
64 Oil and Gas Facilities  •  December 2014 December 2014  •  Oil and Gas Facilities 65

Summary
Elaborated models, such as those used for simulation purposes [e.g., 
in the OLGA® simulator (Bendiksen et al. 1991)], cannot be used 
for model-based control design because these models use too many 
state variables and the model equations are not usually available for 
the user. The focus of this paper is on deriving simple, dynamical 
models with few state variables that capture the essential dynamic 
behavior for control. We propose a new simplified dynamic model 
for severe-slugging flow in pipeline/riser systems. The proposed 
model, together with five other simplified models found in the litera-
ture, are compared with results from the OLGA simulator. The new 
model can be extended to other cases, and we consider also a well/
pipeline/riser system. The proposed simple models are able to repre-
sent the main dynamics of severe-slugging flow and compare well 
with experiments and OLGA simulations. 

Introduction
Severe-slugging-flow regimes usually occur in pipeline/riser sys-
tems that transport a mixture of oil and gas from the seabed to the 
surface (Taitel 1986). Such flow regimes, also referred to as “riser 
slugging,” are characterized by severe flow and pressure oscillations. 
Slugging problems have also been observed in gas lifted oil wells in 
which two types of instabilities—casing heading and density wave 
instability—have been reported (e.g., Hu and Golan 2003).

Slugging has been recognized as a serious problem in offshore 
oil fields because the irregular flow caused by slugging can cause 
serious operational problems for downstream surface facilities (e.g., 
overflow of inlet separators). Therefore, effective methods to handle 
or remove riser slugging are needed, and many efforts have been 
made to prevent such occurrences (Courbot 1996; Havre et al. 2000). 
The conventional solution is to partially close the topside choke 
valve (choking), but this may reduce the production rate, especially 
for fields in which the reservoir pressure is relatively low. Therefore, 
a solution that guarantees stable flow and the maximum possible pro-
duction rate is desirable.

Fortunately, automatic feedback control has been shown to be 
an effective strategy to eliminate the slugging problem. As shown 
in Fig. 1, the topside choke valve is usually used as the manipu-
lated variable to regulate (control) the riser-base pressure (Prb) at a 
given pressure set point (Pset). Such a system is referred to as “anti-
slug control,” and it aims at stabilizing the flow in the pipeline at the 
operating conditions that, without control, would lead to riser slug-
ging. Different antislug-control strategies have been tested in prac-
tice (Havre et al. 2000) and experimentally (Godhavn et al. 2005).

OLGA is a commercial multiphase simulator used widely in the 
oil industry (Bendiksen et al. 1991). When the development of this 
simulator was initiated in the 1980s, one of motivations was to study 

the dynamics of slow flow regimes for offshore oil fields. There has 
been some research on riser slugging conducted with the OLGA sim-
ulator to test antislug control (Fard et al. 2006); however, the model 
equations coded in commercial simulators are not openly available 
and appear as a black box to the end user. In addition, the OLGA sim-
ulator uses numerous correlations with parameters that are calibrated 
on the basis of field data. The OLGA simulator works by discretizing 
the pipe into multiple segments. The model accuracy increases by 
increasing the number of the segments, but this results in many 
 ordinary-differential equations (ODEs). However, for controller de-
sign, we need a fully known and preferably simple model with as 
few ODEs as possible. When we refer to simple models in this paper, 
the number of ODEs, or equivalently, the number of “states,” will be 
called “dimensions” of the model.

The focus of this paper is on deriving a simple dynamical model 
that captures the essential behavior for control—namely, the onset 
of slugging, not the slugging itself. The aim is to avoid the slug flow 
regime and, instead, operate at a steady- (nonslug-) flow regime. 
Therefore, the shape and length of the slugs are not the main con-
cerns in this modeling.

For simplicity, two-phase flow (gas phase and bulk liquid phase) 
is assumed in the model. To use the model for a three-phase gas/oil/
water system, the bulk liquid phase includes the oil and water. As an 
approximation, the density and other parameters for the bulk liquid 
phase are the weighted averages (based on volume fractions) of the 
parameters for the oil and water phases. We also need to ignore the 
slip between oil and water phases. This approximation should not af-
fect the prediction of slugging onset significantly, except for special 
cases in which the slip velocity between the water and oil phases ex-
ceeds a certain value that is beyond the scope of this study. In such 
cases, a slip model must be included to improve the model prediction.

Five simplified dynamical models for the pipeline/riser systems 
were found in the literature. The “Storkaas model” (Storkaas et al. 
2003) is a 3D state-space model that has been used for controlla-
bility analysis (Storkaas and Skogestad 2007). The “Eikrem model” 
( Tuvnes 2008; Eikrem 2008) is a 4D state-space model. Another sim-
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Fig. 1—Preventing slug flow by control of riser-base pressure. 
(PC=pressure controller and PT=pressure transmitter.)
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plified model, referred to as the “Kaasa model” (Kaasa et al. 2008), 
predicts the pressure at the bottom of the riser only. The “Nydal 
model” (Martins da Silva et al. 2010) is the only model that includes 
friction in the pipes. The most recently published simplified model 
is the “Di Meglio model” (Di Meglio et al. 2009, 2010). In addition, 
we present in this paper a new four-state model that includes features 
of the other five models. The six models are simulated in the time 
domain and compared with results from the more-detailed OLGA 
model in the following five aspects, listed in order of importance:

•  Critical valve opening for onset of slugging
•   Frequency of oscillations at the critical point (onset of slugging)
•   Dynamical response to a step change in the valve opening (non-

slug regime)
•  Steady-state pressure and flow-rate values (nonslug regime)
•   Maximum and minimum (pressure and flow rate) of the oscil-

lations (slug regime)

The simplified models are also analyzed linearly in the frequency 
domain, where we consider the location of unstable poles and impor-
tant unstable (right-half-plane) zeroes in the model. The results pre-
sented in this paper have been partially presented by Jahanshahi and 
Skogestad (2011) and Jahanshahi et al. (2012). In the present paper, 
we compare the new model with the experiments, and we extend it to 
a well/pipeline/riser system.

This paper is organized as follows. First, we present our new sim-
plified model for pipeline/riser systems. Then, we compare the pro-
posed model and the other simple models with the results from the 
OLGA simulator and experiments. Finally, we extend this model to 
well/pipeline/riser systems and compare the extended model with 
OLGA simulations.

