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Abstract

Elaborated models such as those used for simulation purposes (e.g. OLGA simulator)
cannot be used for model-based control design. The focus of this paper is on deriving simple
dynamical models with few state variables that capture the essential behaviour for control.
We propose a new simplified dynamic model for severe slugging flow in pipeline-riser systems.
The proposed model, together with five other simplified models found in the literature, are
compared with results from the OLGA simulator. The new model can be extended to other
cases, and we consider also a well-pipeline-riser system. The proposed simple models are
able to represent the main dynamics of severe slugging flow and compare well with OLGA
simulations and experiments.
Keywords: Oil production, two-phase flow, severe slugging, riser slugging, dynamical model

1 Introduction

Severe slugging flow regimes usually occur in pipeline-riser systems that transport oil and gas
mixture from the seabed to the surface. Such flow regimes, also referred to as “riser slugging”,
are characterised by severe flow and pressure oscillations. Slugging problems have also been
observed in gas-lifted oil wells where two types of instabilities, casing heading and density wave
instability, have been reported (Hu and Golan (2003)).

Slugging has been recognised as a serious problem in offshore oilfields, because the irregu-
lar flow caused by slugging can cause serious operational problems for the downstream surface
facilities (e.g. overflow of inlet separators). Therefore, effective ways to handle or remove riser
slugging are needed, and many efforts have been made in order to prevent such occurrences
(Courbot (1996), Havre et al. (2000)). The conventional solution is to partially close the top-
side choke valve (choking), but this may reduce the production rate especially for fields where
the reservoir pressure is relatively low. Therefore, a solution that guarantees stable flow together
with the maximum possible production rate is desirable.

Fortunately, automatic feedback control has been shown to be an effective strategy to elim-
inate the slugging problem. As shown in Figure 1, the top-side choke valve is usually used as
the manipulated variable to regulate (control) the riser base pressure (Prb) at a given pressure
set-point (Pset). Such a system is referred to as ‘anti-slug control’ and it aims at stabilising
the flow in the pipeline at the operating conditions that, without control, would lead to riser
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Figure 1: Preventing slug flow by control of riser base pressure

slugging. Different anti-slug control strategies have tested in practice (Havre et al. (2000)) and
experimentally (Godhavn et al. (2005)).

OLGA is a commercial multiphase simulator widely used in the oil industry (Bendlksen et al.
(1991)). When the development of this simulator was initiated in the 80’s, one of motivations
was to study the dynamics of slugging flow regimes at offshore oilfields. There have been some
research on riser slugging using the OLGA simulator to test anti-slug control (Fard et al. (2006)),
but for controllability analysis and controller design a simpler dynamical model of the system is
desired.

The focus of this paper is on deriving the simple dynamical models which capture the essential
behaviour for control. For control, it is more important to capture the main dynamics for the
onset of slugging, not the slugging itself. The aim is to avoid the slug flow regime and, instead,
operate at a steady (non-slug) flow regime. Therefore, the shape and length of the slugs are not
the main concerns in this modeling.

Five simplified dynamical models for the pipeline-riser systems were found in the literature.
The “Storkaas model” (Storkaas and Skogestad (2003)) is a three-dimensional state-space model
which has been used for controllability analysis (Storkaas and Skogestad (2007)). The “Eikrem
model” is a four dimensional state-space model (Tuvnes (2008), Eikrem (2008)). Another simpli-
fied model, referred to as the “Kaasa model” (Kaasa et al. (2008)), only predicts the pressure at
the bottom of the riser. The “Nydal model” (Martins Da Silva et al. (2010)) is the only model
that includes friction in the pipes. The most recently published simplified model is the “Di
Meglio model” (Di Meglio et al. (2009), Di Meglio et al. (2010)). In addition, we present a new
four-state model which includes useful features of the other five models. The six models are
simulated in the time domain and compared to results from the more detailed OLGA model in
the following five aspects, listed in order of importance:

• Critical valve opening for onset of slugging

• Frequency of oscillations at the critical point (onset of slugging)

• Dynamical response to a step change in the valve opening (non-slug regime)

• Steady-state pressure and flow rate values (non-slug regime)

• Maximum and minimum (pressure and flow rate) of the oscillations (slug regime)
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For simplicity, we consider two-phase flow (gas phase and bulk liquid phase) in this paper. The
bulk liquid phase can include oil and water phases when we have a three phase systems. In
this case, the density and other parameters for the liquid phase would be the averages of the
parameters for the oil and water phases. This simplification does not have any significant effect
on the main dynamics of slugging.

