ≤ 0, i = 1, . . . , 2nz (24g)

where x̃ss, ũss, z̃ss, Y , X � 0, Z � 0 and P � 0 are the decision variables. The objective function and
all the constraints in the above formulation (24) except (24f) are convex. Thus, the formulated minimum
back off operating point selection problem is a non linear non convex program. However, this problem is
solved using the solution methodology developed in Section 3.
Remarks

• The formulation presented by [17] differs from our formulation in many ways: (1) There is no explicit
ellipsoidal constraints, (2) The dynamic feasibility of the ellipsoid is ensured by the reverse convex
constraints and, (3) a branch and bound type of algorithm was proposed [17].

• Note that this cost function considers only the steady state effect on economics. Since the disturbances
are assumed to be Gaussian and zero mean, this implies that the cost accounts only for the nominal
steady state value of disturbances. However, the restriction is less severe as long as the optimal
constraints remain the same.

• The linear terms in the cost function could be interpreted as the sum of the product of back-off
variables and their Lagrange multipliers.

• By direct comparison of (24g) with the robust Linear Programming with random constraints [2],

Φ−1(η)‖Phi‖2 + hTi z̃ss + ti ≤ 0 (25)

we can choose the parameter α using the inverse of the cumulative distribution function Φ−1(η) where
η denotes the probability level of a particular constraint being satisfied.
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• The term ‖αPhi‖2 denotes the amount of required back-off. Hence, given the controller design, we
can directly compute the back-off from the covariance estimates.

• An equivalent LMI representation of the second order cone constraints (24g) is given by S-procedure
(see Fact 02)[12], [

−τi − hiT z̃ss − ti α
2 hi

TP

(α2 hi
TP )T τiI

]
� 0; τi > 0; i = 1 · · · 2nz (26)

• Hard and soft constraints could be handled within the proposed formulation by selecting different
values α for each of the constraints. Higher value of α is chosen for a hard constraint which represents
that probability of violating that constraint should be less. On the other hand, lower values of α are
chosen for soft constraints to achieve the appropriate tolerance level.

3. Solution Methodology

The main challenge in the obtaining solution to the proposed formulation is the non-linearity in Z. In
our formulation, the objective was to orient the ellipsoid (i.e, controller gain, L) such that the center of the
ellipsoid is close to optimal operating point (i.e, EBOP, z̃ss). In this section, we present a solution technique
to solve the proposed formulation using the geometrical inference of the solution space. In this regard, we
develop a two-stage iterative procedure where a convex problem is solved in each stage.

Δu2 Δu1 

Δx1 

Δx2 

OOP 

BOP 

L1 

𝑥  

𝑢  

𝑧 𝑚𝑎𝑥,2 𝑧 𝑚𝑖𝑛,2 

𝑧 𝑚𝑎𝑥,1 

𝑧 𝑚𝑖𝑛,1 

Figure 2: Non-optimal controller design (Solution from Stage 1)

The basic idea of the solution strategy is illustrated in Fig.2 where we first determine a feasible covariance
ellipsoid Z1 that describe the dynamic operating region for the given confidence limit (say 95 %). Next, we
determine the backed-off operating point for the computed Z1. However, the solution obtained may not be
economically optimal as no cost information is included in stage 1. In other words, the backed-off operating
point depends critically on the computed Z1 (solution from stage 1). It can be seen from Fig.3 that choosing
a different covariance ellipsoid Z2 leads to a better economically backed-off operating point. It should also
be noted that at the economic back-off point, the dynamic operating region touches the manipulated input
constraint and the active constraint (controlled variable). This illustrates the fact that the dynamic back-off
required is due to imperfect control caused by the input constraints. Hence, the covariance ellipsoid Z1 is
approached towards Z2 on subsequent iterations by creating lower bounds on the individual variances based
on the available manipulated inputs.
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𝑧 𝑚𝑎𝑥,1 

𝑧 𝑚𝑖𝑛,1 

Figure 3: Optimal controller design (After convergence)