New Simplified Four-State Model
Mass-Balance Equations for Pipeline and Riser. For the new 
simplified model, consider the schematic of the system presented 
in Fig. 2. The four differential equations in the proposed model are 
simply the mass-conservation law for the gas and liquid phases in the 
pipeline and riser sections:
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The four state variables in the model are
(mG)p = mass of gas in the pipeline, kg
(mL)p = mass of liquid in the pipeline, kg
(mG)r = mass of gas in the riser, kg
(mL)r = mass of liquid in the riser, kg

The state variables are masses; therefore, they are non-negative 
values. The time derivatives of the state variables appear on the 
left side of the state equations (Eqs. 1a through 1d). On the right 
side of the state equations, w (kg/s) denotes mass-flow rate, and the 
subscripts “in,” “rb,” and “out” stand for “inlet,” “riser base,” and 

“outlet,” respectively. The flow rates on the right side are calculated 
by the additional model equations that are described later.

Boundary Conditions. Inlet conditions. In Eqs. 1a and 1b, (wG)in 
and (wL)in are the inlet gas and liquid mass-flow rates. They are as-
sumed to be constant in the four-state model, but the inlet boundary 
conditions are changed in the extended model to make the inlet flow 
a function of inlet pressure (i.e., reservoir flowing pressure). 

Outlet Conditions. We consider a constant pressure (separator 
pressure, Ps) as the outlet boundary condition, and a simple choke-
valve equation determines the outflow of the two-phase mixture:

( ) ( )out 1 1 max ,0v rt rt sw C f z P Pρ= − , ..............................(2)

Here, 0<z1<1 is the normalized valve opening (we use Z1 when 
the valve opening is given in percentage—0<Z1<100) and f (z1) is 
the characteristic equation of the valve. In our simulations, a linear 
valve is used [i.e., f(z1)=z1], but this should be changed for other 
valve types. The individual outlet mass-flow rates of liquid and gas, 
respectively, are calculated as follows:

( ) ( ) outout
m

L L rt
w wα= , ..............................................................(3)

and

( ) ( ) outout 1 m
G L rt
w wα⎡ ⎤= −⎣ ⎦ , ...................................................(4)

Here, ( )mL rt
α  (kg/kg) is the liquid mass fraction at the top of the 

riser, which is given by

( ) ( )
( ) ( ) ( )1

L Lm rt
L rt

L L L G rtrtr

α ρ
α

α ρ α ρ
=

⎡ ⎤+ −⎣ ⎦
, ............................(5)

Fig. 2—Pipeline/riser system with important parameters.
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where an incompressible liquid phase is assumed (i.e., ρL is con-
stant). The density of the two-phase mixture at the top of the riser 
in Eq. 2 is

 ( ) ( ) ( )1rt L L L G rtrtrρ α ρ α ρ⎡ ⎤= + −⎣ ⎦ , ..................................(6)

The liquid volume fraction (αL)rt (m3/m3) in Eqs. 5 and 6 is cal-
culated by Eq. 41. Note that subscript rt is used to denote “riser top” 
and subscript r is used to denote “riser.”

Pipeline Model. The liquid volume fraction αL in the pipeline sec-
tion is given by the liquid mass fraction m

Lα  and densities of the two 
 
phases (Brill and Beggs 1991): ( )1

m
L L

L m m
L L L G

α ρ
α

α ρ α ρ
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+ −
. The 

 
average liquid mass fraction in the pipeline section is assumed to be 
 
 given by the inflow boundary condition 
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 Throughout this paper, 〈 〉 denotes the average operator. The average 
liquid volume fraction in the pipeline is then
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, ....................................(7)

The average gas density 〈ρG〉p is calculated on the basis of the 
nominal (steady-state) pressure in the pipeline by assuming 
ideal gas,

in, nom G
G p

p

P M
RT

ρ = , ................................................................(8)

Eq. 8 is simply PV=nZRT , and by “ideal gas,” we mean near-ni-
trogen behavior during which the compressibility factor is equal to 
unity (Z=1). MG is the gas molecular weight, and Pin,nom, which it-
self depends on 〈αL〉p, is calculated from a steady-state solution of the 
combined equations for the overall model. By use of Eq. 8 and con-
stant (nominal) inflow rates, we obtain  〈αL〉p in Eq. 7 as a constant 
parameter. Note that the constant gas density 〈ρG〉p in Eq. 7 is used to 
obtain a constant 〈αL〉p only; the gas density in the pipeline is (ρG)p, 
which we will see later.

The cross-sectional area of the pipeline is A=(p/4)D2
p, where 

Dp is the diameter of the pipeline and the volume of the pipeline is 
Vp=ApLp. When gas and liquid are distributed homogeneously along 
the pipeline, the average mass of liquid in the pipeline is

L L p Lp p
m Vρ α= , .............................................................(9)

With this assumption, the level of liquid in the pipeline at the low 
point is given by d L p

h h α≈ , where hd=Dp/cos(θ) is the pipe-
line opening at the riser base and θ is the pipe inclination with re-
spect to the horizontal (0°≤θ<90°) at the low point. More precisely, 
we use in the model

h d L p
h K h α= , ..................................................................(10)

where Kh is a correction factor approximately equal to unity that 
can be used to fine tune the model. (Note that in our experience 
of fitting the model to different pipeline/riser systems, 0.5<Kh≤1 
usually results in a good fit.) If the liquid content of the pipeline 
increases by Δ(mL)p, it starts to fill up the pipeline from the low 
point. A length of pipeline equal to ΔL will be occupied by only 
liquid, where ( ) ( ) ( )– 1L L L p L Lp p ppm m m LA α ρΔ = = Δ −  and  
 
the level of liquid in the pipeline becomes ( ) sinh h L θ= + Δ  
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, ............................... (11)

Thus, the level of liquid in the pipeline h can be written as a 
function of liquid mass in the pipeline (mL)p, which is a state 
variable of the model. The remaining parameters in Eq. 11 
are constants.

The pipeline gas density is (ρG)p=(mG)p/(VG)p, where the 
volume occupied by gas in the pipeline is (VG)p=Vp−(mL)p/
ρL. The pressure at the inlet of the pipeline, assuming ideal 
gas, is

( )
in

G pp

G

RT
P

M

ρ
= , ...................................................................(12)

We consider only the liquid phase when calculating the frictional 
pressure loss in the pipeline (Brill and Beggs 1991).