The simplified models are also analysed linearly in the frequency domain where we consider
the location of unstable poles and important unstable (Right-Half-Plane, RHP) zeros in the
model. The results presented in this paper have been partially presented by Jahanshahi and Skogestad
(2011), and Jahanshahi et al. (2012). In the present paper, we compare the new model to the
experiments and we extend it to a well-pipeline-riser system.

This paper is organised as follows. In Section 2, we present our new simplified model for
pipeline-riser systems. Then, In Section 3, we compare the proposed model and the other simple
models to the results from the OLGA simulator and experiments. Finally, in Section 4, we extend
this model to well-pipeline-riser systems and compare the extended model to OLGA simulations.

2 New simplified four-state model

2.1 Mass balance equations for pipeline and riser

For the new simplified model, consider the schematic presentation of the system in Figure 2. The
four differential equations in the proposed model are simply the mass conservation law for the
gas and liquid phases in the pipeline and riser sections:

d (mG)p
dt

= (wG)in − (wG)rb (1a)

d (mL)p
dt

= (wL)in − (wL)rb (1b)

d (mG)r
dt

= (wG)rb − (wG)out (1c)

d (mL)r
dt

= (wL)rb − (wL)out (1d)

The four state variables in the model are:

• (mG)p: mass of gas in pipeline [kg]

• (mL)p: mass of liquid in pipeline [kg]

• (mG)r: mass of gas in riser [kg]

• (mL)r: mass of liquid in riser [kg]

The time derivatives of the state variables appear on the left-hand side of the state equations
(1a)-(1d). w [kg/s] on the right-hand side denotes mass flow rate, and the subscripts ‘in’, ‘rb’
and ‘out’ stand for ‘inlet’, ‘riser base’ and ‘outlet’ respectively. The flow rates on the right-hand
side are calculated by the additional model equations described below.
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a) Simplified representation of desired flow regime 

 
b) Simplified representation of liquid blocking leading to riser slugging 
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Figure 2: Pipeline-riser system with important parameters
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2.2 Boundary conditions

Inlet conditions

In equations (1a) and (1b), (wG)in and (wL)in are the inlet gas and liquid mass flow rates. They
are assumed to be constant in the four state model, but the inlet boundary conditions are changed
in the extended model to make the inlet flow pressure-driven.

Outlet conditions

We consider a constant pressure (separator pressure, Ps) as the outlet boundary condition, and
a simple choke valve equation determines the outflow of the two-phase mixture.

wout = Cv1f(z1)
√
ρrt max(Prt − Ps, 0), (2)

Here 0 < z1 < 1 is the normalized valve opening (we use the ‘capital’ Z1 when the valve opening
is given in percentage, 0 < Z1 < 100) and f(z1) is the characteristic equation of the valve. In our
simulations, a linear valve is used, i.e. f(z1) = z1, but this should be changed for other valves.
The individual outlet mass flow rates of liquid and gas are calculated as follows,

(wL)out = (αm
L )rt wout, (3)

(wG)out = [1− (αm
L )rt]wout. (4)

Here, (αm
L )rt [kg/kg] is the liquid mass fraction at top of the riser, which is given by

(αm
L )rt =

(αL)rt ρL

(αL)rt ρL + [1− (αL)rt] (ρG)r
. (5)

Note the subscript ‘rt’ to define ‘riser top’, and just ‘r’ for ‘riser’. The liquid volume fraction,
(αL)rt [m

3/m3] is calculated by equation (39). The density of the two-phase mixture at top of
the riser in equation (2) is

ρrt = (αL)rt ρL + [1− (αL)rt] (ρG)r. (6)

2.3 Pipeline model

The liquid volume fraction, αL, in the pipeline section is given by the liquid mass fraction, αm
L ,

and densities of the two phases (Brill and Beggs (1991)):

αL =
αm

L /ρL

αm
L /ρL + (1− αm

L )/ρG

The average liquid mass fraction in the pipeline section is assumed to be given by the inflow
boundary condition:

⟨αm
L ⟩p =

(wL)in
(wL)in + (wG)in

Throughout this paper, ⟨.⟩ denotes the average operator. The average liquid volume fraction in
the pipeline is then

⟨αL⟩p =
⟨ρG⟩p (wL)in

⟨ρG⟩p (wL)in + ρL (wG)in
. (7)
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The gas density ⟨ρG⟩p is calculated based on the nominal pressure (steady-state) in the pipeline
by assuming ideal gas,

⟨ρG⟩p =
Pin,nomMG

RTp
(8)

Here, Pin,nom, which itself depends on ⟨αL⟩p, is calculated from a steady-state solution of the
combined equations for the overall model. By using (8) and constant (nominal) inflow rates, we
get ⟨αL⟩p in (7) as a constant parameter.

