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Abstract

In this paper, we apply the self-optimizing control ideas to find optimal
controlled variables in the regulatory layer. The regulatory layer is designed
to facilitate stable operation, to regulate and to keep the operation in the
linear operating range. Its performance is here quantified using the state
drift criterion and the method is evaluated on two distillation column case
studies with one, two or more closed loops.
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1. Introduction

The plantwide control system for the overall plant is in most cases orga-
nized in a hierarchical structure (Figure 1), based on time scale separation
between the layers. As shown in Figure 1, the control layer is usually divided
in two parts; a supervisory (economic) layer and a faster regulatory (stabi-
lization) layer. One may question the division of the control layer into two
layers, but this paradigm is widely used and is the basis for this paper. The
main justification is that the two tasks of regulation and economically opti-
mal operation are fundamentally different. Of course, a single multivariable
controller (e.g. using MPC with no lower-layer PID controllers) would be
optimal from a theoretical point of view, but one would then need to include
also regulatory objectives into the MPC design, so tuning would become
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Figure 1: Control system hierarchy for plantwide control in chemical plants [1]
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more difficult. The use of single multivariable controller would also require
detailed models of all the dynamic interactions, whereas the PID controllers
used in the regulatory layer may be designed based on much simpler models.
In summary, trying to do both regulation and economic optimal operation at
the same time is much more complex, both in terms of modeling and tuning,
whereas it usually has limited performance benefit.

For both control layers, a key decision is the selection of the controlled
variables, CV1 and CV2 in Figure 1. The controlled variables are usually a
subset or combination of the measurements y, and we can write CV1 = H1y
and CV2 = H2y, where H1 and H2 are real-valued non-square matrices.

The supervisory or “advanced” control layer (often implemented using
MPC) controls the primary (economic) variables CV1 at their set points on
a long time scale. The variables CV1 should be selected such that when they
are kept constant and there are disturbances, the economic cost J1 remains
close to the truly optimal; this is the idea of self-optimizing control [2]. It is
usually straightforward to define the economic cost, and typically we have

J1 = feed cost+ utilities cost− products value [$/s] (1)

In process control, the economic cost J1 is often dictated mainly by the
steady-state behavior, so a steady-state analysis may often be used when
selecting the variables CV1. Note that it is the selection of controlled variables
(matrix H1) for the supervisory layer which is based on the economic cost
J1; the objective (cost) function for designing the supervisory controller (e.g.
MPC) itself is different, typically it is to track the set points CV1s while
avoiding excessive input changes and satisfying constraints.

The regulatory or “basic” control layer (usually implemented using PID
controllers) controls the secondary variables CV2 = H2y, which are kept
constant on an intermediate time scale. The real-valued non-square matrix
H2 is often a selection matrix (consisting of 1’s and 0’s), but in this paper
we consider the more general case where we also allow for H2 to be a linear
combination matrix of the measurements y. However, to avoid undesirable
combinations, we may impose limitations on the structure of H2.

Note that we do not “use up” any degrees of freedom in the regulatory
layer because the set points CV2s are left as manipulated variables (MVs)
for the supervisory layer (see Figure 1). Furthermore, since the set points
CV2s are set by the supervisory layer in a cascade manner (Figure 1), the
system approaches on a long time scale the same steady-state (as defined
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by the choice of economic variables CV1) irrespective of the choice of CV2

in the regulatory layer. However, this does not mean that the choice of
the variables CV2 is unimportant, because it determines the system’s initial
response to disturbances (on a faster time scale). By allowing for cascade
loops, the stabilization layer may in theory be designed independently of the
supervisory (economic) control layer. However, when closing a stabilizing
loop, we do “use up” some of the time window as given by the closed-loop
response time (bandwidth) of the stabilizing loop. In addition, cascade loops
add complexity. We should therefore try to simplify and reduce the use of
cascade loops.

Ideally, we would like to have a tool that based on a process model,
automatically selects the optimal structure of the regulatory control layer.
This is a very difficult problem, both in terms of problem definition and
solution. As a starting point, we first need to consider the objectives of the
regulatory control layer. A list of nine objectives are given in Table 1 [1] and
four additional objectives are:

O10. The variables CV2 controlled in the regulatory layer, should be eas-
ily measurable and “robust” (e.g. composition measurements should
typically be avoided).

O11. The regulatory layer should be simple.

O12. The regulatory layer should contribute to the overall operational ob-
jective as defined by the economic cost J1, that is, it should contribute
to good control of the economic variables CV1 on the fast time scale,
whenever necessary.

O13. The regulatory layer should preferably not be changed during opera-
tion.

This is only a partial list and one may easily add more objectives, like
specifying robustness margins (gain margin, phase margin) to cope with vari-
ations and uncertainty.

To have a systematic approach to regulatory layer design, we would need
to quantify these partially conflicting objectives in terms of a scalar cost func-
tion J2. This is very difficult because the various objectives are difficult to
quantify in terms of a single measure, like money. The intended contribution
of this paper is therefore not find the “optimal” regulatory control layer, but
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to develop a computationally tractable tool that can assist the designer, and
to do this we need to define an appropriate cost function J2.

One obvious choice, according to objective O12, is to select the variables
CV2 so that we get good control of the economic variables CV1, that is, select
J2 = ‖CV1‖, where the norm may measure the control error for CV1 in the
time or frequency domain. This is the “indirect control” problem (e.g. [3]).
However, we cannot usually simply select CV2 = CV1, because the variables
CV1 may not be easily measurable (objective O10) and we want to avoid
closing too many regulatory loops (O11).

In this paper, we consider a more general objectives, namely the weighted
state drift away from the nominal operating point,

J2 = ‖Wx‖2
2

(2)

Here, W is a weighting matrix and x are the states, which describe the system
behavior. The indirect control can be included in (2) by selecting part of the
weight matrix W such that Wx = CV1, so the formulation in (2) is quite
flexible. More precisely in (2), we should write ∆x, because x denotes the
deviation from the nominal value of the state, but we usually drop the ∆ to
simplify notation. Wx is a vector, which generally is a function of time or
frequency. Many norms may be used, but we will consider the 2-norm where
x(jω) is evaluated at a selected frequency ω. We will in the application
consider steady-state, ω = 0.