( )
2

2
p L sL pp

f p
p

u L
P

D

λ ρ
Δ = , .................................................(13)

Here, λp is the friction factor of the pipeline. The correlation de-
veloped by Drew et al. (1932) for turbulent flow in smooth-wall 
pipes is used as the friction factor in the pipeline:

( ) 0.32Re0.0056 0.5p pNλ −
= + , ..............................................(14)

This is also the equation recommended by Dukler et al. (1964) in 
their horizontal two-phase-flow correlation (Brill and Beggs 1991). 
We tried different correlations, and this provides the best numerical 
enclosure for our simplified model. The correlations considering the 
pipe roughness lead to a very large friction loss because of the long 
pipeline. In Eq. 14, the mixture Reynolds number is
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m m pp p

p
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U D
N

ρ

μ
= , ................................................(15)

where the average mixture density is given by

( )( )1m L L L G pp p p
ρ α ρ α ρ= + − , ............................(16)

and m p
μ  is the average mixture viscosity,

( )1m L L L Gp p p
μ α μ α μ= + − , .................................(17)

We define the mixture velocity by use of superficial velocities, 
m sL sGp p p

U U U= + , where
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Riser Model. The total volume of the riser, including the horizontal 
section, is
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( )r r r hV A L L= + , .................................................................(20)

where ( ) 24r rA Dπ=   is the cross-sectional area of the riser. The 
volume occupied by gas in the riser is

( ) ( ) /G r L Lr rV V m ρ= − , .......................................................(21)

and the density of gas  in the riser  is (ρG)r=(mG)r/(VG)r. Then, the 
pressure at the top of the riser from the ideal-gas law becomes

( )G rr
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G

RT
P

M
ρ

= , ....................................................................(22)

The average liquid volume fraction in the riser is

( )
( )

L r
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r L

m
V

α
ρ

= , ...................................................................(23)

and the average density of the mixture inside the riser is

( ) ( )G Lr r
m r
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m m
V

ρ
+
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The friction loss in the riser is

( ) ( )2

2
r m m r hr r

f r
r

U L L
P

D
λ ρ +

Δ = , ..................................(25)

where the friction factor λr is computed from an explicit approxima-
tion of the implicit Colebrook-White equation (Haaland 1983):
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where the Reynolds number for the flow in the riser is

( )Re
m m rr r

r
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U D
N
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μ
= , ..................................................(27)

The average mixture velocity in the riser is 
m sL sGr r r

U U U= + , where

( )inL
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In Eq. 27, m r
μ  is the average mixture viscosity,

( )1m L L L Gr r r
μ α μ α μ= + − .  ..................................(30)

Gas-Flow Model at the Riser Base. As illustrated in Fig. 2b, when 
the liquid level in the pipeline section exceeds the openings of the 
pipeline at the riser base (h>hd), the liquid phase obstructs the flow 
at the low point by competent bridging of the conduit and the gas-
flow rate (wG)rb at the riser base becomes zero,

( ) 0,   G drbw h h= ≥ .  ..............................................................(31)

When the liquid is not blocking at the low point (h<hd in Fig. 2a), 
the gas will flow from the volume (VG)p to (VG)r with a mass rate 
(wG)rb (kg/s), which is assumed to be given by an “orifice equation” 
(e.g., Skogestad 2009):

( ) ( ) ,   G G G G G dpbrw K A P h hρ= Δ < , ...............................(32)

where

( ) ( )inG f rt m r fr rp
P P P P gL PρΔ = − Δ − − − Δ , ..............(33)

The free area for gas (AG) can be calculated precisely with trigono-
metric functions (Storkaas et al. 2003):

( ) ( )2
1 cos sinGA r π φ π φ π φ= − − − −⎡ ⎤⎣ ⎦,  ........................(34)

where

( ) ( )
1

cos
acos 1 dh h

r
θ

φ π
−⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

, ...................................(35)

Fig. 3 shows AG as a function of the liquid level h on the basis 
of the accurate relationships in Eqs. 34 and 35 as well as the linear 
and quadratic approximations for this function. The linear approxi-
mation is closer to the accurate trigonometric function, but the qua-
dratic approximation leads to a more-accurate onset of slugging. 
For simplicity, the quadratic approximation is used in this model, 

2

,   if  

0,                     if  
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p d
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h hA h h
A h

h h

⎧ ⎛ ⎞−
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⎪

≥⎩

, ......................................(36)

Eq. 36 is the approximation of the free area for the gas flow by a tri-
angle, as shown in Fig. 4.

Liquid-Flow Model at the Riser Base. The liquid mass-flow rate at 
the riser base is also described by an orifice equation:

( )L L L L Lrbw K A Pρ= Δ , .....................................................(37)

where

( ) ( )inL f L rt m r fr rp
P P P gh P gL Pρ ρΔ = − Δ + − − − Δ  ......(38)

and

L p GA A A= − , ........................................................................(39)

Phase-Distribution Model at the Outlet Choke Valve. To calcu-
late the mass-flow rates of the individual phases as given in Eqs. 
2 through 6, the phase distribution at the top of the riser must be 
known. The liquid volume fraction at the top of the riser (αL)rt can 
be calculated by the entrainment model proposed by Storkaas et 
al. (2003), but their entrainment equations are complicated, which 
makes the model stiff for numerical solvers. By stiffness, we mean 
that the entrainment equations lead to rapid variations in the solu-
tion of the ordinary-differential equations. This makes the numeri-
cal solvers numerically unstable, unless the step size is chosen to be 
extremely small.
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Instead of the entrainment model, we use the knowledge that 
in a vertical gravity-dominant two-phase pipeline, there is an ap-
proximately linear relationship between the pressure and the liquid 
volume fraction. This has also been observed in OLGA simulations. 
In addition, the pressure gradient is assumed constant along the riser 
for the desired nonslugging flow regimes, which then gives that the 
liquid-volume-fraction gradient is constant (that is, ( )

constantL r

y
α∂

=
∂

).  
 
It then follows that the average liquid volume fraction in the riser is

( ) ( )
2

L Lrt rb
L r

α α
α

+
=  ......................................................(40)

Here, L r
α  is also given by Eq. 23, where the mass of the 

liquid phase in the riser is always positive, (mL)r≥0, which makes  
(αL)r≥0. (αL)rb is determined by the flow area of the liquid phase 
at the riser base (low point) as (αL)rb=AL/Ap. Therefore, the liquid 
volume fraction at the top of the riser becomes

( ) ( )
( )2

2 L r L
L L L brtr r

r L p

m A
V A

α α α
ρ

= − = − , .....................(41)

We consider the lower and upper limits ( ) 0,L L rtr
α α≥ ≥   and 

we use in the model
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( ) ( )
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= − < <⎨
⎪
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 ..............(42)

Implementation of the Model. The model equations have been 
implemented and solved with MATLAB. The MATLAB codes 
for the models are available at the homepage of Sigurd Skogestad 
(Jahanshahi 2012).

Comparison of the Models
OLGA Test Case and Reference Model. To study the dominant dy-
namic behavior of a typical (yet simple) riser slugging problem, we 
consider the test case for severe slugging used in the OLGA simu-
lator. The geometry of the system is given in Fig. 5. The pipeline di-
ameter is 0.12 m and its length is 4300 m. Starting from the inlet, the 
first 2000 m of the pipeline is horizontal and the remaining 2300 m 
inclines downward with a 1° angle. This gives rise to a 40.14-m de-
scent and creates a low point at the end of the pipeline. The riser 
is a vertical 300-m pipe with a diameter of 0.1 m. A 100-m hori-

zontal section with the same diameter as that of the riser connects the 
riser to the outlet choke valve. The feed into the system is nominally 
constant at 9 kg/s, with (wL)in=8.64 kg/s (oil) and (wG)in=0.36 kg/s 
(gas). The separator pressure (Ps) after the choke valve is nominally 
constant at 50.1 bar. This leaves the choke valve opening (Z1) as the 
only operationally realistic control variable in the system. The model 
constants for the OLGA case are given in Table 1. 

