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Abstract— This paper discusses the simultaneous selection of
measurements and economic backed off operating point when
the nominal optimal operating point is constrained. However,
operation at this point becomes infeasible due to uncertainties.
In this regard, we recently proposed an optimization formula-
tion that determines the backed-off point to ensure feasibility
assuming accurate measurement of the states is available and
disturbance as the only source of uncertainty. In the present
work, we extend the formulation to partial state information
case and also determine the optimal set of measurements for
economical operation. The formulation also finds a suitable
multivariable controller to achieve economic benefits. The final
formulation is a mixed integer non-linear program. Here, we
present a branch and bound type solution such that a two stage
iterative problem is solved at each branching step. Finally, the
proposed approach is demonstrated in an evaporator system.
Keywords: Process control, sensor networks, multivariable
control, convex optimization

I. INTRODUCTION

Optimal operating point of a chemical process is deter-
mined using a non-linear optimizer and it is often con-
strained. However, process plants are typically operated at the
more conservative operating point to ensure safe operation
of the plant. Owing to the developments in control theory,
the process plants could be operated more aggressively
and closer to the constraints to increase profitability while
ensuring safe operation. Therefore, the notion of back-off is
highly useful in determining the dynamically feasible and
profitable operating point. Recently[1], we presented an op-
timization formulation to determine the economic backed-off
operating point such that feasibility is ensured under dynamic
conditions of the plant. In our previous work, we presented
the back-off point selection problem based on continuous-
time model. We assumed disturbance as the only source of
uncertainty and it is characterized by Gaussian white noise
process with zero mean and known variance. Furthermore,
we assumed full state feedback (u = Lx). In the current
study, we consider partial state information case (u = Lx̂)
which considers measurement error as an additional source
of uncertainty. Thus, the loss we incur in backing off from
the active constraints consists of two components: First, the
loss due to disturbances which could be partially recovered
by a suitable controller design and second, the loss due
to measurement error which could be partially recovered
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using the state estimator. The performance of the state
estimator depends critically on the chosen sensors. Hence,
the problem of measurement selection is an important task
to achieve optimal operation. Therefore, the current study
focuses on addressing the issue of simultaneous selection of
measurements and economic backed off operating point.

Sensor network plays a vital role in the optimal opera-
tion of a chemical process. The problem of measurement
selection has been addressed in several frameworks such as
fault diagnosis[2], process monitoring[3] and control[4]. In
the current study, we limit our discussion on sensor selection
from a control viewpoint. In this case, the problem of
measurement selection is finding a set of controlled variables.
In general, in order to achieve optimal operation, the set
of active constraints are controlled and an additional set
of controlled variables are determined for the remaining
unconstrained degrees of freedom which is the idea of self-
optimizing control[4]. However, operating the plant at active
constraints is difficult due to uncertainties (such as distur-
bances, measurement noise, modeling errors, etc.) affecting
the process. Therefore, we need to back-off from the active
constraints to handle these uncertainties. In this context,
the problem of deciding on right choice of measurements
plays a crucial role in determining the economic back-
off point as there is a loss because of measurement error.
Several authors have addressed the role of process economics
on control structure selection ([5], [6]). They used back-
off as an economic measure to quantify the operational
loss and determine the best set of controlled variables or
measurements.

In the next section, we formulate the economic back-
off selection problem for a partial state information case.
Next, convex relaxations of the constraints are presented and
a solution methodology is proposed. Finally, the proposed
formulation is exemplified using an evaporator system.

II. PROBLEM FORMULATION

In this section, we develop an optimization formulation
that determines the optimal steady state (backed-off) operat-
ing point such that the process dynamics remain feasible
under uncertain conditions for the prescribed confidence
limit. Also, we need to determine the sensor network that
results in a minimum economic loss.