The problem studied in this paper is to find the controlled variables CV2 =
H2y that minimize the cost J2 in (2) for the expected disturbances and
measurement noise. To avoid the need to design the controller and select
pairings, we assume that the variables CV2 are “perfectly” controlled. Since
the regulatory control system is the fastest control layer, this assumption will
hold well when viewed from the slower supervisory control later. A simplified
steady-state version of this problem, without measurement noise, has been
considered previously [1, 3]. The approach presented in this paper is much
more practically useful, as it includes measurement noise and also allows us
to control individual measurements in CV2 and not only combination. It
also allows us to preselect variables in CV2 and to study the effect of the
number of loops closed. The numerical problem to be solved is convex and
thus numerically tractable and efficient.

Traditionally, the regulatory layer decisions are based on heuristic meth-
ods using process insight (e.g., [4] and references therein). Typical variables
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Table 1: Objectives of regulatory control layer [1]

O1. Provide sufficient quality of control to enable a trained operator to keep
the plant running safely without use of the higher layers in the control
system.

O2. Allow for simple decentralized (local) controllers (in the regulatory
layer) that can be tuned on-line.

O3. Take care of “fast” control, such that acceptable control is achievable
using “slow” control in the layer above.

O4. Track the set points (CV2s) set by the higher layers in the control
hierarchy.

O5. Provide for local disturbance rejection.

O6. Stabilize the plant (in the mathematical sense of shifting RHP-poles to
the LHP).

O7. Avoid “drift” so that the system stays within its “linear region” which
allows the use of linear controllers.

O8. Make it possible to use simple (at least in terms of dynamics) models
in the higher layers.

O9. Do not introduce unnecessary performance limitations for the supervi-
sory control problem.
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that are selected for control (CV2) are inventories such as liquid levels, and
other “sensitive” variables such as selected accumulating components, pres-
sures and certain temperatures. All of these variables are related to the
“drift” in the process and thus may be captured with the state drift criterion
in (2).

The rest of the paper is organized as follows: Section 2 defines the problem
for optimal regulatory layer selection. Section 3 shows the application of
self-optimizing control ideas to state drift and various cases to find optimal
H2 are described. Section 4 applies the method to a distillation column
case study with 41 stages to find the regulatory layer with optimal CV2

as individual/combinations of measurements. The dynamic simulations in
Section 5 are included to describe the ease of implementing the controlled
variables in practice. Section 6 presents a Kaibel column case study with 71
stages. In Section 7, we discuss the alternative approach of finding a single
controller and also provide a summary of our method where we assume two
control layers. The conclusions are given in Section 8.

2. Minimization of state drift (Problem definition)

2.1. Regulatory layer

In general, the design of the regulatory layer involves the following deci-
sions:

1. Selection of outputs y2

2. Selection of inputs u2 to control these outputs

3. Pairing of inputs and outputs (since decentralized control is normally
used)

4. Controller design (normally PID controllers)

In this paper, we focus on the first two decisions, which can be combined
into a single decision by defining

CV2 =

[

y2

u1

]

(3)

where u1 denotes the inputs that are not used by the regulatory control
layer. Note that specifying u1 will indirectly determine the inputs u2 used
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to control y2. This is because we here assume that the number of variables
to be selected in CV2 is equal to number of physical (dynamic) degrees of

freedom (denoted u0), that is, u0 =

[

u1

u2

]

, where u0 is a given set.

The cost function J2 = ‖Wx‖2
2
in (2) may include weights on the internal

states x of the system, for example, to limit the drift away from its steady
state (objective O7). The “indirect control” problem (objective O12) can
be included in (2) by selecting W such that Wx = CV1. However, the
economically optimal controlled variables (CV1) may change during operation
(e.g., change in active constraint), whereas we we want the regulatory layer to
remain unchanged (objective O13). The cost function J2 in (2) is flexible in
this respect, and it allows us to include more control variables than there are
degrees of freedom, so that many variables are controlled acceptably. This
is related to the “partial control” idea, where we control only a subset of
the process variables [5, 6], but we nevertheless aim at achieving acceptable
control also of other important variables.

An alternative and more direct way of including economics into the regu-
latory layer (objective O12), is to specify that some of the variables in CV1,
typically active constraints which may require tight control to reduce the
“backoff”, should be included in the set CV2 in (3); this may be done in the
present approach by preselecting parts of H2.

Another objective is that the regulatory layer should be “simple”(O9).
One reason is that regulatory control system implies cascaded loops, which
adds complexity. In this paper, we quantify this objective by the number of
regulatory loops closed, that is, simplicity means that we want to maximize
the number of unused inputs (u1) when we select CV2 in (3).

2.2. Classification of variables

• x: States (usually deviation variables)

• Wx: Weighted states, which characterize the desired behavior of the
regulatory control system, e.g. the drift of the system away from its
steady state.

• u0: Set of nu0
physical degrees of freedom (inputs, manipulated vari-

ables (MVs)), which may or may not be used in the regulatory layer.

We write u0 =

[

u1

u2

]

, where u1 denotes the inputs not used in the
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regulatory layer and u2 the remaining inputs which are manipulated
by the regulatory layer. For example, for a distillation columns with
given feed and given pressure, the physical degrees of freedom are the
two product flows (D,B) plus the reflux (L) and boilup (V), that is
u0 = {L, V,D,B}.

• u: Set of nu independent variables (“inputs”) used when solving the
regulatory layer problem.

Note 1: In our approach, it does not really matter what the variables u
are as long as they form an independent set, e.g. one may close loops
and instead introduce the new set points as the variables u. The reason
is that we assume perfect control of the selected controlled variables and
closing lower-level loops will not change the problem.

Note 2: One may select u = u0, but this is not required. In particular,
at steady state there may be degrees of freedom with no steady-state
effect and these may be eliminated (i.e., nu < nu0

) to simplify the
problem.

• ym: Set of measurements in regulatory control layer (in addition to
measured or known values of u0).

• y =

[

ym

u0

]

: Combined set of measurements and physical inputs that

we consider as candidates for including in CV2 = c = H2y.

