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Abstract: Active control of the production choke valve is the recommended solution to prevent
severe slugging flow at offshore oilfields. This requires operation in an open-loop unstable
operating point. It is possible to use PI or PID controllers which are the preferred choice in
the industry, but they need to be tuned appropriately for robustness against plant changes and
large inflow disturbances. The focus of this paper is on finding tuning rules based on model
identification from a closed-loop step test. We perform an IMC (Internal Model Control) design
based on the identified model, and from this we obtain PID and PI tuning parameters. In
addition, we find simple PI tuning rules for the whole operation range of the system considering
the nonlinearity of the static gain. The proposed model identification and tuning rules show
applicability and robustness in experiments on a test rigs as well as in simulations using the
OLGA simulator.
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1. INTRODUCTION

The severe-slugging flow regime at offshore oilfields is
characterized by large oscillatory variations in pressure
and flow rates. This flow regime in multi-phase pipelines
and risers is undesirable and an effective solution is needed
to suppress it (Godhavn et al. (2005)). One way to prevent
this behaviour is to reduce the opening of the top-side
choke valve. However, this conventional solution increases
the back pressure of the valve, and it reduces the produc-
tion rate from the oil wells. The recommended solution to
maintain a non-oscillatory flow regime together with the
maximum possible production rate is active control of the
topside choke valve (Havre et al. (2000)). Measurements
such as pressure, flow rate or fluid density are used as the
controlled variables and the topside choke valve is the main
manipulated variable.

Existing anti-slug control systems are not robust and tend
to become unstable after some time, because of inflow
disturbances or plant changes. The main objective of our
research is to find a robust solution for anti-slug control
systems. The nonlinearity at different operating conditions
is one source of plant change, because gain of the system
changes drastically for different operating conditions. In
addition, the time delay is another problematic factor for
stabilization.

One solution is to use nonlinear model-based controllers to
counteract the nonlinearity (e.g. Di Meglio et al. (2010)).
However, these solutions are not robust against time delays
or plant/model mismatch.

An alternative approach is to identify an unstable model of
the system by a closed-loop step test. We use the identified
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Fig. 1. Schematic presentation of system

model for an IMC (Internal Model Control) design. Then,
we use the resulting IMC controller to obtain tuning
parameters for PID and PI controllers.

A third approach is to use a Hammerstein model consisting
of a nonlinear static gain and a linear unstable part.
Based on this model, we propose simple PI tuning rules
considering nonlinearity of the system.

This paper is organized as follows. An OLGA test case for
simulations and our experimental setup are introduced in
Section 2. Then, we present the closed-loop identification,
the IMC design and the related PID/PI tunings in Section
3. A new simple model for the static nonlinear gain
of the system is provided in Section 4, and simple PI
tuning rules for the whole operation range are proposed
in Section 5. Experimental and simulation results are
shown, respectively, in Section 6 and Section 7. Finally, we
summarize the main conclusions and remarks in Section 8.

2. PIPELINE-RISER SYSTEM

Fig. 1 shows a schematic presentation of the system. The
inflow rates of gas and liquid to the system, wg,in and wl,in,
are assumed to be independent disturbances and the top-
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Fig. 2. Simulation results of OLGA case for different valve
openings

side choke valve opening (0 < Z < 100) is the manipulated
variable.

2.1 Olga case

As a base case, we use a test case for severe-slugging
flow given in the OLGA simulator, which is a commercial
multiphase simulator widely used in the oil industry. In the
OLGA test case, the pipeline diameter is 0.12 m and its
length is 4300 m starting from the inlet (see Fig. 1). The
first 2000 m of the pipeline is horizontal and the remaining
2300 m is inclined downward with a 1◦ angle. The riser is a
vertical 300 m pipe with a diameter of 0.1 m. Then, follows
a 100 m horizontal section with the same diameter as that
of the riser which connects the riser to the outlet choke
valve. The feed into the system is nominally constant at
9 kg/s, with wl,in = 8.64 kg/s (oil) and wg,in = 0.36 kg/s
(gas). The pressure after the choke valve Ps (separator
pressure) is nominally constant at 50.1 bar.