3.1. Stage 1

In the first stage, we find the smallest (in terms of trace) feasible ellipsoid Z that describes the dynamic
operating region for the considered disturbance magnitude. In other words, we have designed a controller
(L = Y X−1) that result in a minimum variance. At the first stage, we impose the following constraints on
the individual variances to determine the Z (and hence L) that ensures feasibility in the second stage,

σ2
z,i <

1

4α2
(z̃max,i − z̃min,i)2; i = 1 · · ·nz (27)

where σ2
z,i is the variance of the ith component of z, viz., zi. For the given confidence interval ( assume

95% ), 2σi should be within the performance bounds. This enables us to determine the feasible ellipsoid.
Additionally, we define the following constraints with respect to variance of the jth variable σ2

z,j ,

σ2
z,i >

δ2i,j
α2

σ2
z,j ; i = 1, j − 1, j + 1, nz (28)

where the iterative parameters δ2i,j are chosen such that the BOP selected in stage 2 is used to select the
new minimum variance ellipsoid that forces the BOP close to OOP. The parameter δi,j is defined as

δi,j =
distance of variable i from its closest bound

distance of variable j from its closest bound
(29)

The δ for the case shown in Fig. 2 is given by

δi,j =
min(∆u1,∆u2)

min(∆x1,∆x2)
(30)

Physically, the solution tries to exploit the available manipulated input space to be utilized to find the
economic back-off point and the optimal multi-variable controller. Hence, we solve the following problem to
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Table 1: Algorithm for selecting economic back-off operating point

1 Initialize the parameter δi,j = 0.
2 Find Z by solving the Stage 1 convex problem (31). If no feasible Z can be found, exit.
3 Compute P = Z1/2. Find the BOP (z̃ss) by solving the Stage 2 convex problem (32).
4 Terminate on convergence. Otherwise, update δi,j using (29) and proceed to Step 2.

find the dynamic operating region:

min
X�0,Z�0,Y

Tr(Z) (31a)

s.t. (AX +BY ) + (AX +BY )T +GΣdG
T ≺ 0 (31b)[

Z − ZdΣdZdT ZxX + ZuY
(ZxX + ZuY )T X

]
� 0 (31c)

σ2
z,i <

1

4α2
(z̃max,i − z̃min,i)2; i = 1 · · ·nz (31d)

σ2
z,i >

δ2i,j
α2

σ2
z,j ; i = 1, j − 1, j + 1, nz (31e)

The solution of Stage 1 results in a feasible covariance ellipsoid Z1. The upper bound on the individual
variances ensure that Z1 is feasible in the second stage. If the solution from stage 1 is infeasible, then
the solution to the original problem is infeasible. The parameter δ is used to create lower bounds on the
individual variances such that the economically optimal ellipsoid is approached on subsequent iterations. The
parameter δ is intialized to zero during the start of the algorithm which defines that the individual variances
should be non-negative. Hence, on solving the first stage problem, we obtain Z and letting P = Z1/2, a
second optimization problem is solved to obtain the back-off point. This would yield the approximation to
the economic back-off point.

3.2. Stage 2

min
x̃ss,ũss,z̃ss

Jx
T x̃ss + Ju

T ũss + ũTssJuuũss (32a)

s.t. Ax̃ss +Bũss = 0 (32b)

z̃ss = Zxx̃ss + Zuũss (32c)

‖αPhi‖2 + hTi z̃ss + ti ≤ 0, i = 1, . . . , 2nz (32d)

In the second stage, we determine a backed-off operating point (z̃ss) that is close to the optimal point
for the predetermined ellipsoid (solution from the first stage). However, the closeness to the economically
optimal point depends on the orientation of the covariance ellipsoid. As we have written the inequalities
as box constraints, the surface of the ellipsoid should touch the box at optimality. Hence, we need to re-
orient the ellipsoid such that dynamic operating region touches the box constraint. This is accomplished
by creating lower bounds for the individual variances using the parameter δ. The δ’s are updated based
on the newly found backed-off point. This information is used to recompute Z (and hence L) in the first
stage. This process is iterated until convergence. And, the recomputed solution approaches the economically
optimal operating point. It should be noted that P is not a decision variable since Z is known from the
first stage. Now, it can be easily recognized that both stages contains only convex constraints, which could
be easily solved using CVX, a package for specifying and solving convex programs ([5]). Initializing δi,j to
zero and given two successive iterates, z̃iter−1ss and z̃iterss this process is iterated until the convergence criteria
‖z̃iterss − z̃iter-1ss ‖2 ≤ ε is satisfied where ε being the prescribed tolerance limit. The solution algorithm is
presented in Table 1.
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4. Examples