• d: Set of disturbances considered for the regulatory control layer prob-
lem.

• c = CV2 = H2y: Selected set of nc = nu independent controlled
variables in the regulatory layer. The selection or combination matrix
H2 is here assumed to a constant real-valued matrix.

Note 3: Since nc = nu the specification of c will uniquely determine u.

Note 4: Since u0 is included in the candidate set y, controlling c =
H2y also includes the possibility for open-loop and partially controlled

systems. To show this more explicitly we may write c = CV2 =

[

y2

u1

]

(see (3)), where y2 denotes the variables that are actually controlled in
the regulatory layer and u1 denotes the “unused” inputs.
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2.3. Assumptions

• A linear model is used to represent the nominal operating point. This
model may at each frequency ω be written

x = Gx(jω)u+Gx
d(jω)d (4a)

y = Gy(jω)u+Gy
d(jω)d+ ny (4b)

where Gx(jω),Gx
d(jω) and Gy(jω),Gy

d(jω) are frequency-dependent
gain matrices.

• To avoid the need to explicitly design the controller, we assume that the
selected variables in c are perfectly controlled at the frequency ω, i.e.
c(jω) = 0. At steady state (ω = 0) this is not a limitation since perfect
control can always be achieved by using integral action, provided the
system is operable in the first place. At other frequencies, we may
assume perfect control, but the feasibility of this, including closed-loop
stability, then assumes that there are no controllability limitations at
this frequency, e.g. caused by an effective time delay.

• Unstable and integrating modes should be stabilized using any stabi-
lizing controller before performing the selection of CV2. This may seem
to be a severe restriction, but actually it does not affect our problem if
the set points for the stabilizing controllers are introduced as degrees
of freedom (in u). This is related to the perfect control assumption in
Note 2.

2.4. Problem formulation

The objective is to find what to control in the stabilizing layer,

CV2 = c = H2y (5)

given that we want to minimize the weighted state drift J2 in (2) for the
expected disturbances (d) and implementation error (measurement noise,
ny), and that we want to close k loops, ∀k = 1, 2, . . . , nu. This is explored in
more detail next.

In the frequency domain, the problem can be stated as follows (Figure
2): Assuming perfect control of the selected c (5), i.e. c(jω) = 0, we want
to find the optimal H2 that minimizes J2(x(jω)) for a given frequency range
ω ∈ [ωB1

, ωB2
], when there are disturbances. In the rest of this paper, we
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Figure 2: Regulatory control layer with control of variables c = H2y

consider steady state only (ωB1
= ωB2

= 0), but more generally it will be the
frequency range over which we need regulatory control.

We use the self-optimizing control concepts [2, 7] and we consider min-
imization of the loss rather than the cost, because loss minimization can
be formulated as a convex optimization problem in H2 [8]. The loss is
L = J2 − J2,opt(d), where J2,opt(d) is the minimum state drift achievable
with the given degrees of freedom. In our case, this gives the same optimal
H2 as minimizing the cost J2, because minimizing the state drift loss L on
an average basis, e.g. using the Frobenius norm, is exactly the same as min-
imizing the cost J2. In Figure 2, K(s) is the regulatory controller, but since
we make the assumption of perfect control (c(jω) = 0), it does not actually
matter what K(s) is. Our task is to select what to control, c = H2y, where
H2 is a constant real matrix.

We want to close as few loops as possible, that is we want to select in
c = H2y as many variables as possible from the set u0 of physical degrees of
freedom (valves). Let

H2 = [Hy Hu]

c = H2y = Hyym +Huu0

(6)

and we want to find the best controlled variables for various possibilities for
closing loops

• Close 0 loops: In the set c, select nc variables from the set u0 (Hy = 0,
where 0 is a zero matrix, nc columns in Hu are nonzero)
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• Close 1 loop : In the set c, select nc − 1 variables from the set u0 (one
column in Hy is nonzero, the rest are zero)

• Close 2 loops : In the set c, select nc−2 variables from the set u0 (two
columns in Hy are nonzero, the rest are zero)

• Close k loops : In the set c, select nu − k variables from the set u0

• Close all nc loops: In the set c, select 0 variables from the set u0

In addition, we can have restrictions on the set c such as selecting only single
measurements (each column in H2 containing one 1 and the rest 0’s).

We can make use of mixed integer quadratic programming methods [9]
or partial branch and bound methods [10] to find the optimal H2 to arrive
at optimal regulatory layer with 1, 2 or more closed loops.

2.5. Selection of the base variables u

We mentioned in Note 1 that it does not really matter what the “base”
variables u are as long as they form an independent set. Mathematically, the
requirement of an independent set is that rank(H2G

y) = nc, so that H2G
y is

invertible. It may seem surprising that it does not matter what the variables
are, and this is because we consider the frequency domain and assume perfect
control at a given frequency ω, c(jω) = 0. With given c(jω) and given d, all
other variables are then uniquely determined, including u(jω).

To show this, let the linear model for the effect of u and d on the selected
states x and y be

y = Gyu+Gy
dd (7a)

x = Gxu+Gx
dd (7b)

c = H2y (7c)

with the c = 0 we find u = −(H2G
y)−1(H2G

y
d)d and with this input the

states are
x = Pdd (7d)

where Pd = (Gx
d −Gx(H2G

y)−1H2G
y
d). With d given and c = 0, u and x

are uniquely determined, so Pd is independent of the choice for u. However,
we note that we must select u so that H2G

y is invertible.
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2.6. Stabilization of integrators (levels)

As mentioned, any integrating modes, for example caused by liquid levels,
need to be stabilized. For example, one may use u = k(y − ys), where y is
integrating mode (e.g. liquid level) and k is proportional controller gain, and
the set points ys (e.g, level set points) are then chosen as the new independent
variable in the set u.

Importantly, for many liquid levels, the set point ys may have no steady-
state effect and we may use this to reduce the number of independent vari-
ables in u. Formally, we may view this as including the liquid levels in the set
CV2 of regulatory control variables, and we then have fewer degrees of free-
dom left in u. For example, a distillation column with the LV-configuration
has u0 = {L, V,D,B} and by controlling the two liquid levels, we have two
remaining degrees of freedom which we may select as u = {L, V }. One may
use the steady-state model to obtain the linearized effect of u and the d on
the original degrees of freedom in u0. This is explained in more detail in the
distillation column case study.