For the present case study, the critical value of the valve
opening which gives the transition between a stable non-
oscillatory flow regime and a limit-cycle flow regime (riser
slugging) is Z∗ = 5%. This is demonstrated by the OLGA
simulations in Fig. 2 which show the inlet pressure and
the topside pressure for the valve openings of 4% (no
slug) 5% (transient) and 6% (riser slugging). Simulations,
such as those in Fig. 2, were used to generate the bifur-
cation diagrams in Fig. 3, which show the behavior of
the system over the whole working range of the choke
valve (Storkaas and Skogestad (2007)). The dashed line
in between represents the steady-state solution which is
unstable without control for valve opening larger than
5%. For valve openings more than 5%, in addition to the
steady-state solution, there are two other lines giving the
maximum and minimum pressures of the persisted limit
cycles (slugging flow).

2.2 Experimental setup

The experiments were performed on a laboratory setup for
anti-slug control at the Chemical Engineering Department
of NTNU. Fig. 4 shows a schematic presentation of the
laboratory setup. The pipeline and the riser are made from
flexible pipes with 2 cm inner diameter. The length of the
pipeline is 4 m, and it is inclined with a 15◦ angle. The
height of the riser is 3 m. A buffer tank is used to simulate
the effect of a long pipe with the same volume, such that
the total resulting length of pipe would be about 70 m.
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Fig. 3. Bifurcation diagrams for OLGA case
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The topside choke valve is used as the input for control.
The separator pressure after the topside choke valve is
nominally constant at atmospheric pressure. The feed into
the pipeline is assumed to be at constant flow rates, 4
litre/min of water and 4.5 litre/min of air. With these
boundary conditions, the critical valve opening where the
system switches from stable (non-slug) to oscillatory (slug)
flow is at Z∗ = 15% for the top-side valve. The bifurcation
diagrams are shown in Fig. 5.

The desired steady-state (dashed middle line) slugging
condition (Z > 15%) is unstable, but it can be sta-
bilized by using control. The slope of the steady-state
line (in the middle) is the static gain of the system,
k = ∂y/∂u = ∂Pin/∂Z. As the valve opening increase
this slope decreases, and the gain finally approaches to
zero. This makes control of the system with large valve
openings very difficult.

3. PID/PI TUNING BASED ON IMC DESIGN

3.1 Model Identification

We use a Hammerstein model structure (Fig. 6) to describe
the desired unstable operating point (flow regime). The
Hammerstein model consists of series connection of a static
nonlinearity and a linear time-invariant dynamic system.
For our application, the static nonlinearity represents the
static gain (K) of the process and G′(s) accounts for
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Fig. 5. Bifurcation diagrams for experimental setup

 

s 

! $

s 

!

K

s 

"

( )G s'
 u 

Static Nonlinearity Linear time!invariant 

  u   y
 u

 u 

( )G s

Fig. 6. Block diagram for Hammerstein model

the unstable dynamics. For identification of the unstable
dynamics, we need to assume a structure. We first consider
a simple unstable first-order plus dead time model:

G(s) =
Ke−θs

τs− 1
=

be−θs

s− a
(1)

where a > 0. If we control this system with a proportional
controller with the gain Kc0 (see Fig. 7), the closed-loop
transfer function from the set-point (ys) to the output (y)
becomes

y(s)

ys(s)
=

Kc0G(s)

1 +Kc0G(s)
=

Kc0be
−θs

s− a+Kc0be−θs
. (2)

In order to get a stable closed-loop system, we need
Kc0be

−θs > a and Kc0b > a. The steady-state gain of
the closed-loop transfer function is

∆y∞
∆ys

=
Kc0b

Kc0b− a
> 1. (3)

However, the closed-loop step response of the system in
experiments, as in Fig. 8, shows that the steady-state gain
of the system under study is smaller than one. Therefore,
the model form in (1) is not a correct choice.