The cross-sectional area of the pipeline is Ap = (π/4)D2
p, where Dp is the diameter of the

pipeline, and the volume of the pipeline is Vp = ApLp. When gas and liquid are distributed
homogeneously along the pipeline, the average mass of liquid in the pipeline is

⟨mL⟩p = ρLVp⟨αL⟩p. (9)

With this assumption, the level of liquid in the pipeline at the low-point is given approximately
by ⟨h⟩ ≈ hd⟨αL⟩p where hd = Dp/cos(θ) is the pipeline opening at the riser base and θ is the
pipe inclination with respect to horizontal (0◦ ≤ θ < 90◦) at the low-point. More precisely, we
use in the model

⟨h⟩ = Khhd⟨αL⟩p (10)

where Kh is a correction factor around unity which can be used to fine-tune the model. If the
liquid content of the pipeline increases by ∆ (mL)p, it starts to fill up the pipeline from the low-
point. A length of pipeline equal to ∆L will be occupied by only liquid, where ∆ (mL)p = (mL)p−
⟨mL⟩p = ∆LAp(1− ⟨αL⟩p)ρL and the level of liquid in the pipeline becomes h = ⟨h⟩+∆L sin(θ)
or

h = ⟨h⟩+
(

(mL)p − ⟨mL⟩p
Ap(1− ⟨αL⟩p)ρL

)
sin(θ). (11)

Thus, the level of liquid in the pipeline, h, can be written as a function of liquid mass in the
pipeline (mL)p which is a state variable of the model. The remaining parameters in (11) are
constants.

The pipeline gas density is (ρG)p = (mG)p / (VG)p, where the volume occupied by gas in the
pipeline is (VG)p = Vp − (mL)p /ρL. The pressure at the inlet of the pipeline, assuming ideal gas,
is

Pin =
(ρG)p RTp

MG

. (12)

We consider only the liquid phase when calculating the friction pressure loss in the pipeline
(Brill and Beggs (1991)).

(∆Pf )p =
λpρL⟨UsL⟩p2Lp

2Dp
(13)

Here, λp is the friction factor of the pipeline. The correlation developed by Drew et al. (1932)
for turbulent flow in smooth wall pipes is used as the friction factor in the pipeline.

λp = 0.0056 + 0.5 (NRe)
−0.32
p (14)

This is also the equation recommended by Dukler et al. (1964) in their horizontal two-phase flow
correlation (Brill and Beggs (1991)). Here, the Reynolds number is

(NRe)p =
⟨ρm⟩p⟨Um⟩pDp

⟨µm⟩p
. (15)
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In equation (15), the average mixture density is given by

⟨ρm⟩p = ⟨αL⟩pρL + [1− ⟨αL⟩p] (ρG)p , (16)

and ⟨µm⟩p is the average mixture viscosity,

⟨µm⟩p = ⟨αL⟩pµL + [1− ⟨αL⟩p]µG. (17)

⟨Um⟩p = ⟨UsL⟩p + ⟨UsG⟩p is the average mixture velocity in the pipe where

⟨UsG⟩p =
(wG)in
(ρG)p Ap

, (18)

⟨UsL⟩p =
(wL)in
ρLAp

. (19)

2.4 Riser model

The total volume of the riser is
Vr = Ar(Lr + Lh), (20)

where Ar = (π/4)D2
r is the cross-sectional area of the riser. The volume occupied by gas in the

riser is
(VG)r = Vr − (mL)r /ρL, (21)

and the density of gas in the riser is (ρG)r = (mG)r/(VG)r. Then, the pressure at the top of the
riser from ideal gas law becomes

Prt =
(ρG)r RTr

MG

. (22)

The average liquid volume fraction in the riser is

⟨αL⟩r =
(mL)r
(VrρL)

, (23)

and the average density of the mixture inside the riser is

⟨ρm⟩r =
(mG)r + (mL)r

Vr
. (24)