3. Minimizing the state drift (optimal H2)

Assume we want to find the matrix H2 that minimizes at a given fre-
quency the state drift, J2 = ‖Wx‖2

2
, where x is the deviation of states from

the desired operating point andW is a weighting matrix selected by the user.

3.1. Finding optimal H2 for case with no noise (Previous work)[1, 11]

The optimal choice for H2 that counteracts the effect of disturbances on
J2, in the absence of measurement noise (ny), when the number of measure-
ments ny ≥ nu + nd is [1, 11]

H2 = (WGx)T [WGx WGx
d] [G

y Gy
d]

†
(8)

where W is state weighting matrix and † represents the pseudo inverse of
the matrix.

In the following, we use newer results from self-optimizing control [8, 9,
10, 12] to generalize (8). This generalization includes measurement noise and
eliminates the requirement ny ≥ nu + nd and allows for CV2 as individual
measurements and not only combinations.
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3.2. Loss as a function of d, ny and control policy H2

To include measurement noise, we need to quantify its expected magni-
tude. Let the linear model be

y = Gyu+Gy
dWdd

′ +Wnn
y′ (9a)

x = Gxu+Gx
dWdd

′ (9b)

c = H2y (9c)

where the usually diagonal matrices Wd and Wn represent the magnitudes
of disturbances and measurement noises, and d′, ny′ denote normalized dis-
turbances and noises.

The average or expected loss resulting from keeping (5) at a constant set

point for a normal distributed set

[

d′

ny′

]

∈ N (0, 1) is given by [12, 8]

Lavg = E(L) =
1

2
‖M2‖

2

F (10)

where
M2(H2) = J

1/2
2uu

(H2G
y)−1H2Y2 (11)

Y2 = [F2Wd Wn] ; F2 =
∂yopt

∂d
= GyJ−1

2uu
J2ud

−Gy
d (12)

where J2uu , ∂2J2
∂u2 = 2GxTWTWGx,J2ud

, ∂2J2
∂u∂d

= 2GxTWTWGx
d, ‖M2‖F =

√

∑

i,j M2
2

ij denotes the frobenius norm of the matrix M2.

3.3. Optimal full H2

Finding the optimal H2 in (10) is a convex optimization problem for the
case where H2 is a full matrix [8, 9]. For the case when Y2Y

T
2
is a full rank

matrix, an analytical solution for H2 is [8]

H2
T =

(

Y2Y2
T
)−1

Gy
(

GyT
(

Y2Y2
T
)−1

Gy
)−1

J
1/2
2uu

(13)

However, when H2 has a particular structure, the loss minimization (10)
for H2 is a non-convex optimization problem [13].
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3.4. Optimal H2 with CV2 as individual measurements

The optimal H2 with CV2 as individual measurements, e.g.

H2 =

[

0 1 0 0 0 0
0 0 0 0 1 0

]

, gives an MIQP that require us to solve a convex

QP at each node. This is because we may use a “trick” where H2 is full in
the selected measurements [9].

For a system where nu < nu0
(like the distillation example with nu = nc =

2 and nu0
= 4), the regulatory layer with 0 loops closed is such a problem and

with nu0
inputs and nu steady state degrees of freedom, we need to explore

(

nu0

nc

)

possibilities. The control problem with 1 closed loop is to find (6)
with one column in Hy nonzero and nc − 1 columns in Hu nonzero, and we
need to explore

(

nu0
nc−1

)(

ny

1

)

possibilities. The control problem with 2 closed
loops is to find (6) with two columns in Hy nonzero and nc − 2 columns in
Hu nonzero, and we need to explore

(

nu0
nc−2

)(

ny

2

)

possibilities. The regulatory
layer with k closed loops is to find (6) with k columns in Hy nonzero and
nc−k columns inHu nonzero, and we need to explore

(

nu0

nc−k

)(

ny

k

)

possibilities.
The regulatory layer with nc closed loops is to find (6) with nc columns in
Hy nonzero, and we need to explore

(

ny

nu

)

possibilities. The total possibilities

are
(

nu0
nc

)

+
(

nu0
nc−1

)(

ny

1

)

+
(

nu0
nc−2

)(

ny

2

)

+ · · ·+
(

nu0

nc−k

)(

ny

k

)

+ · · ·+
(

ny

nc

)

. For a case
with nu0

= 4, nu = nc = 2, and ny = 41, the total possibilities are 990.
In the regulatory layer with i loops closed require us solve (10) to find

the best CV using mixed integer quadratic programming (MIQP) [9]. Hence,
the regulatory layer with 0, 1, 2 and more closed loops can be obtained by
solving (nu + 1) mixed integer quadratic programming problems. For exam-
ple, for a case with nu0

= 4, nu = 2, and ny = 45, the total MIQP problems
that need to be solved are 3. Even though the number of MIQP problems
need to be solved increase with nu, the regulatory layer selection problem is
tractable as it is an offline method. Later, depending on the allowable state
drift threshold (typically ten times the J2,opt) set by the user, the minimum
regulatory layer is obtained. Generally, in the regulatory layer, CV2 are in-
dividual measurements, if the state drift loss is very large then CV2 can be
selected as measurement combination.