For the present case study, the critical value of the relative valve 
opening for the transition between a stable nonoscillatory flow re-
gime and riser slugging is *

1 5%.Z =  The superscript * is used to de-
fine the critical values of the relative valve opening. The transition 
between the two flow regimes is illustrated by the OLGA simulations 
in Fig. 6, which shows the inlet pressure, topside pressure, and outlet 
flow rate, with the valve openings of 4% (no slug), 5% (transient), 
and 6% (riser slugging).

Model Fitting. The six different simplified models were simulated 
in MATLAB, and their tuning parameters were adjusted to match 
the OLGA reference-model simulations. We believe that the obtained 
tuning parameters for all the models result in the best possible fit. 
The four main tuning parameters for the new pipeline/riser model are
•  Kh: correction factor for the level of liquid in pipeline (Eq. 10)
•  Cv1: production choke valve constant (Eq. 2)
•  KG: coefficient for gas flow through the low point (Eq. 32)
•  KL: coefficient for liquid flow through the low point (Eq. 37)
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The tuning parameters can be adjusted to fit the model to nu-
merical data from a given pipeline/riser system. The numerical data 
can be from the historical database of the oil field, from exper-
iments, or from simulating a detailed model of the system (e.g., 
OLGA simulator).

To find the tuning parameters, the obvious approach is to formu-
late an optimization problem and to use an optimization routine in 
MATLAB [e.g., fmincon( )] to solve it. However, the multiobjective 
nature of the problem, as mentioned in the Introduction, makes it dif-
ficult to formulate and solve such an optimization problem. Thus, we 
decided to use a simpler approach.

We performed the model fitting by trying to match the essential 
features of the simulated results from OLGA. First, we simulated the 
OLGA reference model for a nonslug operating point ( )*1 1 ,Z Z<  
and we recorded the pipeline inlet pressure Pin, the riser top pressure 
Prt, the inlet liquid mass flow (wL)in, the inlet gas mass flow (wG)in, 
and the valve opening Z1. From these five values, we back calculated 
to (ρG)p, ΔPG, ΔPL, and ρrt on the basis of the model equations. Fi-
nally, by inverting Eqs. 32, 37, and 2, we obtained

( )
( )
1 inG

G
G G Gp

w
K

A P

γ

ρ
=

Δ
,  .......................................................(43)

( )2 inL
L

L L L

w
K

A P

γ

ρ
=

Δ
,  ...............................................................(44)

and

( ) ( )
( )

3 in in
1

1 max ,0
G L

v
rt rt s

w w
C

Z P P

γ

ρ

⎡ ⎤+⎣ ⎦=
−

,  .........................................(45)

where 0.5<γ1<2, 0.5<γ2<2, and 0.8<γ3<1.2 are dimensionless 
coefficients used to fine tune the model manually. These γ values 
are expected to be equal to unity; however, they must be changed to 
obtain a good fit. The complete set of equations for this procedure is 
given in the MATLAB code provided online (Jahanshahi 2012). The 

Fig. 6—Simulations of OLGA test case for different valve openings.

Symbol Description Value Unit 

R Universal gas constant 8314 J/(kmol·K) 

g Gravity 9.81 m/s2 

µL Liquid viscosity 1.43 10–4 Pa·s 

µG Gas viscosity 1.39 10–5 Pa·s 

 Pipe roughness 2.80 10–5 m 

L Liquid density 832.2 kg/m3 

MG Gas molecular weight 20 g 

Tp Pipeline temperature 337 °K 

Vp Pipeline volume 48.63 m3 

Dp Pipeline diameter 0.12 m 

Lp Pipeline length 4300 m 

Tr Riser temperature 298.3 °K 

Vr Riser volume 3.14 m3 

Dr Riser diameter 0.1 m 

Lr Riser length 300 m 

Lh Length of horizontal 
section 

100 m 

Ps Separator pressure 50.1 bar 

( L)in Inlet liquid mass flow 8.64 kg/s 

( G)in Inlet gas mass flow 0.36 kg/s 

Table 1—Model constants for pipeline/riser OLGA case. 
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fourth tuning parameter Kh≈1 was found by trial and error. For the 
OLGA case, we found Kh=0.7, and for the experiments it was ex-
actly 1.0. By this approach, we always obtain parameter values that 
give a single, physically meaningful solution to the model. The four 
main tuning parameters of the new model fitted to the OLGA case 
are given in Table 2.

A similar systematic approach has been proposed by Di Meglio 
et al. (2010) for tuning the Di Meglio model, but this tuning proce-
dure did not work well for the present case study. The Di Meglio 
model includes five tuning parameters (Cc, Cg, ε, Veb, and mstill). The 
Di Meglio tuning procedure finds four of the parameters; it does not 
give the value of Cg, which must be found by trial and error. We tried 
the tuning procedure by Di Meglio et al. (2010), and the obtained 
values are listed in Table 3. However, these values do not produce a 
good match; we had to change the three first parameters in Table 3 to 
obtain a good fit. Note that the case study considered by Di Meglio 
et al. (2010) is different from the OLGA case used in this work; their 
system does not include the low point and the horizontal pipe. This 
may be the reason that their tuning procedure did not work for the 
present case study.

Comparison of the Models With the OLGA Simulations. The re-
sults for the six models are summarized in Table 4, which shows 
the error of various model-fitting criteria. The error percentage for 
each quantity X is shown inside the parentheses and is calculated as 
 
 model

OLGA

 % abs 1 100
XError
X

⎛ ⎞
= − ×⎜ ⎟

⎝ ⎠
. The most important criterion  

 
for the model fitting is the critical value of the valve opening (Z*

1), 
and all the models were adjusted to match this value. Next, we 
looked at the oscillation frequency at this point (Tc), which could not 
be matched exactly by the Eikrem and Nydal models. For the present 
case study, we obtained Z*

1=5% and Tc=15.6 minutes from simula-
tions performed with OLGA version 5.3.

Frequency of Oscillations. All models were linearized at 
the critical operating point, Z*

1=5%. The period of oscilla-
tions at this operating point is directly related to the poles of the 
linear models. Most of the models give a pair of complex conju-
gate poles, s=±ωci=±0.0067i. Note that the critical frequency is  
 

( ) ( )
12 2 0.0067 s

15.6 minutes 60 s/minc
cT
π π

ω −=== . The excep-  
 

tions are the Eikrem and Nydal models, which are not able to ob-
tain the correct period time (15.6 minutes), and consequently  
they result in different poles at Z*

1=5%.
Step Response. Fig. 7 shows the pressure response at the top 

of the riser to a step change in the valve opening from Z1=4% to 
Z1=4.2% for the OLGA reference model and the new model. The 
step response of the OLGA model has one undershoot and one over-
shoot. The amplitudes of the overshoot and undershoot for different 
simplified models are given in Table 4 in the form of errors from 
those of the OLGA model.