The friction loss in the riser is

(∆Pf )r =
λr⟨ρm⟩r⟨Um⟩2r (Lr + Lh)

2Dr
, (25)

where the friction factor λr is computed from an explicit approximation of the implicit Colebrook-
White equation (Haaland (1983)):

1√
λr

= −1.8 log10

[(
ϵ/Dr

3.7

)1.11

+
6.9

(NRe)r

]
(26)

where the Reynolds number for the flow in the riser is

(NRe)r =
⟨ρm⟩r⟨Um⟩rDr

⟨µm⟩r
(27)
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The average mixture velocity in the riser is ⟨Um⟩r = ⟨UsL⟩r + ⟨UsG⟩r where

⟨UsL⟩r =
(wL)in
ρLAr

, (28)

⟨UsG⟩r =
(wG)in
(ρG)r Ar

. (29)

In equation (27), ⟨µm⟩r is the average mixture viscosity,

⟨µm⟩r = ⟨αL⟩rµL + [1− ⟨αL⟩r]µG. (30)

2.5 Gas flow model at riser base

As illustrated in Figure 2(b), when the liquid level in the pipeline section exceeds the openings
of the pipeline at the riser base (h > hd), the liquid blocks the low-point and the gas flow rate
(wG)rb at the riser base is zero,

(wG)rb = 0, h ≥ hd (31)

When the liquid is not blocking at the low-point (h < hd in Figure 2(a)), the gas will flow
from the volume (VG)p to (VG)r with a mass rate (wG)rb [kg/s] which is assumed to be given by
an“orifice equation” (e.g. Skogestad (2009)):

(wG)rb = KGAG

√
(ρG)p ∆PG, h < hd (32)

where

∆PG = Pin − (∆Pf )p − Prt − ⟨ρm⟩rgLr − (∆Pf )r . (33)

The free area for gas, AG, can be calculated precisely using trigonometric functions (Storkaas and Skogestad
(2003)), but for simplicity, a quadratic approximation is used in this model,

AG =

{
Ap

(
hd−h
hd

)2

, if h < hd;

0, if h ≥ hd.
(34)

2.6 Liquid flow model at riser base

The liquid mass flow rate at the riser base is also described by an orifice equation:

(wL)rb = KLAL

√
ρL∆PL, (35)

where

∆PL = Pin − (∆Pf )p + ρLgh− Prt − ⟨ρm⟩rgLr − (∆Pf )r (36)

and

AL = Ap −AG (37)
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2.7 Phase distribution model at outlet choke valve

In order to calculate the mass flow rates of the individual phases as given in equations (2)-(6),
the phase distribution at top of the riser must be known. The liquid volume fraction at top of the
riser, (αL)rt, can be calculated by the entrainment model proposed by Storkaas and Skogestad
(2003), but their entrainment equations are complicated which make the model stiff for numerical
solvers. Instead, we use the fact that in a vertical gravity-dominant two-phase pipeline there is
approximately a linear relationship between the pressure and the liquid volume fraction. This has
also been observed in OLGA simulations. In addition, the pressure gradient is assumed constant
along the riser for the desired non-slugging flow regimes, which then gives that the liquid volume

fraction gradient is constant, i.e.
∂(αL)r

∂y = constant. It then follows that the average liquid
volume fraction in the riser is

⟨αL⟩r =
(αL)rt + (αL)rb

2
(38)

Here, ⟨αL⟩r is given by equation (23), and (αL)rb is determined by the flow area of the liquid
phase at the riser base (low-point) as (αL)rb = AL/Ap. Therefore, the liquid volume fraction at
the top of the riser becomes

(αL)rt = 2⟨αL⟩r − (αL)rb =
2 (mL)r
VrρL

− AL

Ap
(39)

3 Comparison of models

3.1 OLGA test case and reference model

In order to study the dominant dynamic behavior of a typical, yet simple riser slugging problem,
we consider the test case for severe slugging used in the OLGA simulator. The geometry of
the system is given in Figure 3. The pipeline diameter is 0.12m and its length is 4300m.
Starting from the inlet, the first 2000m of the pipeline is horizontal and the remaining 2300m
inclines downwards with a 1◦ angle. This gives a 40.14m descent and creates a low point at
the end of the pipeline. The riser is a vertical 300m pipe with a diameter of 0.1m. A 100m
horizontal section with the same diameter as that of the riser connects the riser to the outlet
choke valve. The feed into the system is nominally constant at 9 kg/s, with (wL)in = 8.64 kg/s
(oil) and (wG)in = 0.36 kg/s (gas). The separator pressure (Ps) after the choke valve, is nominally
constant at 50.1 bar. This leaves the choke valve opening Z1 as the only control degree of freedom
(manipulated variable) in the system. The model constants for the OLGA case are given in
Table 1.