A. Economic Back-off

Consider the state variables x0 ∈ Rnx , manipulated inputs
u0 ∈ Rnu and disturbances d0 ∈ Rnd . Generally, the
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economically optimal point is determined by solving a non-
linear optimization problem which minimizes the negated
profit function J subject to the process model g and perfor-
mance bounds h,

min
x0,u0

J(x0, u0, dnom) (1a)

s.t. g(x0, u0, dnom) = 0 (1b)
h(x0, u0, dnom) ≤ 0 (1c)

This is a steady state optimization problem solved for
the nominal values of the disturbance variables dnom.
And, the optimal values of the states and manipulated
inputs are denoted by x∗0 and u∗0. However, if some of the
bound constraints are active then there might be violation
of constraints for some values of disturbance variables.
Therefore, we need to ensure dynamic feasibility for all
possible disturbances. One possible solution is to push
the optimal operating point (back-off) inside the feasible
region such that the system dynamics are feasible and the
economic loss due to backing off is minimum. Thus, back
off is defined as,

Back − off = |Actual steady state operating point
−Nominally optimal steady state operating point| (2)

In order to guarantee dynamic feasibility, the above opti-
mization problem should include differential constraints. As
a result, we have a dynamic optimization problem which is
computationally demanding ([7], [8]). Alternately by char-
acterizing the disturbance using a Gaussian random process
(with zero mean and known variances), we can describe the
dynamic operating region as a covariance ellipsoid provided
the system is linear time invariant, full state information and
the feedback control law is given by u = Lx [9].

Defining deviation variables (x̃, ũ, d̃) with respect to the
optimal point and linearization of the process model (1b)
around the nominally optimal operating point (x∗0, u

∗
0, dnom)

results in
˙̃x = Ax̃+Bũ+Gd̃ (3)

where A, B and G are the partial derivative of g evaluated
at (x∗0, u

∗
0, dnom). At steady state, the process model can be

expressed in terms of backed-off variables (x̃ss, ũss) as

0 = Ax̃ss +Bũss (4)

There is no term corresponding to disturbance because of
zero mean assumption and this expression defines the set
of feasible backed-off operating points. Our objective is to
determine this backed-off operating point that minimizes
the loss in profit while ensuring the dynamics. With the
linearized process model and linear controller (i.e., u = Lx),
we can describe the dynamics around the back-off point
using closed loop steady state covariance matrix of the state
vector (Σx := lim

t→∞
E[x(t)Tx(t)]) which is a symmetric

positive semi-definite solution to the Lyapunov equation

(A+BL)Σx + Σx(A+BL)T +GΣdG
T = 0 (5)

where Σd is the covariance of the disturbance input. Similar
development of the output signal z yields,

Σz = (Zx + ZuL)Σx(Zx + ZuL)T + ZdΣdZd
T (6)

where Zx, Zu and Zd are the partial derivative of h eval-
uated at (x∗0, u

∗
0, d0). Using the idea of transformation of

variables and relaxation arguments, we can write the above
non-linear matrix equalities as Linear Matrix Inequalities
(LMIs). Hence, the final formulation of the economic back-
off selection problem follows[1]:

min Jx
T x̃ss + Ju

T ũss + ũTssJuuũss (7a)
s.t. 0 = Ax̃ss +Bũss (7b)

z̃ss = Zxx̃ss + Zuũss (7c)

(AX +BY ) + (AX +BY )T +GΣdG
T ≺ 0 (7d)[

Z − ZdΣdZdT ZxX + ZuY
(ZxX + ZuY )T X

]
� 0 (7e)

P = Z1/2 (7f)[
−τi − hiT z̃ss − ti α

2 hi
TP

(α2 hi
TP )T τiI

]
� 0; (7g)

where x̃ss, ũss, z̃ss, τi > 0, Y = LX−1, X = Σx � 0, Z =
Σz � 0 and P � 0 are the decision variables. For complete
derivation of the above formulation, the reader is referred to
[1]. It is important to note in the above formulation that
we assumed full state information. In other words, state
variables are measured accurately. However, measurements
contain errors and this uncertainty contributes to a further
loss. Therefore, we need to find a set of measurements
that minimizes the operational loss. Hence, the focus of
this article is to extend the formulation to a partial state
information case and also find the optimal sensor network
from the set of possible measurements.