4.1. Mass spring damper system

The purpose of this example is to illustrate the proposed backed-off operating point selection algorithm
in a single-input two-output system.
Description. Consider the mass-spring-damper system depicted in Fig. 4. Let r denote the mass position,

Mass

f w

r

rmax

rmin

Figure 4: Mass spring damper system

v the velocity, g the gravitational force, f the manipulated input force, and w a disturbance force. The
system dynamics are described by linear differential equations[17]:

dr

dt
= v (33)

dv

dt
= −3r − 2v − g + f + w (34)

We will further assume that the system is constrained by the following inequalities rmin ≤ r ≤ rmax and

fmin ≤ f ≤ fmax. Hence, the signal matrices are given by Zx =

[
1 0
0 0

]
; Zu =

[
0
1

]
; Zd =

[
0
0

]
BOPs. The economic objective is to bring the mass as close as possible to the upper bound on position.

Thus, it can be easily realized that the Optimal Operating Point (OOP) is constrained at the mass position,
r∗ = rmax, v∗ = 0 and f∗ = 3rmax + g (assuming fmax ≥ 3rmax + g). Rewriting in deviation form, the

system matrices are A =

[
0 1
−3 −2

]
; B =

[
0
1

]
; G =

[
0
1

]
and the corresponding BOPs which define

the steady state feasible points are ṽss = 0, f̃ss = 3r̃ss. The dynamic feasible region is defined by box
constraints: r̃min ≤ r̃ ≤ r̃max and f̃min ≤ f̃ ≤ f̃max.
Results. If rmin = −1, rmax = 1, fmin = 0, fmax = 15, g = 9.8 and Σw = 10, the OOP is r∗ = 1,v∗ = 0
and f∗ = 12.8 ( since fmax = 15 ≥ 3rmax + g = 12.8). The data presented here are the base case values
(Case A). For the current system, we have assumed a confidence level of 63% (i.e. α = 1). The economic
backed-off operating point determined is (rEBOP = 0.64, fEBOP = 11.72) which results in a loss of 0.36.
The multi-variable controller (u = Lx) designed to operated feasibly at the economic backed-off operating
point is L = [−6.4319 − 2.1066]. The results obtained here are in agreement with the results presented in
Peng et al. [17]. The impact of change in the constraint polytope is shown in Fig.5 by increasing the fmax to
18N (Case B) and fmin to 9.5N (Case C). The results are tabulated in Table 2. We see that increasing the
upper limit in input force reduces the necessary back-off because this extra input force is used to compensate
for the disturbances and hence pushes the mass position close to the optimal point. Whereas increasing the
lower bound requires more back-off as it reduces the available dynamic feasible region. Hence, increasing
the dynamic feasible region on the input will result in keeping the mass close to the true optimal point.
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Figure 5: Impact of change in constraint for mass spring damper system

Table 2: MBOP values for change in constraint polytope

Case constraint (r∗, f∗) L
A fmax = 15 (0.64,11.72) [-6.4319 -2.1066]
B fmax = 18 (0.83,12.30) [-22.883 -5.0544]
C fmin = 9.5 (0.36,10.90) [-1.6327 -0.6952]

4.2. Preheating furnace reactor system

This example illustrates the proposed back-off approach in a multi-input multi-output system which is
fully constrained at the nominal optimal point.
Description. Consider the preheating furnace reactor system shown in the Fig. 6. The system matrices

are given by [17]