For the present case study, the critical value of the relative valve opening for the transition
between a stable non-oscillatory flow regime and riser slugging is Z∗

1 = 5%. This is illustrated
by the OLGA simulations in Figure 4 which show the inlet pressure, topside pressure and outlet
flow rate, with the valve openings of 4% (no slug), 5% (transient) and 6% (riser slugging).

3.2 Model fitting

The four main tuning parameters for the new pipeline-riser model are:

• Kh: correction factor for level of liquid in pipeline (eq. 10)

• Cv1: production choke valve constant (eq. 2)

• KG: coefficient for gas flow through low point (eq. 32)
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Table 1: Model constants for pipeline-riser OLGA case

Symbol Description Value Unit

R Universal gas constant 8314 J/(kmol.K)
g Gravity 9.81 m/s2

µL Liquid viscosity 1.43× 10−4 Pa.s
µG Gas viscosity 1.39× 10−5 Pa.s
ϵ Pipe roughness 2.80× 10−5 m
ρL Liquid density 832.2 kg/m3

MG Gas molecular weight 20 gr
Tp Pipeline temperature 337 ◦K
Vp Pipeline volume 48.63 m3

Dp Pipeline diameter 0.12 m
Lp Pipeline length 4300 m
Tr Riser temperature 298.3 ◦K
Vr Riser volume 3.14 m3

Dr Riser diameter 0.1 m
Lr Riser length 300 m
Lh Length of horizontal section 100 m
Ps Separator pressure 50.1 bar

(wL)in Inlet liquid mass flow 8.64 kg/s
(wG)in Inlet gas mass flow 0.36 kg/s

Figure 3: Geometry of OLGA pipeline-riser test case
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Figure 4: Simulations of OLGA test case for different valve openings

Table 2: Tuning parameters for pipeline-riser model fitted to OLGA simulations

Symbol Description Value
Kh [–] Correction factor for level of liquid in pipeline 0.700
KG [–] Coefficient for gas flow through low point 3.87× 10−2

KL [–] Coefficient for liquid flow through low point 1.64× 10−1

Cv1 [m2] Production choke valve constant 1.12× 10−2

• KL: coefficient for liquid flow through low point (eq. 35)

The tuning parameters can be adjusted to fit the model to numerical data from a given pipeline-
riser system. The six different simplified models were simulated in Matlab and their tuning
parameters were adjusted to match the OLGA reference model simulations. We believe that the
obtained tuning parameters for all the models result in the best possible fit. The four primary
tuning parameters of the new model fitted to the OLGA case are given in Table 2.

We performed the model fitting by inverting the model equations to back-calculate the param-
eter values, and finally some manual adjustments. By this approach, we always obtain parameter
values which give a single physically meaningful solution to the model. We avoided using op-
timization routines for this purpose, because the different model fitting criteria, mentioned in
the introduction, make it very difficult to formulate and solve such an optimization problem. A
more systematic approach has been proposed by Di Meglio et al. (2010) for tuning the Di Meglio
model, but this approach did not work well for the present case study.

3.3 Comparison of models with OLGA simulations

The results are summarized in Table 3 which shows the error (in %) of various model fitting
criteria. Our most important criterion for the model fitting is the critical value of the valve
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Figure 5: Step response of pressure at top of riser

opening (Z∗
1 ) and all the models were made to match this value. Next, we looked at the oscillation

frequency at this point (Tc) which could not be matched exactly by Eikrem and Nydal models.
For the present case study, we have Z∗

1 = 5% and Tc = 15.6 [min].

3.3.1 Frequency of oscillations

All models were linearised at the critical operating point, Z∗
1 = 5%. The period of oscillations

at this operating point is related to poles of the linear models. Most of the models give a pair of
complex conjugate poles, s = ±ωci = ±0.0067i. Note that the critical frequency is

ωc=
2π

Tc
,

2π

15.6 [min] 60 [s/min]
= 0.0067 s−1

The exceptions are the Eikrem and Nydal models which are not able to get the right period time
(15.6 [min]), and consequently they result in different poles at Z∗

1 = 5%.