B. Sensor Placement
Consider the measurement vector y = Cx + v where

the measurement error vector, v is a zero mean, normally
distributed variables with diagonal covariance matrix Σv(=
E[vvT ]). It is well known that Kalman filter is an optimal
state estimator. Thus, we use the Kalman filter to estimate
the states from the set of available measurements. Also,
we assume the measurement errors are independent and
uncorrelated which represents a diagonal Σv . Let us denote
Q = Σ−1

v = diag( qi
σ2
v,i

) where qi is a binary variable (0
or 1) denoting that the particular variable is unmeasured
or measured respectively. And, σ2

v,i is the corresponding
variance. It is important to note that an unmeasured variable
(qi = 0) can also be statistically inferred as a sensor with
infinite variance. This definition of Q helps us to address the
sensor placement problem with qi as decision variables.

In order to describe the system dynamics for the partial
state information case with disturbance variances Σd and
variance of the measurement noise Σv , the steady state
covariance of the signal z is given by

Σz = (Zx + ZuL)(Σx − Σe)(Zx + ZuL)T + ZxΣeZ
T
x

+ZwΣdZ
T
w (8)
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where Σx and Σe are the positive semi definite solutions to

AΣx+ΣxA
T+BL(Σx−Σe)+(Σx−Σe)B

TLT+GΣdG
T = 0

(9)
and

AΣe + ΣeA
T − ΣeC

TQCΣe +GΣdG
T = 0 (10)

Theorem ∃ stabilizing L, Σx � 0, Σe � 0 and Σz s.t.
AΣx+ΣxA

T+BL(Σx−Σe)+(Σx−Σe)B
TLT+GΣdG

T =
0, AΣe+ΣeA

T −ΣeC
TQCΣe+GΣdG

T = 0, Σz = (Zx+
ZuL)(Σx − Σe)(Zx + ZuL)T + ZxΣeZ

T
x + ZwΣwZ

T
w and

σ2
z,i ≤ z2

i , i = 1, . . . nz , if and only if ∃ Y , X � 0, W � 0
and σ2

z,i s.t. (AX + BY ) + (AX + BY )T + GΣdG
T ≺ 0,[

C ′QC −A′W −WA WG
(WG)T Σ−1

d

]
� 0

,

 Z − ZdΣdZdT ZxX + ZuY 0
(ZxX + ZuY )T X I

0 I W

 � 0 and zi ≤

z2
i . For proof, the reader is referred to the original article

[10].
Now the simultaneous economic back-off and measure-

ment selection problem is reformulated in terms of LMI
constraints as :

min Jx
T x̃ss + Ju

T ũss + ũTssJuuũss (11a)
s.t. Ax̃ss +Bũss = 0 (11b)

z̃ss = Zxx̃ss + Zuũss (11c)

(AX +BY ) + (AX +BY )T +GΣdG
T ≺ 0 (11d) Z − ZdΣdZdT ZxX + ZuY 0

(ZxX + ZuY )T X I
0 I W

 � 0

(11e)[
C ′QC −A′W −WA WG

(WG)T Σ−1
d

]
� 0 (11f)

P = Z1/2 (11g)[
−τi − hiT z̃ss − ti α

2 hi
TP

(α2 hi
TP )T τiI

]
� 0; τi > 0 (11h)

where x̃ss, ũss, z̃ss, W , Y , X � 0, Z � 0, P � 0
and τi are the continuous decision variables. Also, recall
Q = diag( qiσ2

v
) where qi is a binary decision variable. Hence,

the final formulation is a mixed integer nonlinear programme
(MINLP). It is important to note that the last constraint
(11h) in based on the explicit ellipsoid representation of
the dynamics (covariance) constrained by the polytope. This
helps us to find the feasible backed off operating point such
that the system dynamics defined by the LMI constraints
(11d) - (11f) are satisfied. The non-linearity (and hence non
convexity) in the formulation is due to (11g). Therefore,
we need a specialized solution technique to solve this non-
convex problem which will be addressed in the next section.