3.5. Optimal H2 for partial control with CV2 as measurement combinations

We now consider the partial regulatory control problem where we allow
for measurement combination for the controlled variables in CV2. This can be
viewed as solving (10) with a particular structure in H2, which is generally
a non-convex problem. For example, a partially controlled system with 3
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process measurements and 2 inputs, resulting in 5 candidate measurements
in y, is

H2 =

[

h11 h12 h13 0 0
0 0 0 0 1

]

or H2 =

[

h11 h12 h13 0 0
0 0 0 1 0

]

(14)

To solve (10) with this particular structure, we propose a two step ap-
proach which may not be optimal but which is convex. The first step is
to partition the system inputs into two sets u1 and u2 (u0 = {u1 ∪ u2})
where we keep the inputs in the set u2 ∈ u0 constant. The matrix for
such a partial control system Gy,partial ∈ R

ny×nu1 is obtained by picking the
columns associated to input set u1 and Jpartial

uu,x ∈ R
nu1

×nu1 , Jpartial
ud,x ∈ R

nu1
×nd

has elements associated to the inputs in the input set u1. The disturbance
gain matrix Gy

d ∈ R
ny×nd, disturbance magnitude matrix Wd ∈ R

nd×nd and
measurement noise magnitude matrix Wn ∈ R

ny×ny will remain the same.
The second step is to solve (10) with the matrices obtained in the first step
as a convex optimization problem [9] to obtain Hpartial

2
as a full matrix for

the partially controlled system. For a case with nu inputs, there are totally
2nu − 2 partially controlled systems.

As u2 ∈ u0 varies in each partial controlled system, we cannot directly
compare the losses obtained from different partial control systems. Hence, in
order to compare the losses on an equivalent basis, the loss value is calculated
for the full system with the optimal controlled variables CV partial

2
obtained

for the partially controlled system and the constant inputs in u2 as the other
CV2.

4. Distillation column case study

The main purpose of this case study is to illustrate the proposed methods
on a binary distillation column with 41 stages where we want to choose
best temperature loop(s) to minimize state drift. The state drift J2 in the
compositions on all 41 stages is

J2 = ‖Wx‖2
2

(15)

where we select W = I
41×41 (identity matrix) to have equal weights on the

mole fraction x. The original problem has four physical inputs (u0), but we
need to control the two liquid levels (MD,MB) which need to be included
as regulatory controlled variables CV2. The remaining problem has only
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two degrees of freedom (u). The analysis is based on the LV-configuration
[14, 15], where distillate flow (D) and bottoms flow (B) are used to control the
integrating levels (MD,MB) and reflux (L) and boilup (V) are the remaining
steady-state degrees of freedom (u) (Figure 3). However, note that we would
obtain identical results if we started with another configuration, e.g. the
DV-configuration.

The considered disturbances are in feed flow rate (F ), feed composition
(zF ) and feed liquid fraction (qF ), which can vary between 1± 0.2, 0.5± 0.1
and 1± 0.1, respectively. In summary, we have

u0 =









L
V
D
B









, u =

(

L
V

)

, d =





F
zF
qF



 , ym =











T1

T2

...
T41











We consider a binary mixture with constant relative volatility α between
the components, constant pressure, negligible vapour hold up, equilibrium on
each stage and constant molar flows. The column has 41 stages and the feed
enters on stage 21. At the steady state operating point, L = 2.706 mol/min,
V = 3.206 mol/min, F = 1 mol/min, zF = 0.5, qF = 1, α = 1.5, xD = 0.99,
xB = 0.01. The boiling points difference between the light key component
(L) and heavy key component (H) is 13.5 oC. For simplicity, the temper-
ature Ti(

oC) on each stage i is calculated as a linear function of the liquid
composition xi [14]

Ti = 0xi + 13.5(1− xi) (16)

The 41 stage temperatures (ym) and the manipulated input flows u0 =
{L, V,D,B} are taken as candidate measurements. The measurement er-
ror for temperatures is ±0.5oC and it is ±10% for the flows. The linearized
relationship between the two base degrees of freedom u and the four physical
degrees of freedom u0 can be obtained based on steady state mass balances
(see Appendix A)

u0 = Gu+Gdd (17)

where

G =









1 0
0 1
−1 1
1 −1









, Gd =









0 0 0
0 0 0
0 0 −1
1 0 1








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T1, T2, T3,…, T41

Tray temperatures
qF

Figure 3: Distillation column using LV-configuration

4.1. Justification for considering steady-state state drift

The frequency dependency of J2(jω) = ‖Wx(jω)‖2
2
for the distillation

column in LV-configuration (see Figure 3) is given in Figure 4. In Figure 4,
the solid red curve (k = 0) gives the expected state drift J2 as a function of
frequency with no composition or temperature control (L and V constant)
for combined disturbances in feed rate (F), feed composition (zF ) and feed
liquid fraction (qF ). The other curves show the effect when boil-up V is used
for temperature control

V = V0 + k(y − y0) (18)

for increasing value of the controller gain k. L remains constant. As k
increases, we get tight control of y, temperature on stage 12, and the value
of k = 10 gives close to “perfect control”, where y(jω) = 0.

From Figure 4, it is clear that for a given controller gain k, the state drift
is almost constant over the frequency band from 0.0001 to 0.02 rad/min.
Also note that the state drift is reduced by a factor 27 (from 12 to 0.45) by
closing the temperature loop. We conclude that for this example, a steady
state analysis for state drift alone would be sufficient.

More generally, in process control J2 = ‖Wx(jω)‖2
2
as a function of
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Figure 4: State drift J2 for distillation column as a function of temperature controller gain
k

frequency is often flat at lower frequencies and drops at higher frequencies
similar to Figure 4, which means that we often get very good results by
considering steady state (ω = 0). If J2 has a higher peak at a different
frequency, then the methods of this paper can be used to find optimal CV2

to minimize the state drift by considering the frequency corresponding to the
peak.

4.2. Selection of controlled variables, CV2

The distillation column case study has nu0
= 4 physical inputs, but since

we have already decided to control MD and MB in the regulatory layer,
we have nu = 2 steady state degrees of freedom and ny = 45 candidate
measurements. For each i closed loops we need to solve an MIQP. With single
measurements in CV2 with 0, 1 and 2 closed loops, there are nu+1 = 3 MIQP
problems. The MIQP problems are solved using IBM ILOG CPLEX solver
in Matlab R©R2009a on a Windows XP SP2 notebook with Intel R©CoreTM