3.3.2 Step response

Figure 5 shows the pressure response at the top of the riser to a step change in the valve opening
from Z1 = 4% to Z1 = 4.2% for the OLGA reference model and the new model. Step responses
of the OLGA model has one undershoot and one overshoot. The amplitudes of the overshoot and
undershoot for different simplified models are given in Table 3 in the form of errors from those of
the OLGA model. The inverse response (overshoot) corresponds to the Right-Half-Plane zeros
near the imaginary axis which are also given for Z1 = 5% in Table 3.

3.3.3 Bifurcation diagrams

Similar to the simulations shown in Figure 4, we simulate the models for different valve openings,
covering the whole operation ranges of the valve, to get the bifurcations diagrams as shown in
Figure 6. Bifurcations diagrams demonstrate the transition from non-slug to slugging flow at the
critical valve opening. For Z1 > 5%, the steady-state (central line) is an unstable equilibrium
for the system, like an inverted pendulum, but it can be stabilised using feedback control. The
steady-sate behaviour of the new model and also the minimum and maximum of the oscillations
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are compared to those of the OLGA model in Figure 6. In order to have a quantitative compar-
ison, deviations of the different simplified models from the OLGA reference model for fully open
valve (Z1 = 100%) are summarised in Table 3.

Note that the steady-state behaviour is much more important for control purpose than the
minimum and maximum oscillatory (slugging) pressure values. Another example is riding a
bicycle where we want to control the bicycle at its upright position which is naturally unstable.
However, when the bicycle falls down to the ground, it is too late to control it. Hence, a model
for the fallen bicycle is not useful for control.

3.3.4 Comparison summary

As seen in Table 3, there is a trade-off between model complexity and the number of tuning
parameters used to match the actual process data. Generally, models with simple structures can
achieve a good fit to complicated physical processes by excess use of fitting parameters. A famous
example for this is least square fitting of an elephant (Wei (1975)). Here, simple models like the
Kaasa and the Di Meglio models use seven and five tuning parameters, respectively, to get a good
fit. However, finding the parameter values is difficult. The Nydal model and the Eikrem model
(with three parameters) are also simple, but they are not able to match the OLGA simulations
because of few tuning parameters. The new model (with four parameters) is somewhat more
complicated, but is able to give a good match with relatively few tuning parameters. Also, as
opposed to the other simplified models, the new model does not require adjusting any physical
property of the system, such as volume of gas in the pipeline.

The new model and the De Meglio model show similar accuracy in prediction of the steady-
state and also minimum and maximum values, but dynamically the new model is closer to the
OLGA simulations.

3.4 Comparison with experiments

The experiments were performed on a laboratory setup for anti-slug control at the Chemical
Engineering Department of NTNU. Figure 7 shows a schematic presentation of the laboratory
setup. The pipeline and the riser are made from flexible pipes with 2 cm inner diameter. The
length of the pipeline is 4m, and it is inclined with a 15◦ angle. The height of the riser is 3m.
A buffer tank is used to simulate the effect of a long pipe with the same volume, such that the
total resulting length of pipe would be about 70m. Other model constants are given in Table 4,
and the four tuning parameters of the model fitted to the experiments are given in Table 5.

The topside choke valve is used as the input for control. The separator pressure after the
topside choke valve is nominally constant at atmospheric pressure. The feed into the pipeline is
assumed to be at constant flow rates, 4 litre/min of water and 4.5 litre/min of air. With these
boundary conditions, the critical valve opening where the system switches from stable (non-slug)
to oscillatory (slug) flow is at Z∗

1 = 15%.

In addition, we developed a new OLGA case with the same dimensions and boundary condi-
tions as the experimental set-up. The bifurcation diagrams are shown in Figure 8 where simplified
model (thin solid lines) is compared to the experiments (bold solid lines) and the OLGA model
(dashed lines). In Figure 8, the system has a stable (non-slug) flow when the topside valve
opening Z1 is smaller than 15%, and it switches to slugging flow conditions for Z1 > 15%.
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Figure 6: Bifurcation diagrams of simplified pipeline-riser model (solid lines) compared OLGA
reference model (dashed)
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Figure 8: Bifurcation diagrams of simplified pipeline-riser model (thin solid lines) compared to
experiments (thick red solid lines) and OLGA simulations (dashed blue lines)
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Table 4: Model constants for small-scale experimental setup