A =


−8000 0 0 0
2000 −1500 0 0

0 0 −5000 0
0 0 0 −5000

 ;B =


−75 75000 0
−25 0 0

0 −8500 8.5 ∗ 105

0 0 −5 ∗ 107

 and G =


10000

0
0
0


where states 1 and 2 correspond to the temperature of the reactor and furnace, TR and TF , respectively, and
states 3 and 4 correspond to the O2 and CO concentrations in the furnace, respectively. The manipulated
inputs are the changes in the feed flow rate (FR), fuel flow rate (FF ) and furnace vent position (VP ).
Feed temperature, T0 is assumed as the disturbance input with mean zero and variance Σd = (0.13975)2.
Feasibility is defined by the following state constraints

355
495
3
70

 ≤


TF
TR
CO2

CCO

 ≤


395
505
5

130


and input constraints  9900

8
0.09

 ≤
 FR
FF
VP

 ≤
 10100

12
0.11


12
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Figure 6: Preheating furnace reactor system

Nominal point. The nominally optimal operating point (OOP) obtained [17] is x∗ = [372 495 4.79 70] and
u∗ = [10100 9.83 0.103]. At this point, the active constraints are at the lower limit of CO concentration and
furnace temperature and at the upper limit of feed flow rate. In this case, the number of active constraints
equal the number of manipulated inputs. Therefore, the system is fully constrained at the optimal point.
Hence, the first order approximation of the cost would be suffice for further analysis. The linearized negative
profit function (in $/h) is Jx = [0 0 0 0.01]T ; Ju = [−10 30 0]T . Next, the performance signal z is defined by
the matrices, Zx = [I4×4|04×3]T ; Zu = [04×3|I3×3]T ; Zd = [0] and the bound constraints written in the form
of hi

T z̃ss+ ti ≤ 0 are obtained from the rows of the matrix H and elements of vector t, H = [I7×7|− I7×7]T ;
t = [−23 − 10 − 0.21 − 60 0 − 2.17 − 0.007 − 17 0 − 1.79 0 − 200 − 1.83 − 0.013]T .
Results. The economically optimal operation of the preheating furnace reactor system can be achieved if
we control the active constraints (i.e., furnace temperature and CO concentration) and keep the feed flow
rate at its upper limit. For the assumed disturbance variances, there is no feasible backed off operating
point in the open loop case (without the controller). However, with the help of controller design as a part
of the formulation, we find the economic backed off operating point for the system as tabulated in Table 3.
At the economic backed off point, the input constraint on feed flow rate is still at its bound which means
that the economic value of this input is very high relative to other inputs and hence other inputs are used to
achieve profitability. The dynamic operating region along with the economic back-off point for the assumed
confidence level is shown in the Figures 7 - 12. We can see that, in order to ensure dynamic feasibility, the
furnace temperature and CO concentration are backed-off from the active constraints whereas feed flow rate
requires no back-off. However, increasing the disturbance magnitude may demand the feed flow rate to be
backed-off. The optimal multivariable controller gain L designed using our approach is given by

L =

 0.001 0.008 0.010 0.000
−0.538 −4.038 5.608 0.099
−0.001 −0.013 −33.498 1.249


It is important to note from the first row of the L matrix that the feed flow rate is hardly adjusted under
dynamic conditions. In other words, the feed flow rate should be kept at its limiting value to achieve
optimality. Therefore, other inputs (fuel flow rate and vent position) are manipulated to ensure feasible
operation under dynamic conditions. The lost profit for operating the system at the economic backed-off
operating point is $3.93 per day.

4.3. Evaporation Process

In this example, we illustrate the backed-off operating point selection problem in a partially constrained
system, that is, when there exists some unconstrained degrees of freedom at the nominal optimal point.
Further, the economic impact of controller design is addressed.