The inverse response (overshoot) corresponds to the right-half-
plane zeroes near the imaginary axis, which are also given for 
Z1=5% in Table 4. Note that the poles and the zeroes are related 
to frequencies of the transfer functions (Laplace transform), which 
are complex numbers in general, and i in the table shows the imagi-
nary part.

Bifurcation Diagrams. Similar to the simulations shown in Fig. 
6, we simulate the models for different valve openings, covering the 
entire operational range of the valve, to obtain the bifurcation dia-
grams as shown in Fig. 8. Bifurcation diagrams demonstrate the tran-
sition from nonslug to slugging flow at the critical valve opening if 
the system is not controlled (i.e., when the valve opening is manually 
set to constant values). For Z1>5%, the steady-state (nonslug) flow 
regime shown by the central line does not exist normally, because it 
is an unstable equilibrium for the system, but it can be stabilized with 
feedback control [like an inverted pendulum, which is a standard ex-
ample in nonlinear control textbooks (e.g., Khalil 2002)]1. The non-
slug behavior of the new model and also the minimum and maximum 
of the oscillations are compared with those of the OLGA model in 
Fig. 8. To have a quantitative comparison, deviations of the different 
simplified models from the OLGA reference model for a fully open 
valve (Z1=100%) are summarized in Table 4. Among the simpli-
fied models, the new model retains the best fit to the bifurcation dia-
grams; the second-best fit was obtained with the Di Meglio model, 
as shown in Fig. 9.

Note that because we want to use control to avoid slugging, the 
nonslug behavior is much more important for control purposes than 
the minimum and maximum oscillatory (slugging) pressure values. 
Another analogy is riding a bicycle and the need to keep it upright 
(nonslug), which is otherwise a naturally unstable position. If the 
bicycle falls down to the ground (slug), it is too late to control it. 
Hence, a model for the fallen bicycle (slug) is not useful for control.

Comparison Summary. As seen in Table 4, there is a trade-off 
between model “complexity” and the number of tuning parameters 
used to match the actual process data. Here, the term complexity, as 
used in Table 4, is a somewhat fuzzy qualitative measure. Generally, 
models with a simple structure can achieve a good fit to complicated 
physical processes by excess use of fitting parameters. A good ex-
ample from the model-fitting literature is the work of Wei (1975), 
which shows that by use of many fitting parameters, one can fit a 
simple model to match the shape of an elephant.

Symbol Description Value 

Kh (–) Correction factor for the level of liquid 
in the pipeline 

0.700 

KG (–) Coefficient for gas flow through the 
low point 

3.87 10–2 

KL (–) Coefficient for liquid flow through the 
low point 

1.64 10–1 

Cv1 (m
2) Production choke valve constant 1.12 10–2 

Table 2—Tuning parameters for pipeline/riser model fitted to 
OLGA simulations. 

Symbol Description 
Values Found by Di 
Meglio Procedure 

Values Found by Trial 
and Error for Good Fit 

 (–) Split inflow of gas 1.82 10–2 3.50 10–1 

Veb (m
3) Volume of gas in the pipeline 1.25 101 1.16 101 

ml,still (kg) Still mass of liquid in riser 4.89 102 0 

Cg (–) Coefficient of gas flow through 
virtual valve 

2.57 10–5 2.57 10–5 

Cc (m
2) Production choke valve 

constant 
2.56 10–1 2.56 10–1 

Table 3—Tuning parameters for the model by Di Meglio et al. (2010). 

 

1This system has two equilibria: one stable equilibrium at θ=0° and one unstable 
equilibrium at θ=180°, where the pendulum is inverted.
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Here, simple models, such as those of Kaasa and Di Meglio, use 
seven and five tuning parameters, respectively, to get a good fit. 
However, finding the parameter values for these models is not easy 
and straightforward. The Nydal model and the Eikrem model (with 
three parameters) are also simple, but they are not able to match the 
OLGA simulations because of too few tuning parameters. The new 
model (with four parameters) is somewhat more complicated, but is 
able to give a reasonable match with relatively few tuning parame-
ters. Also, as opposed to the other simplified models, the new model 
does not require adjusting any physical property of the system, such 
as volume of gas in the pipeline.

The new model and the De Meglio model show similar accu-
racy in prediction of the steady state and the minimum and max-
imum values, but dynamically, the new model is closer to the 
OLGA simulations.

Comparison With Experiments. The experiments were performed 
on a laboratory setup for antislug control at the Chemical Engineering 
Department of the Norwegian University of Science and Technology. 
Fig. 10 shows a schematic of the laboratory setup. The pipeline and 
the riser are made from flexible pipes with a 2-cm inner diameter. 
The length of the pipeline is 4 m, and it is inclined with a 15° angle. 
The height of the riser is 3 m. A buffer tank is used to simulate the ef-
fect of a long pipe with the same volume, such that the total resulting 
length of pipe would be approximately 70 m. Other model constants 

are given in Table 5, and the four tuning parameters of the model 
fitted to the experiments are given in Table 6. The topside choke 
valve is used as the input for control. The separator pressure after the 
topside choke valve is nominally constant at atmospheric pressure. 
The feed into the pipeline is assumed to be at constant flow rates, 4 

Parameters 
OLGA 

Simulation 
Storkaas 

Model Eikrem Model Kaasa Model Nydal Model 
Di Meglio 

Model New Model 

State equations Many 
 

 

Model complexity Complicated Average Simple Very simple Average Simple Average 

Tuning parameters — 5 3 7 3 5 4 

Right-half-plane 
zeroes of Prt at Z = 
5% 

— 0.0146 0.006+0.005i 

0.006–0.005i 

— 0.0046 0.019+0.034i 

0.019–0.034i 

0.0413 

0.0126 

  

Values From OLGA Simulator Error of Simplified Models When Compared With OLGA 

Critical valve opening 5% 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Period (minutes) at Z 
= 5% 

15.6 0 (0%) 26.15 (168%) 0 (0%) 15.97 (102%) 0 (0%) 0 (0%) 

Step response of Prt        

Undershoot –0.098 0.10 (99%) 0.08 (78%) — 0.12 (89%) 0.07 (68%) 0.05 (54%) 

Overshoot 0.198 0.16 (80%) 0.18 (89%) — 0.10 (50%) 0.17 (84%) 0.10 (51%) 

At t = 10 minutes –0.824 0.43 (53%) 0.62 (75%) — 0.25 (30%) 0.47 (58%) 0.33 (41%) 