If we linearize the four-state mechanistic model by Jahan-
shahi and Skogestad (2011) around the desired unstable
operating point, we will get a fourth-order linear model in
the form of

G(s) =
θ1(s+ θ2)(s+ θ3)

(s2 − θ4s+ θ5)(s2 + θ6s+ θ7)
. (4)

This model contains two unstable pole, two stable poles
and two zeros. Seven parameters (θi) must be estimated
to identify this model. However, if we look at the Hankel
Singular Values of the fourth order model (Fig. 9), we
find that the stable part of the system has little dynamic
contribution. This suggests that a model with two unstable

B
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Fig. 7. Closed-loop system for step test
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Fig. 8. Closed-loop step response for stabilized experimen-
tal system

poles is sufficient for control design. Using balanced model
truncation (square root method), we obtained a reduced-
order model in the form of

G(s) =
b1s+ b0

s2 − a1s+ a0
, (5)

where a0 > 0 and a1 > 0. The model has two unstable
poles and four parameters, b1, b0, a1 and a0, need to be
estimated. If we control the unstable system in (5) by a
proportional controller with the gain Kc0, the closed-loop
transfer function from the set-point (ys) to the output (y)
will be

y(s)

ys(s)
=

Kc0(b1s+ b0)

s2 + (−a1 +Kc0b1)s+ (a0 +Kc0b0)
. (6)

For the closed-loop stable system, we consider a transfer
function similar to the model used by Yuwana and Seborg
(1982):

y(s)

ys(s)
=

K2(1 + τzs)

τ2s2 + 2ζτs+ 1
(7)

We use six data (∆yp, ∆yu, ∆y∞, ∆ys, tp and tu) observed
from the closed-loop response (see Fig. 8) to estimate the
four parameters (K2, τz, τ and ζ) in (7). Then, we back-
calculate the parameters of the open-loop unstable model
in (5). Details are given in Appendix A.

3.2 IMC design for unstable systems

Internal Model Control (IMC) is summarized by Morari
and Zafiriou (1989). The block diagram of the IMC struc-
ture is shown in Fig. 10. Where G(s) is model of the
plant which in general has some mismatch with the real
plant Gp(s). Q̃(s) is the inverse of the minimum phase
part of G(s) and f(s) is a low-pass filter for robustness of
the closed-loop system. The IMC configuration cannot be
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used directly for unstable systems; instead the stabilizing
controller is given as

C(s) =
Q̃(s)f(s)

1−G(s)Q̃(s)f(s)
(8)

For internal stability, Q̃f and (1−GQ̃f) have to be stable.
We use the identified model in the previous section as the
plant model:

G(s) =
b̂1s+ b̂0

s2 − â1s+ â0
=

k′(s+ φ)

(s− π1)(s− π2)
(9)

and we get

Q̃(s) =
(1/k′)(s− π1)(s− π2)

s+ φ
(10)

We design the filter f(s) as explained by Morari and
Zafiriou (1989):
k = number of RHP poles + 1 = 3
m = max(number of zeros of Q̃(s) - number of pole of Q̃(s)

,1) = 1 (this is for making Q = Q̃f proper)
n = m + k -1 = 3; filter order

The filter is in the following from:

f(s) =
α2s

2 + α1s+ α0

(λs+ 1)
3 , (11)

Where λ is an adjustable filter time-constant. We choose
α0 = 1 to get an integral action and the coefficients α1

and α2 are calculated by solving the following system of
linear equations:(

π1
2 π1 1

π2
2 π2 1

)(α2

α1

α0

)
=

(
(λπ1 + 1)

3

(λπ2 + 1)
3

)
(12)

The feedback version of the IMC controller becomes

C(s) =
[ 1
k′λ3 ](α2s

2 + α1s+ 1)

s(s+ φ)
(13)

3.3 PID-F tuning rules

The IMC controller in (13) is a second order transfer
function which can be written in form of a PID controller

with a low-pass filter.

KPID(s) = Kc +
Ki

s
+

Kds

Tfs+ 1
(14)

Where
Tf = 1/φ (15)

Ki =
Tf

k′λ3
(16)

Kc = Kiα1 −KiTf (17)

Kd = Kiα2 −KcTf (18)

We requireKc < 0 andKd < 0, in order that the controller
works in practice. We must choose λ such that these two
conditions are satisfied.