13



Table 3: Nominal values and EBOP solution
Variables Description Units Nominal value EBOP (closed loop)

States (x)
TR Reactor temperature ◦C 495 496.45
TF Furnace temperature ◦C 372 373.09
CO2

O2 concentration ppm 4.79 4.2517
CCO CO concentration ppm 70 90.083

Inputs (u)
FR feed flow rate bbl/day 10100 10100
FF fuel flow rate bbl/day 9.83 9.9458
VP furnace vent position % 0.103 0.10099
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Figure 7: Furnace temperature vs Reactor temperature

Description. The forced-circulation evaporator system is depicted in Fig. 13, where the concentration of
the feed stream is increased by evaporating the solvent through a vertical heat exchanger with circulated
liquor [15]. The overhead vapor is condensed by the use of process heat exchanger. The details of the
mathematical model can be found in the original reference. The separator level is assumed to be perfectly
controlled using the exit product flow rate F2 which also eliminates the integrating nature of the state. The
economic objective is to maximize the operational profit [$/h], formulated as a minimization problem of the
negative profit ([8]). The first three terms of (35) are utility costs relating to steam, coolant and pumping
respectively. The fourth term is the raw material cost, whereas the last term is the product value.

J = 600F100 + 0.6F200 + 1.009(F2 + F3) + 0.2F1 − 4800F2 (35)

The process has the following constraints related to product specification, safety, and design limits:

X2 ≥ 35% (36)

40 kPa ≤ P2 ≤ 80 kPa (37)

P100 ≤ 400 kPa (38)

0 kg/min ≤ F200 ≤ 400 kg/min (39)

0 kg/min ≤ F1 ≤ 20 kg/min (40)

0 kg/min ≤ F3 ≤ 100 kg/min (41)

Nominal operating point. The nominal steady state values are obtained by solving a nonlinear
optimization problem for the nominal values of disturbances and the profit is found to be J = $693.41/h and
the nominal values are shown in Table 4. At the nominal optimal point, there are two active constraints:
product composition, X2 = 35% and steam pressure, P100 = 400 kPa. The corresponding Lagrange
multipliers are 229.36 $/% h and -0.096685 $/kPa h, respectively.
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Figure 8: Furnace temperature vs Feed flow rate

495 496 497 498 499 500 501 502 503 504 505

8

8.5

9

9.5

10

10.5

11

11.5

12

Furnace Temperature (T
F
)

Fu
el

 f
lo

w
 r

at
e 

(F
F)

Figure 9: Furnace temperature vs Fuel flow rate

Degree of freedom analysis. The process model has seven degrees of freedom. Inlet conditions of the feed
(flow rate, composition, temperature) and inlet temperature of the condenser are considered as disturbances
(i.e., d = [F1 X1 T1 T200]T ). There are three manipulated inputs, u = [F3 P100 F200]T . The disturbance
range is assumed to be 10% variation of the nominal value (i.e., Σd = diag([1 0.25 16 6.25])2 ) and the set
of active constraints do not change in the whole range of disturbances . It is important to note that there
is one unconstrained degrees of freedom.
Linearized steady state model. A linear approximation of the process model at the nominal optimum
yields,

A =

[
−0.16709 −0.17185
−0.013665 −0.043132

]
;

B =

[
0.44083 0.04217 0
0.062976 0.0060243 −0.0016249

]
;

G =

[
−1.2211 0.5 0.031818 0
0.039837 0 0.0045455 0.03665

]
The output z are defined by the matrices,

Zx = [I2×2|02×3]T ;Zu = [03×2|I3×3]T ;Zd = [04×5]T

and the bound constraints written in the form of hi
T z̃ss + ti ≤ 0 are obtained from the rows of the matrix

H and elements of vector t, H = [I5×5| − I5×5]T ; t = [−5 − 23.849 − 72.299 0 − 169.43 0 − 16.151 −
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Figure 10: Furnace temperature vs O2 concetration
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Figure 11: Furnace temperature vs CO concentration

27.701 − 200 − 230.57]T . The linearized negative profit function is

Jx = [−293.23 − 526.8]T ; Ju = [1368.9 130.85 0.6]T

As the input P100 is constrained, the quadratic penalty is included only for the other inputs and the numerical
perturbation of inputs F3 and F200 yield,

Juu =

[
4.4953 0.00010226

0.00010226 0.0052699

]