Steady state        

Pin (bar) 68.22 1.9 (2.7%) 4.4 (6.46%) — 1.77 (2.6%) 0.71 (1%) 0.21 (0.32%) 

Prb (bar) 66.76 — — 0.02 (0.04%) — — — 

Prt (bar) 50.10 0.01 (0.02%) 0.01 (0.02%) — 0.01 (0.02%) 0.01 (0.02%) 0.01 (0.02%) 

out (kg/s) 9.00 0 (0%) 0 (0%) — 2.90 (32%) 0 (0%) 0 (0%) 

Minimum        

Pin (bar) 63.50 2.7 (4.3%) 9 (14.2%) — 8.3 (13%) 2.6 (4.1%) 2.0 (3.1%) 

Prb (bar) 62.08 — — 2.57 (4.1%) — — — 

Prt (bar) 50.09 4 10–4  

(8 10–4%) 

5 10–4  

(9 10–4%) 

— 0.41 (0.82%) 0.003 (0.006%) 4 10–4  

(8 10–4%) 

out (kg/s) 0.791 0.55 (69%) 0.14 (17%) — 0.79 (100%) 3.3 (405%) 0.55 (69%) 

Maximum        

Pin (bar) 75.83 1.4 (1.8%) 1.89 (2.5%) — 1.00 (1.3%) 1.3 (1.7%) 1.9 (2.6%) 

Prb (bar) 74.55 — — 0.55 (0.075%) — — — 

Prt (bar) 50.14 1.5 (3%) 0.95 (1.9%) — 1.09 (2.2%) 0.71 (0.35%) 0.1 (0.2%) 

out (kg/s) 31.18 80 (278%) 57 (200%) — 13.3 (43%) 22 (77%) 2.0 (7.0%) 

Table 4—Comparison of different simplified models with the OLGA reference case. 
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Fig. 7—Response of pressure at the top of the riser to a step 
change in the valve opening from Z1=4% to Z1=4.2% for the 
OLGA reference model (dashed line) and the new model 
( solid line).
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Fig. 8—Bifurcation diagrams of new simplified pipeline/riser model (solid lines) compared with the OLGA reference model (dashed). 
At small valve openings (Z1<5%), there is no slugging. At large valve openings, slugging occurs and the two additional curves 
give the maximum and minimum of the oscillations. The intermediate steady-sate (i.e., nonslug) condition can be maintained with 
feedback control.
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Fig. 9—Bifurcation diagrams of Di Meglio pipeline/riser model (solid lines) compared with the OLGA reference model (dashed).
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L/min of water and 4.5 L/min of air. With these boundary conditions, 
the critical valve opening at which the system switches from stable 
(nonslug) to oscillatory (slug) flow is Z*

1=15%.  
In addition, we developed a new OLGA case with the same di-

mensions and boundary conditions as those of the experimental 
setup. The bifurcation diagrams are shown in Fig. 11, where the sim-
plified model (thin solid lines) is compared with the experiments 
(bold solid lines) and the OLGA model (dashed lines). In Fig, 11, the 
system has a stable (nonslug) flow when the topside valve opening 
Z1 is smaller than 15%, and it switches to slugging flow conditions 
for Z1>15%.

Well/Pipeline/Riser System
In the pipeline/riser model described in the preceding, constant gas- 
and liquid-flow rate were used as inlet boundary conditions. In order 

to study the effect the of pressure-induced (pressure-governed) in-
flow, which is more physically realistic, we add an oil well and 
 assume a constant reservoir pressure as the boundary condition (see 
Fig. 12).

Simplified Six-State Model. We add two state variables—the mass 
of gas and mass of liquid inside the oil well—to the pipeline/riser 
system in Eqs. 1a through 1d to obtain a six-state model. The two 
additional state equations are 

( )
( )

d
d 1
G w

r G wh

m
w w

t
η

η
⎛ ⎞

= −⎜ ⎟+⎝ ⎠
  ........................................(46)

and

( )
( )

d 1
d 1
L w

r L wh

m
w w

t η
⎛ ⎞

= −⎜ ⎟+⎝ ⎠
,  ........................................(47)

where η is the average mass ratio of gas and liquid produced from 
the reservoir, which is assumed to be a known parameter of the 
well. (wG)wh and (wL)wh are the mass-flow rates of gas and liquid 
at the wellhead. The production mass rate wr (kg/s) from the res-
ervoir to the well is assumed to be described by a linear inflow- 
performance relationship, 

( )resmax 0, hbIPrw C P P= − ,  ..............................................(48)
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Fig. 10—Experimental setup.

Symbol Description Value Unit 

µL Liquid viscosity 8.90 10–4 Pa·s 

µG Gas viscosity 1.81 10–5 Pa·s 

 Pipe roughness 1.00 10–6 m 

L Liquid density 1000 kg/m3 

MG Gas molecular weight 18 g  

Tp Pipeline temperature 288 K 

Vp Pipeline volume 0.0219 m3 

Dp Pipeline diameter 0.02 m 

Lp Pipeline length 69.71 m 

Tr Riser temperature 288 K 

Vr Riser volume 0.001 m3 

Dr Riser diameter 0.02 m 

Lr Riser length 3 m 

Lh Length of horizontal 
section 

0.2 m 

Ps Separator pressure 1.013 bar 

Table 5—Model constants for small-scale experimental setup. 

Symbol Description Value 

Kh (–) Correction factor for level of liquid in 
pipeline 

1.00 

KG (–) Coefficient for gas flow through low point 1.42 10–2 

KL (–) Coefficient for liquid flow through low point 1.90 10–1 

Cv1 (m
2) Production choke valve constant 2.39 10–4 

Table 6—Tuning parameters for pipeline/riser model fitted to 
experiments. 
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where CPI [kg/(s∙Pa)] is the mass productivity constant of the well; 
Pres is the reservoir pressure, which can be assumed constant in a 
short period of time (e.g., a few months); and Pbh is the flowing bot-
tomhole pressure of the well,

( )bh wh m w fw w
P P gL Pρ= + + Δ .  ......................................(49)

In Eq. 49, (ΔPf )w is the pressure loss because of friction in the 
well, which is assumed to be given as

( )
2

2
w m m ww w

f w
w

U L
P

D
λ ρ

Δ = .  ........................................(50)

We obtain λw, the friction factor for the flowing well, in the same 
manner as Eq. 26, except we replace subscript r with w (i.e., we sub-
stitute riser dimensions, mixture Reynolds number, and viscosity 
with parameters applicable to the wellbore). 