Duo Processor T7250 (2.00 GHz, 2M Cache, 800 MHz FSB). The QP that
needs to be solved at each node in MIQP is convex and the initial conditions
do not play any role.
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The presence of integrating modes requires that we first close two loops
for integrating levels (MD,MB). Next, in addition to these, we want to close
loops to minimize the state drift. In general, the loss decreases as we close
more loops, but for simplicity we want to close as few loops as possible in
the regulatory layer, that is we want to select in y as many variables as
possible from the set u0. This is a multi-objective problem involving a trade-
off between the loss (magnitude of the state drift) and the number of loops
closed. There is no simple mathematical solution to such problems, so the
best is to provide the results and let the engineer make the decision. The
loss with 0 loops closed (2 flows from u0 are constant), 1 loop closed (one
flow from u0 is constant), 2 loops closed (no flows from u0 are constant) are
tabulated in Table 2 (upper part with 2 measurements used). From Table
2, the best system with zero temperature loops closed (that is with only
liquid level loops closed) is to keep {V,B} constant, with a loss 109.669.
However, this loss is not acceptable from operation point of view. We see
from Table 2, closing a single temperature loop reduces the loss by almost a
factor 1000. The best single temperature loop policy is to keep L constant
and control tray temperature T18 with a lower loss of 0.188. The best policy
with two temperature loops is to control tray temperatures T15 and T27 with
a loss of 0.026. This should be compared with the minimal achievable state
drift of 0.0204 obtained when allowing for measurement combinations. The
loss reduction by closing one loop is very large (from 109.7 to 0.188), but
the further reduction by closing two loops (from 0.188 to 0.026) may not
be sufficient from a state drift J2 (regulatory) point of view. This is further
illustrated by comparing the composition state drift profiles with an optimal,
zero-loop, one-loop and two-loop policies are shown in Figure 5 (a), (b), (c)
and (d) in the presence of disturbances F, zF , qF , respectively. Note that the
comparison with zero loop closed is out of bound for the feed rate disturbance
and also note that the contribution of one measurement noise with green +
is included in Figure 5 (b),(c) and (d).

We next study the effect of using temperature measurement combinations.
For the distillation case study, we have nu = 2 and the number of partial
control systems are 2nu − 2 = 2 for each additional measurement and require
us to solve 2nu−2 = 2 more MIQP problems. The optimal CV2 for the partial
control systems with CV2 as combination of 3, 4, 5 and 41 measurements
while closing 1, 2 loops are also tabulated in Table 2. The reduction in
loss with the number of measurements, when one loop, two loops are closed
is shown as a bar chart in Figure 6. The reduction in loss when we use
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Figure 5: Distillation column state drift in the presence of disturbances F,zF , qF : (a)
Optimal policy (minimum achievable state drift), (b) Optimal zero-loop policy, (c) Optimal
one-loop policy, (d) Optimal two-loop policy. The effect of a measurement noise on state
drift is shown with green + in subplots (b),(c) and (d)
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Figure 6: Distillation case study: The reduction in loss in state drift vs number of used
measurements, Top: Loss with one loop closed, Bottom : Loss with two loops closed

.

more number of measurements for CV2 in two closed loops is higher than
that with one closed loop. From Table 2, the best single loop control CV2

with 3 measurements is to control 1.072T15 + T26 while keeping L constant.
In conclusion, based on the acceptable steady state drift loss defined by the
user, minimum regulatory layer can be obtained by finding CV2 as individual
measurements or measurement combinations.

5. Dynamic simulations

The dynamic simulations for the distillation column study are included
to show the ease of implementing the regulatory layer controlled variables
obtained using the methods of this paper. The open loop gain and time
constants with controlled variables c1 = T27, c2 = T15 are obtained based
on transient responses of +5% steps in L and V . A Proportional Integral
(PI) controller between L and c1 with tuning parameters kc1 = −0.5191, τI1 =
8min and an another PI controller between V and c2 with tuning parameters
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Table 2: Distillation Column case study: The self optimizing variables c′s as combinations
of 2, 3, 4, 5, 41 measurements with their associated losses in state drift

No. of No. of Optimal CV Loss = 1

2
‖M2‖

2

F J = ‖Wx‖2
2

loops closed † meas. J − Jopt(d)

0 2
c1 = V
c2 = B

109.669†† 109.690

1 2
c1 = L
c2 = T18

0.188 0.209

2 2
c1 = T15

c2 = T27

0.026 0.047

1 3
c1 = L

c2 = 1.072T15 + T26

0.129* 0.150

2 3
c1 = T15 − 0.1352T28

c2 = T26 + 1.0008T28

0.020 0.040

1 4
c1 = L

c2 = 0.6441T15 + 0.6803T16 + T27

0.126* 0.146

2 4
c1 = T14 − 6.1395T26 − 6.3356T28

c2 = T16 + 6.2462T26 + 6.2744T28

0.014 0.034

1 5
c1 = L

c2 = 1.1926T15 + 1.1522T16 + 0.9836T26 + T27

0.123* 0.144

2 5
c1 = T14 − 4.9975T26 − 5.0717T27 − 4.9813T28

c2 = T16 + 5.1013T26 + 5.0847T27 + 4.9166T28

0.011 0.032

1 41
c1 = L

c2 = f1(T1, T2, . . . , T41)
0.118* 0.138

2 41
c1 = f1(T1, T2, . . . , T41)
c2 = f2(T1, T2, . . . , T41)

0.003 0.023

† In addition to two closed level loops
The loss is minimized to obtain H2

The optimal state drift Jopt(d) = 0.0204
1 loop closed : 1 c from ym, 1 c from u0

2 loops closed: 2 c from ym

The loss is minimized to obtain H2

†† Such a high value is not physical, but it follows because our linear analysis
is not appropriate when we close 0 loops
* used partial control idea to find optimal H2 in two step approach
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Figure 7: Distillation case study: Transient responses of state drift, J with two temper-
ature loops closed (c1 = T27, c2 = T15) using inputs L, V for +20% disturbance in F at
time 10 min, +20% disturbance in zF at time 120 min and +10% disturbance in qF at
time 200 min

kc2 = 0.6307, τI2 = 8 min are obtained using SIMC tunings [16] with τc =
2 min.