Results. For the case of full state information, the amount of back off required to remain feasible for
a 10% variation in the nominal disturbances is tabulated in Table 5. It is to be noted that the amount
of back-off for steam pressure (P100) is zero as expected as it is a input variable. However, the assumed
disturbances have significant effect on product exit composition, X2. The EBOP solution and EDOR for
the open loop and closed loop case are shown as ellipses in Figures 14-17. The loss obtained for operating
the evaporator at this backed off operating point is $58.65/h which corresponds to the achievable profit of
$634.76/h. In other words, the loss we incur to ensure feasible operation with 95% confidence interval is
$58.65/h. Indeed, the back-off estimated is the best possible lower bound for the product composition to
ensure feasibility because of the simultaneous consideration of controller in the formulation. This could be
inferred from Table 5 by comparing the closed loop solution with the open loop solution. The multivariable
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Table 4: Variables and Nominal optimal values

Variables Description Nominal value
States (x)

X2 product composition 35.00 %
P2 operating pressure 56.15 kPa

Inputs (u)
F3 recirculating flow rate 27.70 kg/min
P100 steam pressure 400 kPa
F200 cooling water flow rate 230.57 kg/min

Disturbances (d)
F1 feed flow rate 10.00 kg/min
X1 feed composition 5.00 %

Dependent variables
F2 product flow rate 1.43 kg/min
F4 vapor flow rate 8.57 kg/min
F5 condensate flow rate 8.57 kg/min
F100 steam flow rate 9.99 kg/min
Q100 heat duty 365.63 kW
Q200 condenser duty 330.00 kW

Table 5: Nominal and Back-off operation

Variables Units Nominal value EBOP solution
closed loop open loop
(proposed) (u = 0)

States
X2 % 35.00 35.26 39.75
P2 kPa 56.15 56.10 55.16

Inputs
F3 kg/min 27.70 27.78 29.12
P100 kPa 400.00 400 400
F200 kg/min 230.57 232.71 271.65
Profit $/h 693.41 634.76 -414.92

17



495 496 497 498 499 500 501 502 503 504 505
0.09

0.095

0.1

0.105

0.11

Furnace Temperature (T
F
)

V
en

t p
os

iti
on

 (
V

P)

Figure 12: Furnace temperature vs Vent position

Figure 13: Evaporator system

feedback controller (u = Lx) to be implemented to operate the system profitably is

L =

 −108.5643 0.3868
−0.0606 0.0002
−123.2216 97.3625


Without the controller (open loop case), the amount of back off required is higher and the process would
incur a loss of $414.92/h. Note that the optimal controller is using both F3 and F200 to control the product
composition with the aim of minimizing the overall cost. The corresponding state feedback gain could be
used to determine the appropriate objective function weights using the inverse optimality results of [3] and
could then be implemented using Model Predictive Control. The back off operating point determined above
is given as set point to the control system. It is important to note that without the quadratic term, the
EBOP solution obtained by solving formulation (24) is [xTuT ] = [35.41 76.53 35.80 399.99 0.01]. Note that
for instance, F200 is changed from 230.57 to 0.01 kg/min, which is unrealistic. This corresponds to the
lower left corner in Fig. 17. Hence, the quadratic term in the cost function is important in the partially
constrained case to get a meaningful solution.

5. Conclusion

A stochastic formulation to compute the most profitable and feasible operating point for Gaussian white
noise type disturbances has been presented. A two-stage iterative algorithm has been proposed to solve

18



34 36 38 40 42 44 46 48
40

45

50

55

60

65

70

75

80

Product composition, X2 (%)

O
pe

ra
tin

g 
pr

es
su

re
, P

2 (k
Pa

)

OOP

Open loop case

EBOP

closed loop case

Figure 14: Product composition vs operating pressure. a) Open loop case: F3 and F200 are constant. b) Closed loop case: F3

and F200 are used for control of X2
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Figure 15: Product composition vs recirculation flow rate
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the dynamic back-off problem. Several case studies here demonstrate the generality of the formulation (i.e,
applicability to both fully constrained and partially constrained cases). In particular, the evaporator system
demonstrated the need for quadratic cost function in partially constrained systems to achieve meaningful
economic backed-off point. Since the controller is a decision variable in the formulation, the most economical
operating point is determined which, in fact, gives the best possible lower bound of the achievable profit.
The formulation can be extended to include measurement noise as an additional source of uncertainty.
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