The average liquid volume fraction inside the well is 
( ) ,L L w Lww
m Vα ρ=  and the average mixture velocity in the 

 
well is

nom
2

4
m w

w m w

w
U

Dπ ρ
= ,  .......................................................(51)

Fig. 11—Bifurcation diagrams of simplified pipeline/riser model (thin solid lines) compared with experiments (thick red solid lines) 
and OLGA simulations (dashed blue lines).
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where nomw  is an a priori known nominal flow rate of the well, and 
the average density of the two-phase mixture is

( ) ( )G Lw w
m w

w

m m
V

ρ
+

. .......................................................(52)

The density of the gas phase in the well is

( )
( )

G w
G w

w L Lw

m
V m

ρ
ρ−

, .......................................................(53)

so the pressure at the wellhead, assuming ideal gas, becomes

( )G whw
wh

G

RT
P

M
ρ

=  , ..............................................................(54)

To calculate the liquid volume fractions at the top of the well, we use 
the same assumptions as those used for the phase fraction of the riser:

( ) ( )2L L L bwtw w
Kαα α α= − .  ..........................................(55)

In this case, because of the high pressure at the bottom of the hole, 
the fluid from the reservoir is saturated (Ahmed 2006) and the liquid 
volume fraction at the bottom is (αL)wb=1. K≈1 is a tuning param-

eter that can be used for model-fitting purposes. The gas mass frac-
tion at the top of the well is then

( )
( ) ( )

( ) ( ) ( )
1

1
L Gwt wm

G wt
L L L Gwt wt w

α ρ
α

α ρ α ρ

⎡ ⎤−⎣ ⎦=
⎡ ⎤+ −⎣ ⎦

.  .....................(56)

The density of the mixture at the top of the well is

( ) ( ) ( )1wt L L L G wtwtw
ρ α ρ α ρ⎡ ⎤= + −⎣ ⎦ .  .............................(57)

The mass-flow rate of the mixture at the wellhead is

( ) ( )ni22 max ,0wh v wt whw C f z P Pρ −= ,  .......................(58)

where Pin is the pressure at the inlet of the pipeline, which is given 
by Eq. 12 in the pipeline/riser model. The flow rates of gas and the 
liquid phases from the wellhead are as follows:

( ) ( )mG G whwh wt
w wα=   ..........................................................(59)

and

( ) ( )1 m
L G whwh wt
w wα⎡ ⎤= −⎣ ⎦ .  ................................................(60)

Flow rates of gas and liquid phases into the pipeline are, respectively,

( ) ( ) 1inG G whw w d= +   ..........................................................(61)

and

( ) ( ) 2inL L whw w d= + ,  .........................................................(62)

where d1 and d2 are assumed to represent disturbances on feed flow 
rates from the other production wells in the network. Usually, mul-
tiple production wells are connected to a subsea manifold, and their 
products are combined and transported through a shared pipeline. In 
this paper, we have considered only one oil well. This can be easily 
extended for multiple oil wells in a network. 

For the nominal case, d1 and d2 are zero. Generally, d1 and d2 
are zero-mean random variables and their maximum values are as-
sumed to be 10% of (wG)wh and (wL)wh, respectively. The role of the 
disturbances is very important when the model is used for control 
and optimization applications. The feedback controller and the opti-
mizer are usually designed on the basis of a nominal model (without 
disturbances), but they need to be robust against disturbances and 
model uncertainties.

Comparison With OLGA Simulations. In the OLGA reference-test 
case introduced previously, constant inflow rates were assumed. We 
modified the OLGA reference model by connecting an oil well to 
the inlet of the pipeline, as shown in Fig. 12. The oil well is vertical, 
has a depth of 3000 m, and it has the same inner diameter as for the 
pipeline (0.12 m). The reservoir pressure is constant at 230 bar. The 
parameters related to the pipeline and the riser are the same as those 
for the OLGA reference model. The constants related to the addi-
tional well section are given in Table 7.

The well/pipeline/riser model includes two additional tuning pa-
rameters: Cv2, the valve constant of the subsea choke valve, and K 
in Eq. 55. Hence, we have six tuning parameters in the simple well/
pipeline/riser model. Numerical values for the tuning parameters are 
given in Table 8. The resulting bifurcation diagrams of the simple 
model are compared with the modified OLGA model in Fig. 13. The 
simple model could predict the steady state and the bifurcation point 
with a good accuracy. Fig. 13b shows that the inlet mass flow is in-
creasing by opening the topside choke valve. This is because of the 
pressure-driven nature of the flow.

Fig. 12—Schematic of the well/pipeline/riser system.
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Symbol Description Value Unit 

Pres Reservoir pressure 320 bar 

CPI Mass productivity constant 2.75 10–6 kg/(s·Pa) 

nomw   Well nominal mass flow 9 kg/s 

 Mass gas/oil ratio 0.04 – 

Tw Well temperature 369 K 

Vw Well volume 33.93 m3 

Dw Well diameter 0.12 m 

Lw Well depth 3000 m 

 Well roughness 2.80 10–5 m 

Table 7—Model constants for well section. 
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Conclusions
In this paper, we have derived a new, simplified dynamic model for 
describing severe slugging in pipeline/riser systems. Importantly, the 
model also predicts the nonslug-flow regime, which exists at con-
ditions with large valve openings where slug flow occurs naturally. 
This nonslug regime can be obtained by applying feedback control 
only; for example, by adjusting the topside valve to control the riser-
bottom pressure (Fig. 1).

The model is based on simple mass balances for the riser and 
pipeline (Fig. 2) and results in four ordinary-differential equations. In 

addition, models are required for the pressure drop over the pipeline 
and inlet of the riser (frictional pressure drop), in the riser (gravity 
and frictional pressure drops), and for the valve at the top of the riser 
(frictional pressure drop). Further, we need to determine the flow 
conditions at the low point and the phase distribution at the top of 
the riser.

We have explained how the four adjustable parameters in this 
model can be obtained by matching results from the much-more-de-
tailed OLGA model (Table 2) or to experimental data (Table 6). For 
the OLGA pipeline/riser test case (Fig. 5), the agreement between the 
new simple model and the OLGA simulations is good (Figs. 7 and 8). 
The simple model also matches very well with the experimental re-
sults from a small-scale experimental rig (Figs. 10 and 11).

The new model incorporates features of several previously pub-
lished models, and we provide in Table 4 a detailed comparison 
with five other simplified models (the Storkaas, Eikrem, Kaasa, 
Nydal, and Di Meglio models). Our new model provides the best 
fit, especially when taking into account that it only contains four 
adjustable parameters. The second-best fit is obtained with the 
Di Meglio model. 

At the end of the paper, we show how the model can be easily 
extended to include other geometries—for example, with a well be-
fore the pipeline. In this case, we also obtain a very good match to 
OLGA simulations.