In the above formulation, quadratic term for inputs denotes
the economic penalty for backing off the inputs from the
nominal optimal value. In other words, it penalizes the excess
use of the available unconstrained degrees of freedom. And,
it is important to include this term in the cost function

to get meaningful back-off points when there exists some
unconstrained degrees of freedom. This situation arises when
the number of manipulated inputs is greater than the number
of active constraints. Thus, we need second order information
on inputs (Juu � 0) which can be obtained numerically
by perturbing the unconstrained inputs. Note that this cost
function considers only the steady state effect on economics.
Since the disturbances are assumed to be Gaussian and zero
mean, this implies that the cost accounts only for the nominal
steady state value of disturbances. Furthermore, we design
an optimal stabilizable controller such that the back-off point
selected is close to the optimal operating point.

III. SOLUTION METHODOLOGY

The formulation of simultaneous selection of economic
back-off and measurements results in a mixed integer non-
linear program. The integer decision variables is a result of
sensor placement problem. First, let us consider the relaxed
problem where the binary decision variables are considered
to be continuous in the range 0 - 1. Now, the problem is still
non convex due to the non linearity in P = Z1/2. In this re-
gard, we presented a simple two stage iterative procedure for
a full state information case that reduce the variability of the
economically important (i.e., active constrained) variables by
progressively increasing the variability of the economically
unimportant variables at each iteration. At each stage of the
iteration, we solve a convex problem. In this work, we adapt
the solution technique to handle the partial state information
case with relaxed integer constraints.

The basic idea in the two stage approach is to first
determine the feasible dynamic operating region (solution
of stage 1) and then determine the back-off point (solution
of stage 2) corresponding to the dynamic region [1]. From
this solution, we can determine the departure from the true
optimal point by defining the parameter δi,j

δi,j =
distance of variable i from its closest bound

distance of variable j from its closest bound
(12)

which is used to create bounds for the individual variances
and are updated upon successive iteration to find the eco-
nomic back-off point. This parameter δ is initialized to zero
before start of the algorithm and are updated on further
iterations.

A. Stage 1

In the first stage, our objective is to determine the small-
est (in terms of trace) feasible ellipsoid Z and a suitable
multivariable controller L.
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min
X�0,Σz�0,Y

Tr(Z)

s.t. (AX +BY ) + (AX +BY )T +GΣdG
T ≺ 0 Z − ZdΣdZdT ZxX + ZuY 0

(ZxX + ZuY )T X I
0 I W

 � 0[
CTQC −ATW −WA WG

(WG)T Σ−1
d

]
� 0

σ2
z,i <

1
4α2 (z̃max,i − z̃min,i)2; i = 1 · · ·nz

σ2
z,i >

δ2i,j
α2 σ

2
z,j ; i = 1, j − 1, j + 1, nz

The output of the stage 1 after first iteration is a feasible
closed loop operating region. Since no economic information
is used in the objective function, the resulting controller and
output covariance matrix might not be economically optimal.
If the solution is infeasible, then there is no feasible solution
to the original problem for the assumed uncertainty. Note
that the integer variables in Q are relaxed and hence the sub
problem is a semi-definite program which is known to be
convex and could be solved for global optimality.

B. Stage 2

In the second stage, the covariance ellipsoid Z is used
to determine the closest possible back-off point (z̃ss) to the
OOP (x∗0, u

∗
0, dnom) such that the dynamics lie in the feasible

space. To achieve this, we first compute P = Z1/2 which
is used to determine the center of the ellipsoid such that the
ellipsoid is within the constraints polytope.

min
x̃ss,ũss,z̃ss

Jx
T x̃ss + Ju

T ũss + ũTssJuuũss

s.t. 0 = Ax̃ss +Bũss
z̃ss = Zxx̃ss + Zuũss[
−τi − hiT z̃ss − ti α

2 hi
TP

(α2 hi
TP )T τiI

]
� 0;

τi � 0; i = 1, · · · 2nz
This sub problem is a convex program. The back-off point
obtained at the first iteration might not be economically
optimal because of non-optimal Z. However, this BOP is
used to create bounds and update the parameter δ and resolve
Stage 1. It is to be noted that P is not a decision variable
since Z is known from first stage.