Dynamic simulations are performed with these settings to evaluate the
disturbance rejection performance with the controlled variables c1 = T27 and
c2 = T15. The disturbances are +20% disturbance in feed rate F at time 10
min, +20% disturbance in feed composition zF at time 120 min, and +10%
disturbance in feed liquid fraction qF at time 200 min are shown in Figure
7. The transient responses of the state drift, J , selected controlled variables,
c1 = T27, c2 = T15, with their set points, manipulated variables, L, V , are
shown in each of the Figures 7 in the presence of disturbances d.
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6. Kaibel column

The main purpose of the Kaibel column case study is to evaluate the
proposed methods on a case with more inputs and states. The Kaibel column
can separate four components into four products in a single column shell
with a single reboiler [17]. The Kaibel column is an extension of the Petlyuk
column [18]. The capital savings in the separation of four products with
Kaibel column compared to conventional three columns in series makes it an
attractive alternative [19, 20].

The given 4-product Kaibel column arrangement separates a mixture of
methanol (A), ethanol (B), propanol (C), butanol (D) into almost pure com-
ponents. The Kaibel column is modeled using a stage-by-stage model with
the following simplifying assumptions: Constant pressure, equilibrium stages
and constant molar flows. The vapor-liquid equilibrium is modeled using the
Wilson equation. The Kaibel column is modeled with 7 sections and we in-
dicate the temperature measurements of each section in Figure 8. Sections
1 and 2 make up the prefractionator, while the main column consists of sec-
tions 3 - 7. Each section has 10 stages and the reboiler is counted as an
additional stage, which gives Kaibel column with 71 stages in total. Each
stage has 3 compositions, 1 holdup and 1 temperature state resulting in a
total of 355 states. The economic objective function J1 is to minimize the
sum of impurities in the products.

J1 = D(1− xA,D) + S1(1− xB,S1
) + S2(1− xC,S2

) +B(1− xD,B) (19)

where D,S1, S2 and B are the distillate, side product 1, side product 2 and
bottom flow rates (mol/min) respectively. xi,j is mole fraction of component
i in product j.

The objective of the regulatory layer is to minimize the state drift in the
225 mole fractions of A,B and C components of the process streams (213
mole fractions for 71 trays plus 12 mole fraction states for streams L, D, S1

and S2)
J2 = ‖Wx‖2

2
(20)

where W = I
225×225 (identity matrix) to have equal weights on mole fractions

of A,B and C components in process streams.
The considered Kaibel column then has 6 MVs, MV = {L, S1, S2, RL, D,B}

with 4 steady state degrees of freedom (u = {L, S1, S2, RL}) and 71 tempera-
ture measurements (7 sections with each section having 10 tray temperatures
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plus 1 temperature for reboiler). We included the 71 temperature measure-
ments and the 6 inputs as candidate measurements (y) and ny = 77. We
assume that the temperatures are measured with an accuracy of ±1oC and
flows are measured with an accuracy of ±10%. The considered disturbances
are in vapor boil up (V), vapor split (RV ), feed flow rate (F), mole fraction of
A in feed stream (zA), mole fraction of B in feed stream (zB), mole fraction of
C in feed stream (zC), liquid fraction in feed stream qF , which vary between
3 ± 0.25, 0.4 ± 0.1, 1 ± 0.25, 0.25 ± 0.05, 0.25 ± 0.05, 0.25 ± 0.05, 0.9 ± 0.05,
respectively. The reader is referred to [21] for further details. We optimize
the system for the products impurity (19) and we operate the plant around
that optimal operating point.

The Kaibel column has nu0
= 6 physical inputs, nu = 4 steady state

degrees of freedom and ny = 77 candidate measurements. An MIQP needs to
be solved for each i closed loops. To obtain CV2 as individual measurements
with 0, 1, 2, 3 and 4 closed loops, we need to solve nu+1 = 5 MIQP problems.
These five MIQP problems are solved using IBM ILOG CPLEX solver in
Matlab R©R2009a on a Windows XP SP2 notebook with Intel R©CoreTM

Duo Processor T7250 (2.00 GHz, 2M Cache, 800 MHz FSB). The QP that
needs to be solved at each node in MIQP is convex and initial conditions do
not play any role.

The presence of integrating modes result in infinite state drift, so first
we close 2 loops for integrating levels (MD,MB). Next, we want to close
additional loops to minimize the state drift. The loss with 0 loops closed (4
flows in u0 constant), 1 loop closed (3 flows in u0 constant), 2 loops closed (2
flows in u0 constant), 3 loops closed (1 flow in u0 constant), 4 loops closed
(no flows in u0 constant) are tabulated in Table 3. The best measurements
for 0, 1, 2, 3 and 4 loops closed are shown in Table 3 (upper part with 4
measurements). From Table 3, the “best” system with zero loops closed is
to keep {S1, RL, D,B} constant with a loss 8018.243. The best single-loop
policy is to keep {S1, S2, RL} constant and control T56 with a loss of 1628.773.
The best two-loop policy is to keep {S1, S2} constant and control {T13, T42}
with a loss of 469.037. The best three-loop policy is to keep S1 constant and
control {T7, T39, T51} with a loss of 33.150. Finally, the best four-loop policy
is to control {T9, T31, T51, T66} with a loss of 0.089. These should be compared
with the minimal achievable state drift of 0.347 obtained when allowing for
measurement combinations. The loss reduces by every additional closed loop
and the reduction ratio is very high when we close the final (4th) loop. This
is further illustrated by the composition state drift profiles for the optimal,
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Figure 9: Kaibel column state drift in the presence of disturbances in V, RV and F, (a)
Optimal policy (minimum achievable state drift), (b) Optimal two-loop policy, (c) Optimal
three-loop policy, (d) Optimal four-loop policy. The effect of a measurement noise on state
drift is shown with green + in subplots (b), (c) and (d)

two-loop, three-loop and four-loop policies are shown with in Figure 9 (a),
(b), (c) and (d). Note that the contribution of one measurement noise with
green + is also included in Figure 9 (b),(c) and (d).