Symbol Description Value Unit
µL Liquid viscosity 8.90× 10−4 Pa.s
µG Liquid viscosity 1.81× 10−5 Pa.s
ϵ Pipe roughness 1.00× 10−6 m
ρL liquid density 1000 kg/m3

MG Gas molecular weight 18 gr
Tp Pipeline temperature 288 ◦K
Vp Pipeline volume 0.0219 m3

Dp Pipeline diameter 0.02 m
Lp Pipeline length 69.71 m
Tr Riser temperature 288 ◦K
Vr Riser volume 0.001 m3

Dr Riser diameter 0.02 m
Lr Riser length 3 m
Lh Length of horizontal section 0.2 m
Ps Separator pressure 1.013 bar

Table 5: Tuning parameters for pipeline-riser model fitted to experiments

Symbol Description Value
Kh [–] Correction factor for level of liquid in pipeline 1.00
KG [–] Coefficient for gas flow through low point 1.42× 10−2

KL [–] Coefficient for liquid flow through low point 1.90× 10−1

Cv1 [m2] Production choke valve constant 2.39× 10−4

4 Well-Pipeline-Riser System

In the pipeline-riser model described above, constant gas and liquid flow rate were used as
inlet boundary conditions. In order to study effect the of pressure-driven inflow which is more
physically correct, we add an oil well and assume a constant reservoir pressure as the boundary
condition (see Figure 9).

4.1 Simplified six-state model

We add two state variables, the mass of gas and mass of liquid inside the oil well, to the pipeline-
riser system in (1a)–(1d) to obtain a six-state model. The two additional state equations are as
follows,

d (mG)w
dt

=

(
η

η + 1

)
wr − (wG)wh , (40)

d (mL)w
dt

=

(
1

η + 1

)
wr − (wL)wh , (41)

where η is the average mass ratio of gas and liquid produced from the reservoir which is assumed
to be a known parameter of the well. (wG)wh and (wL)wh are the mass flow rates of gas and
liquid at the well-head. The production mass rate wr [kg/s] from the reservoir to the well is
assumed to be described by a linear Inflow Performance Relationship (IPR).

wr = CPI max(0, Pres − Pbh), (42)

where CPI [kg/(sPa)] is the mass productivity constant of the well, Pres is the reservoir pressure,
which can be assumed constant in a short period of time (e.g. few months), and Pbh is the
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flowing bottom-hole pressure of the well,

Pbh = Pwh + ⟨ρm⟩wgLw +∆Pfw. (43)

Here, (∆Pf )w is the pressure loss due to friction in the well, which is assumed to be given as

(∆Pf )w =
λw⟨ρm⟩w⟨Um⟩w2

Lw

2Dw
. (44)

We get the friction factor of the well using the same correlation as for the riser by Haaland
(1983).

1√
λw

= −1.8 log10

[(
ϵ/Dw

3.7

)1.11

+
6.9

(NRe)w

]
(45)

The Reynolds number for the flow in the well is

(NRe)w =
⟨ρm⟩w⟨Um⟩wDw

⟨µm⟩w
, (46)

and the average mixture viscosity in the well is

⟨µm⟩w = ⟨αL⟩wµL + [1− ⟨αL⟩w]µG, (47)

where ⟨αL⟩w is the average liquid volume fraction inside the well, ⟨αL⟩w = (mL)w/VwρL. The
average mixture velocity in the well is

⟨Um⟩w =
4⟨wnom⟩

πDw
2⟨ρm⟩w

, (48)

where ⟨wnom⟩ is a priori know nominal flow rate of the well, and the average density of the
two-phase mixture is

⟨ρm⟩w =
(mG)w + (mL)w

Vw
. (49)

The density of the gas phase in the well is

(ρG)w =
(mG)w

Vw − (mL)w /ρL

, (50)

then the pressure at the well-head, assuming ideal gas, becomes

Pwh =
(ρG)w RTwh

MG

. (51)

In order to calculate the liquid volume fractions at the top of the well, we use the same assump-
tions as for the phase fraction of the riser in Section 2.7.