3.4 PI tuning rules

For a PI controller in the following form

KPI(s) = Kc

(
1 +

1

τIs

)
, (19)

the tuning rules are derived from the controller (13) as
follows

Kc = lim
s→∞

C(s) =
α2

k′λ3
(20)

τI =
Kc

lim
s→0

sC(s)
= α2φ (21)

This means that the PI-controller approximates high-
frequency and low-frequency asymptotes of C(s) in (13).

4. SIMPLE MODEL FOR STATIC NONLINEARITY

So far, we have used experimental work to obtain the
model. However, we can estimate the static gain. The slope
of the steady-state line in Fig. 3 is the static gain of the
system which is related to valve properties. We assume the
valve equation as the following:

w = Cvf(z)
√
ρ∆P (22)

where w[kg/s] is the outlet mass flow and ∆P [N/m2] is the
pressure drop. From the valve equation, the pressure drop
over the valve for different valve openings can be written
as

∆P =
ā

f(z)
2 , (23)

where we assume ā as a constant parameter calculated
in Appendix B. Our simple empirical model for the inlet
pressure is as follows:

Pin =
ā

f(z)
2 + P̄fo (24)

Where P̄fo is another constant parameter that is the inlet
pressure when the valve is fully open, and it is given in
Appendix B. By differentiating (24) with respect to z, we
get the static gain of the system as a function of valve
opening.

k(z) =
−2ā∂f(z)

z

f(z)
3 (25)

For a linear valve (i.e. f(z) = z) it reduces to

k(z) =
−2ā

z3
, (26)

where 0 ≤ z ≤ 1. Fig. 11 compares the simple static model
in (24) and (25) to the Olga model.
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Fig. 11. Simple static model compared to OLGA case

5. PI TUNING CONSIDERING NONLINEARITY

The PID and PI tuning rules given in above are based
on a linear model identified at a certain operating point.
However, as we see in Fig. 11, the gain of the system
changes drastically with the valve opening. Hence, a con-
troller working at one operating point may not work at
other operating points.

One solution is gain-scheduling with multiple controllers
based on mutiple identified modes. We propose simple PI
tuning rules based on single step test, but with a gain
correction to counteract the nonlinearity of the system.
For this, we use the static model given in (25). We perform
a closed-loop step test and we use the data in Fig. 8 to
calculate

β =
− ln

(
∆y∞−∆yu

∆yp−∆y∞

)
2∆t

+
Kc0k(z0)

(
∆yp−∆y∞

∆y∞

)2
4tp

, (27)

where z0 is the average valve opening in the closed-loop
step test and Kc0 is the proportional gain used for the
test. The PI tuning values as functions of valve opening
are given as the following:

Kc(z) =
βTosc

k(z)
√
z/z∗

(28)

τI(z) = 3Tosc(z/z
∗) (29)

Where Tosc is the period of slugging oscillations when the
system is open-loop and z∗ is the critical valve opening of
the system (at the bifurcation point).

6. EXPERIMENTAL RESULTS

6.1 Experiment 1: PID and PI tuning at Z=20%

The system switches to slugging flow at 15% of valve
opening, hence it is unstable at 20%. We closed the loop
by a proportional controller Kc0 = −10 and changed the
set-point by 2 kPa (Fig. 12). Since the response is noisy,
a low-pass filter was used to reduce the noise effect. Then,
we use the method explained in Section 3.1 to identify the
closed-loop stable system as the following:

y(s)

ys(s)
=

2.317s+ 0.8241

19.91s2 + 2.279s+ 1
(30)
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Fig. 12. Closed-loop step test for experiment 1
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The identified closed-loop transfer function is shown by
the red line in Fig. 12. Then, we back calculate to the
open-loop unstable system:

G(s) =
−0.012s− 0.0041

s2 − 0.0019s+ 0.0088
(31)

We select λ = 10 for an IMC design to get the controller:

C(s) =
−25.94(s2 + 0.07s+ 0.0033)

s(s+ 0.35)
(32)

The related PID tuning values, as in Section 3.3, are
Kc = −4.44, Ki = −0.24, Kd = −60.49 and Tf = 2.81.
Fig. 13 shows result of control using the PID controller.
This controller was tuned for 20% valve opening, but it can
stabilize the system up to 32% valve opening which shows
good gain margin of the controller. In addition, we tested
its delay margin by adding time-delay to the measurement.
It was stable with 3 sec added time delay.