In general, the result of the above iterative procedure might
result in non integer solutions to the binary variables qi.
Hence, we can use the traditional branch and bound type of
algorithms to solve for integer variables where the two stage
iterative procedure described above is used at each branching
step. The proposed solution scheme could be implemented
using YALMIP, a freely available software for solving semi-
definite problems[11].

IV. EVAPORATION PROCESS

The proposed approach for simultaneously selecting the
back-off operating point and measurements is applied to the
evaporation process of [12]. Figure 1 depicts the forced-
circulation evaporation process where the concentration of
the feed stream is increased by evaporating the solvent
through a vertical heat exchanger with circulated liquor.

Fig. 1. Evaporator system

The overhead vapor is condensed by the use of process
heat exchanger. The details of the mathematical model can
be found in [12]. The separator level is assumed to be
perfectly controlled using the exit product flow rate F2

which also eliminates the integrating nature of the state.
The economic objective is to maximize the operational profit
[$/h], formulated as a minimization problem of the negative
profit [13]. The first three terms of (13) are utility costs
relating to steam, coolant and pumping respectively. The
fourth term is the raw material cost, whereas the last term is
the product value.

J = 600F100 + 0.6F200 + 1.009(F2 +F3) + 0.2F1−4800F2

(13)
The process has the following constraints related to product
specification, safety, and design limits:

X2 ≥ 35% (14)
40 kPa ≤ P2 ≤ 80 kPa (15)

P100 ≤ 400 kPa (16)
0 kg/min ≤ F200 ≤ 400 kg/min (17)

0 kg/min ≤ F1 ≤ 20 kg/min (18)
0 kg/min ≤ F3 ≤ 100 kg/min (19)

Nominal operating point. The nominal steady state values
are obtained by solving a nonlinear optimization problem for
the nominal values of disturbances and the profit is found to
be J = $693.41/h and the nominal values can be found
in [1]. At the nominal optimal point, there are two active
constraints: product composition, X2 = 35% and steam
pressure, P100 = 400 kPa. And, the corresponding La-
grange multipliers are 229.36 $/% h and -0.096685 $/kPa h
respectively.
Degree of freedom analysis. The process model has seven
degrees of freedom. Inlet conditions of the feed (flow
rate, composition, temperature) and inlet temperature of
the condenser are considered as disturbances (i.e., d =
[F1 X1 T1 T200]T ). There are three manipulated inputs,
u = [F3 P100 F200]T . The disturbance range is assumed
to be 10% variation of the nominal value (i.e., Σd =
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TABLE I
NOMINAL AND BACK-OFF OPERATION

Variables Units Nominal value Closed loop back-off
FSI case (7) PSI case(11)

States
X2 % 35.00 35.26 35.428
P2 kPa 56.15 56.10 56.067

Inputs
F3 kg/min 27.70 27.78 27.833
P100 kPa 400.00 400 400
F200 kg/min 230.57 232.71 234.22
Profit $/h 693.41 634.76 595.18

diag([1 0.25 16 6.25])2 ) and the set of active constraints
do not change in the whole range of disturbances . It is
important to note that there is one unconstrained degrees of
freedom.
Linearized steady state model. Linear approximation of the
process model at the nominal optimum yields,

A =

[
−0.16709 −0.17185
−0.013665 −0.043132

]
;

B =

[
0.44083 0.04217 0
0.062976 0.0060243 −0.0016249

]
;

G =

[
−1.2211 0.5 0.031818 0
0.039837 0 0.0045455 0.03665

]
and the C matrix denoting all possible measurements (i.e.,
y = [X2 P2 T2 T3]T ) is given by