Fig. 13—Bifurcation diagrams of simplified well/pipeline/riser model (solid lines) compared with the OLGA reference model 
(dashed lines).
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Symbol Description Value 

Kh (–) Correction factor for level of liquid in 
pipeline 

0.60 

KG (–) Coefficient for gas flow through low point 3.49 10–2 

KL (–) Coefficient for liquid flow through low point 6.55 10–1 

Cv1 (m
2) Production choke valve constant 1.26 10–2 

K  (–) Liquid fraction correction factor 0.96 

Cv2 (m
2) Wellhead choke valve constant 3.30 10–3 

Table 8—Tuning parameters for well/pipeline/riser model fitted to 
OLGA simulations. 
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Nomenclature 
Constants.
 Ap = cross-sectional area of the pipeline, m2

 Ar = cross-sectional area of the riser, m2

 CPI = mass productivity constant, kg/(s∙Pa)
 Cv1 = production choke valve constant, m2

 Cv2 = wellhead choke valve constant, m2

 Dp = pipeline diameter, m
 Dr = riser diameter, m
 Dw = well diameter, m
 g = gravity, m/s2

 hd = opening of the pipeline at the riser base, m
 KG = coefficient for gas flow through the low point, –
 Kh = correction factor for level of liquid in pipeline, –
 KL = coefficient for liquid flow through the low point, –
 Kα = liquid fraction correction factor, –
 Lh = length of the horizontal section, m
 Lp = pipeline length, m
 Lr = riser length, m
 Lw = well depth, m
 MG = gas molecular weight, g
 Pres = reservoir pressure, bar
 Ps = separator pressure, bar
 Pset = pressure set point, Pa
 R = universal gas constant, J/(kmol∙K)
 Tp = pipeline temperature, K
 Tr = riser temperature, K
 Twh = well temperature, K
 Vp = pipeline volume, m3

 Vr = riser volume, m3

 Vw = well volume, m3

 (wG)in = inlet gas mass flow, kg/s
 (wL)in = inlet liquid mass flow, kg/s
 〈wnom〉 = well nominal mass flow, kg/s
 Z*

1 = critical value of the valve opening, %
 ε = pipe roughness, m
 η = gas/oil mass ratio, –
 μG = gas viscosity, Pa∙s
 μL = liquid viscosity, Pa∙s
 ρG = gas density, kg/m3

 ρL = liquid density, kg/m3

Variables.
 AG = free area for gas flow at the low point, m2

 AL = area for liquid flow at the low point, m2

 d1 = disturbance on inflow of gas to the pipeline, kg/s
 d2 = disturbance on inflow of liquid to the pipeline, kg/s
 h = level of liquid in the pipeline, m
 〈h〉 = average level of liquid at the low point, m
 (mG)p = mass of gas in the pipeline, kg
 (mG)r = mass of gas in the riser, kg
 (mG)w = mass of gas in the well, kg
 (mL)p = mass of liquid in the pipeline, kg
 (mL)r = mass of liquid in the riser, kg
 (mL)w = mass of liquid in the well, kg
 〈mL〉p = average mass of the liquid in the pipeline, kg
 (NRe)p = Reynolds number of flow in the pipeline, –
 (NRe)r = Reynolds number of flow in the riser, –
 Pbh = flowing bottomhole pressure, Pa
 Pin = pressure at the inlet of the pipeline, Pa
 Pin,nom = nominal (steady-state) pressure at the pipeline inlet, Pa
 Prt = pressure at the top of the riser, Pa
 Pwh = wellhead pressure, Pa
 qout = volumetric rate of outflow, m3/s
 Tc = oscillation frequency, minutes
 〈Um〉p = average mixture velocity in the pipeline, m/s
 〈Um〉r = average mixture velocity in the riser, m/s
 〈Um〉w = average mixture velocity in the well, m/s

 〈UsG〉p = average superficial velocity of gas in the pipeline, m/s
 〈UsG〉r = average superficial velocity of gas in the riser, m/s
 〈UsL〉p = average superficial velocity of liquid in the pipeline, 

m/s
 〈UsL〉r = average superficial velocity of liquid in the riser, m/s
 (VG)p = volume of gas in the pipeline, m3

 (VG)r = volume of gas in the riser, m3

 wout = mass-flow rate of outlet mixture, kg/s
 wr = production mass rate from the reservoir, kg/s 
 wwh = mass-flow rate of the mixture at the wellhead, kg/s
 (wG)out = mass-flow rate of outlet gas, kg/s
 (wG)rb = mass-flow rate of gas at the riser base, kg/s
 (wG)wh = mass-flow rate of gas at the wellhead, kg/s
 (wL)out = mass-flow rate of outlet liquid, kg/s
 (wL)rb = mass-flow rate of liquid at the riser base, kg/s
 (wL)wh = mass-flow rate of liquid at the wellhead, kg/s
 z1 = normalized valve opening, –
 Z = compressibility factor, –
 Z1 = choke valve opening, %
 αL = liquid volume fraction, m3/m3

 αm
L = liquid mass fraction, kg/kg

 (αL)rb = liquid volume fraction at the riser base, m3/m3

 (αL)rt = liquid volume fraction at the top of the riser, m3/m3

 (αL)wb = liquid volume fraction at the bottom of the well, m3/m3

 (αL)wt = liquid volume fraction at the top of the well, m3/m3

 〈αL〉p = average liquid volume fraction in the pipeline, m3/m3

 〈αL〉r = average liquid volume fraction in the riser, m3/m3

 〈αL〉w = average liquid volume fraction in the well, m3/m3

 〈αm
G〉wt = gas mass fraction at the top of the well, kg/kg

 〈αm
L〉rt = liquid mass fraction at the top of the riser, kg/kg

 〈αm
L〉p = average liquid mass fraction in the pipeline, kg/kg

 γ = coefficient used to fine tune the model, –
 (ΔPf)p = frictional pressure loss in the pipeline, Pa
 (ΔPf)r = frictional pressure loss in the riser, Pa
 (ΔPf)w = frictional pressure loss in the well, Pa
 ΔPG = differential pressure for gas flow at the riser base, Pa
 ΔPL = differential pressure for liquid flow at the riser base, Pa 
 λp = riction factor in the pipeline, –
 λr = friction factor in the riser, –
 λw = friction factor in the well, –
 〈μm〉p = average mixture viscosity in the pipeline, Pa∙s
 〈μm〉r = average mixture viscosity in the riser, Pa∙s
  (ρG)p = gas density in the pipeline, kg/m3

 (ρG)r = gas density in the riser, kg/m3

 (ρG)w = gas density in the well, kg/m3

 〈ρG〉p = average gas density in the pipeline, kg/m3

 〈ρm〉p = average mixture density in the pipeline, kg/m3

 〈ρm〉r = average mixture density inside the riser, kg/m3

 〈ρm〉w = average mixture density in the well, kg/m3

 ρrt = mixture density at the top of the riser, kg/m3

 ρwt = mixture density at the top of the well, kg/m3

 ωc = critical frequency of slugging oscillations, s–1
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