We next study the effect of using temperature measurement combinations.
For the Kaibel column case study, we have nu = 4 and to find CV2 as
measurement combinations, the number of partial control systems (number of
MIQP problems) increases by 2nu −2 = 14 for every additional measurement
included to obtain CV2 as a combination. The optimal measurements to find
CV2 as combinations of 5, 6 and 71 measurements for 1, 2, 3 and 4 loops
closed are also tabulated in Table 3. For the Kaibel column, we need to
close four (temperature) loops as closing 1,2 or 3 loops give a state drift J2

that is 100 times greater than J2,opt = 0.347. From a physical point of view
this seems reasonable as we need to close one loop in the prefractionator (T9

in Table 3, and one loop for each of the three component splits A/B, B/C
and C/D. In comparison, in the regular distillation column in Section 4, we
only have one component split and it is sufficient to close only one loop.
The reduction of loss with CV2 as combinations of 5,6 and 71 number of
measurements, when one loop, two loops, three loops and four loops closed
are also tabulated in Table 3.
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Table 3: Kaibel column: The regulatory CV2 as combinations of 4, 5, 6 and 71 measure-
ments with their associated losses

No. of No. of Optimal Loss Cost
loops closed † meas. used CV 1

2
‖M2‖2F J = ‖Wx‖2

2

0 4 S1 RL D B 8018.243†† 8018.590

1 4 T56 S1 S2 RL 1628.773 1629.121
2 4 T13 T42 S1 S2 469.037 469.385
3 4 T7 T39 T51 S1 33.150 33.497
4 4 T9 T31 T51 T66 0.089 0.437

1 5 f1(T54, T61) S1 S2 RL 1605.107∗ 1605.455
2 5 f1,2(T8, T39, T51) S1 S2 454.122∗ 454.470
3 5 f1,2,3(T9, T29, T51, T65) S1 31.379∗ 31.727
4 5 f1,2,3,4(T9, T29, T31, T51, T66) 0.075 0.422

1 6 f1(T15, T39, T51) S1 S2 RL 1603.225∗ 1603.572
2 6 f1,2(T9, T29, T51, T65) S1 S2 454.017∗ 454.364
3 6 f1,2,3(T9, T28, T31, T51, T66) S1 31.368∗ 31.715
4 6 f1,2,3,4(T9, T11, T13, T31, T51, T66) 0.052 0.400

1 71 f1(T1, T2, . . . , T71) S1 S2 RL 1603.161∗ 1603.508
2 71 f1,2(T1, T2, . . . , T71) S1 S2 453.975∗ 454.322
3 71 f1,2,3(T1, T2, . . . , T71) S1 31.319∗ 31.666
4 71 f1,2,3,4(T1, T2, . . . , T71) 0.013 0.360

† In addition to two closed level loops
The loss is minimized to obtain H2

The optimal state drift Jopt(d) = 0.347
1 loop closed : 1 c from ym, 3 c from u0

2 loops closed: 2 c from ym, 2 c from u0

3 loop closed : 3 c from ym, 1 c from u0

4 loops closed: 4 c from ym

The optimal state drift Jopt(d) = 0.347
†† Such a high value is not physical, but it follows because our linear analysis
is not appropriate when we close 0 loops
∗ used partial control system idea to find optimal H2 in to step approach
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7. Discussion and summary

7.1. One control layer

The basis for this paper is that we have a two layer control system, where
the upper “supervisory” control layer (e.g. using MPC) controls the economic
variables (CV1) on a slow time scale and the lower control layer (e.g. using
PID) controls the “drifting” variables (CV2) on a fast time scale. In this
approach, the effect of economics on a fast time scale is largely ignored, or
only included indirectly to the weight W in the cost J2, or by including active
constraints as controlled variables in CV2.

An alternative approach is to assume that there is only one control layer.
One advantage is that one may then include economics more directly into the
fast time scale, and obtain, for example, the required “back-off” for active
hard constraints. The disadvantage is that this requires a detailed dynamic
model and that the problem may be difficult to solve. Also, it does not yield a
two-layer structure which is usually required. For the single control layer, one
may either assume multivariable control [e.g. [22]] or decentralized control
as studied by Perkins and co-workers [23, 24, 25, 26]. The multivariable
control assumptions gives a simpler optimization problem, but may not give a
controller suitable for practical implementation. Use of decentralized control
[24] gives a more easily implementable control strategy, but the problem is
very difficult to solve numerically. Furthermore, there may be an economic
loss, also compared to the two-layer structure in Figure 1, which may be
difficult to quantify.

7.2. Summary

The purpose of this section is to summarize the steps in the proposed
quantitative method to arrive at regulatory layer with one, two, or more
closed loops.

Step 1 Define the objective function J2 = ‖Wx‖2
2
.

Step 2 Obtain the linear gain matrices from u to y, Gy, and d to y, Gy
d

(7), and define the magnitudes for disturbances d and implementation
errors ny as Wd and Wn. The second derivatives of the weighted state
drift with respect to u, and u and d as J2uu and J2ud

.

Step 3 Use the new results of self-optimizing control [8, 9, 10, 12] to find
an optimal H2 that minimizes the loss (10) from the minimum cost.
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This gives the optimal controlled variables as individual measurements
in the partial regulatory control problem with one, two or more closed
loops (Section 3.4).

Step 4 If the loss is higher than what is acceptable, then find the regulatory
layer CV2 as combination of measurements (Section 3.5).

8. Conclusions

The self-optimizing control concept is applied to select optimal controlled
variables that minimize the weighted state drift in the presence of distur-
bances. In process control, ‖Wx(jω)‖2

2
is often flat at lower frequencies and

drops at higher frequencies, so minimizing the state drift for steady-state
(ω = 0) yields good results. The proposed method to find both optimal indi-
vidual and combination of measurements as controlled variables was evalu-
ated on a distillation column case study with 41 stages and a Kaibel column
case study with 71 stages to arrive at optimal regulatory layer with 1, 2 or
more closed loops. We included the dynamic simulations for the distillation
column to show the ease of using these methods in practice.

Appendix A.

Mass balances assuming for the condenser and reboiler at steady state
yield [27]

dMd

dt
= 0 = Vtop − L−D

dMb

dt
= 0 = Lbtm − V − B

Here, at steady state and assuming constant molar flows

Vtop = V + (1− qF )F

Lbtm = L+ qFF

So we find at steady state

D = V − L+ (1− qF )F

B = L+ qFF − V

Note that there is no effect of zF in this case. Linearizing gives G and Gd as
given in (17).
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