(αL)wt = 2Kα⟨αL⟩w − (αL)wb (52)

In this case, because of the high pressure at the bottom-hole, the fluid from the reservoir is
saturated (Ahmed (2006)) and liquid volume fraction at the bottom is (αL)wb = 1. Kα ≈ 1 is a
tuning parameter which can be used for model fitting purpose. The gas mass fraction at top of
the well is then

(αm
G )wt =

[1− (αL)wt] (ρG)w
(αL)wt ρL + [1− (αL)wt] (ρG)w

. (53)
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Density of mixture at top of the well:

ρwt = (αL)wt ρL + [1− (αL)wt] (ρG)w. (54)

Mass flow rate of the mixture at the well-head:

wwh = Cv2f(z2)
√

ρwt max(Pwh − Pin, 0), (55)

where Pin is the pressure at the inlet of the pipeline which is given by equation (12) in the
pipeline-riser model, Section 2.3. The flow rates of gas and liquid phases from the well-head are
as follows.

(wG)wh = (αm
G )wt wwh. (56)

(wL)wh = [1− (αm
G )wt]wwh. (57)

Flow rates of gas and liquid phases into the pipeline are respectively

(wG)in = (wG)wh + d1, (58)

(wL)in = (wL)wh + d2, (59)

where d1 and d2 are assumed to represent disturbances from the other production wells in the
network. Usually, multiple production wells are connected to a subsea manifold, and their
products are combined and transported through a shared pipeline. In this paper, we have
considered only one oil well. This can easily be extended for multiple oil wells in a network.

4.2 Comparison with OLGA simulations

In the OLGA reference test case introduced in Section 3.1, constant inflow rates were assumed.
We modified the OLGA reference model by connecting an oil well to the inlet of the pipeline
as shown in Figure 9. The oil well is vertical, has a depth of 3000m, and it has the same
inner diameter as for the pipeline, 0.12m. The reservoir pressure is constant at 230 bar. The
parameters related to the pipeline and the riser are same as for the OLGA reference model. The
constants related to the additional well section are given in Table 6.

The well-pipeline-riser model includes two additional tuning parameter Cv2, the valve con-
stant of the subsea choke valve, and Kα in equation (52). Hence, we have six tuning parameters
in the simple well-pipeline-riser model. Numerical values for the tuning parameters are given in
Table 7. The resulting bifurcation diagrams of the simple model are compared to the modified
OLGA model in Figure 10. The simple model could predict the steady-state and the bifurcation
point with a good accuracy. Figure 10.b shows that the inlet mass flow is increasing by opening
the topside choke valve. This is because of pressure-driven nature of the flow.
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Table 6: Model constants for well section

Symbol Description Value Unit
Pres Reservoir pressure 320 bar
CPI Mass productivity constant 2.75× 10−6 kg/(s.Pa)

⟨wnom⟩ Well nominal mass flow 9 kg/s
η Mass gas oil ratio 0.04 –
Tw Well temperature 369 ◦K
Vw Well volume 33.93 m3

Dw Well diameter 0.12 m
Lw Well depth 3000 m
ϵ Well roughness 2.80× 10−5 m

Table 7: Tuning parameters for well-pipeline-riser model fitted to OLGA simulations

Symbol Description Value
Kh [–] Correction factor for level of liquid in pipeline 0.60
KG [–] Coefficient for gas flow through low point 3.49× 10−2

KL [–] Coefficient for liquid flow through low point 6.55× 10−1

Cv1 [m2] Production choke valve constant 1.26× 10−2

Kα [–] Liquid fraction correction factor 0.96
Cv2 [m2] Wellhead choke valve constant 3.30× 10−3

Pwh

Pbh

Pin

 wwh

  wout
Z2

Z1

Figure 9: Schematic presentation of well-pipeline-riser system
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Figure 10: Bifurcation diagrams of simplified well-pipeline-riser model (solid lines) compared to
OLGA reference model (dashed lines)
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5 Conclusions

We have proposed a new simplified dynamic model for severe-slugging flow in pipeline-riser
systems. The new model and five other models from the literature have been compared with a
test case in the OLGA simulator. Furthermore, we verified the new model experimentally. The
new model compares well with the OLGA simulations and the experiments.

Finally, we extended the four-state model to a well-pipeline-riser system by adding two states.
The extended model was compared well to an OLGA test case.

The Matlab codes for the models are available at home page of Sigurd Skogestad (Jahanshahi
(2012)).

The proposed four-state model captures the main dynamics of the severe-slugging flow regime,
and the extended six-state model shows the (pressure driven) well inflow behaviour. These
simplified models are useful for controllability analysis of the system in order to design a structure
(e.g. choosing suitable controlled variable) for anti-slug control systems. The proposed simplified
models are also of great importance for dynamic optimisation of the oil production networks.
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