CT =

[
1 0 0.5616 0
0 1 0.3126 0.507

]
and the measurement error is considered to be Σv =
diag([0.01 0.01 0.01 0.01])2. The performances z are defined
by the matrices,

Zx = [I2×2|02×3]T ;Zu = [03×2|I3×3]T ;Zd = [04×5]T

and the bound constraints written in the form of hiT z̃ss+ti ≤
0 are obtained from the rows of the matrix H and elements
of vector t, H = [I5×5| − I5×5]T ; t = [−5 − 23.849 −
72.299 0 −169.43 0 −16.151 −27.701 −200 −230.57]T .
The linearized negative profit function is

Jx = [−293.23 − 526.8]T ; Ju = [1368.9 130.85 0.6]T

As the input P100 is constrained, the quadratic penalty
is included only for the other inputs and the numerical
perturbation of inputs F3 and F200 yield,

Juu =

[
4.4953 0.00010226

0.00010226 0.0052699

]
Results. The amount of necessary back off to remain

feasible for 10% variation in the nominal disturbances (Full
state information case) is tabulated in Table I. Also, the
economic back-off required for the partial state information
case is tabulated. Since steam pressure (P100) is a input
variable and constrained at the optimal solution, it can be
set at its optimal value without backing off. This could be
easily recognized from zero back-off in the table. On the
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TABLE II
MEASUREMENT SELECTION

Sensor Network Variance Loss, $/h
X2, T2 {0.01,0.01} 98.226*
X2, P2 {0.01,0.01} 103.62
X2, T3 {0.01,0.01} 103.63
P2, T2 {0.01,0.01} 139.06
T3, T2 {0.01,0.01} 140.08
T3, P2 {0.01,0.01} 1556.2
X2, T2 {0.1,0.1} 304.29
X2, P2 {0.1,0.1} 324.17
T2, P2 {0.1,0.1} 436.21
X2, T2 {0.1,0.01} 161.29
X2, P2 {0.1,0.01} 321.68
X2, T3 {0.1,0.01} 323.33
*optimal solution obtained using YALMIP[11]

other hand, product exit composition X2 requires significant
back-off for the assumed disturbances. It is important to note
that the lagrange multiplier for X2 is very high (has a value
of 229.36 $/% h) and hence even a small variation in product
composition will result in a very high loss. The dynamic
operating region for the FSI and PSI cases are shown as
ellipses in Figures 2-5. The center of the ellipse denotes
economic back-off solution. For PSI case, the loss obtained
for operating the evaporator at this backed off operating
point is $98.226/h which corresponds to the achievable
profit of $595.18/h. In other words, the loss we incur to
ensure feasible operation with 95% confidence interval is
$98.226/h. The multivariable feedback controller (u = Lx̂)
to be implemented to operate the system profitably is

L =

 −64.97 0.7556
−0.0585 0.0007
−171.4 28.45

 (20)

This controller gain could be used to find the objective
function weights of Model Predictive Control using the
inverse optimality results[10]. Table II gives the loss for
different set of measurements obtained by enumeration and
the minimum loss network obtained using Yalmip[11]. From
the enumerated list, it can be inferred that we need to
measure product composition more precisely to minimize the

loss. The sensor network {X2, T2} is obtained by solving the
relaxed problem. Since the solution to this problem resulted
in integer solution to the binary variables, branch and bound
technique is not used in this case. However in the absence of
concentration measurements, we need precise measurements
of {P2, T2} which however results in an additional loss
of $40.838/h. This loss in the absence of concentration
measurement could be attributed to the error in estimating the
concentration variable. This feature illustrates the importance
of sensor network design for optimal operation.

V. CONCLUSION

In this work, we addressed the economic back-off oper-
ating point selection problem for partial state information
case where both disturbances and measurement errors are
considered as uncertainties. The formulation also yields a
multivariable controller which when implemented to operate
the evaporation process at the determined economic back-off
operating point will ensure feasible and profitable operation.
Furthermore, we obtained the optimal set of measurements
from the formulation that result in minimal loss.
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