The related PI tuning values, as in Section 3.4, are Kc =
−25.95 and τI = 107.38. Fig. 14 shows result of experiment
using the PI controller. This controller was stable with 2
sec time-delay.

6.2 Experiment 2: PID and PI tuning at Z=30%

We repeated the previous experiment at 30% valve open-
ing. We closed the loop by a proportional controller Kc0 =
−20 and changed the set-point by 2 kPa (Fig. 15). Then,
we use the method explained in Section 3.1 to identify the
closed-loop stable system as the following:

y(s)

ys(s)
=

2.634s+ 0.6635

13.39s2 + 2.097s+ 1
(33)
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Fig. 14. Result of PI controller for experiment 1
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Fig. 15. Closed-loop step test for experiment 2

The identified closed-loop transfer function is shown by
the red line in Fig. 15. Then, we back calculate to the
open-loop unstable system:

G(s) =
−0.0098s− 0.0025

s2 − 0.0401s+ 0.0251
(34)

We select λ = 8 for an IMC design to get the controller:

C(s) =
−42.20(s2 + 0.052s+ 0.0047)

s(s+ 0.251)
(35)

The related PID tuning values, as in Section 3.3, are
Kc = −5.65, Ki = −0.79, Kd = −145.15 and Tf = 3.97.
Fig. 16 shows result of control using the PID controller.
This controller was tuned for 30% valve opening, but it can
stabilize the system up to 50% valve opening which shows
good gain margin of the controller. In addition, we tested
its delay margin by adding time-delay to the measurement.
It was stable with 2 sec added time delay.

The related PI tuning values, as in Section 3.4, are Kc =
−42.20 and τI = 53.53. Fig. 17 shows result of experiment
using the PI controller. This controller was stable only
with less than 1 sec time-delay.

6.3 Experiment 3: Adaptive PI tuning

We calculated β = 0.061 from (27) using the step test
information of Experiment 1 (Fig. 12) and the period of
the slugging oscillations Tosc = 68 sec. We used the PI
tuning given in (28) and (29) in an adaptive manner to
control the system. The valve opening has many variations
and it cannot be used directly; a low-pass filter was used to
make it smooth. The result of control using this tuning is
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Fig. 17. Result of PI controller for experiment 2

shown in Fig. 18. The controller gains are given in Fig. 19.
This simple adaptive controller could stabilize the system
from 20% to 50%, and it was stable even with 1sec added
time delay.

7. OLGA SIMULATION

We tested the PI tuning rules in (28) and (29) on the
Olga case presented in Section 2.1. The PI tuning values
are given in Table 1 and the simulation result is shown in
Fig. 20. The open-loop system switches to slugging flow at
5% valve opening (Fig. 2), but by using the proposed PI
tuning the system could be stabilized up to 23.24% valve
opening.

8. CONCLUSION

A model structure including two unstable poles and one
zero was used to identify an unstable model for slugging
flow dynamics. The model parameters were estimated from
a closed-loop step test (step change in the set-point of
the controller). The identified model was used for an IMC
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experiment 3
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Fig. 19. Controller gains resulted from adaptive PI tuning
in experiment 3
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Fig. 20. Result of control from Olga simulation

design, then PID and PI tunings were obtained from
the resulted IMC controller. This scheme was tested in
experiments which shows applicability and robustness of
the method. A PID controller with the proposed tuning
was identical to the IMC that retains good phase-margin
and gain-margin.

Moreover, a simple static model was introduced to account
for the intense nonlinearity in static gain of the system,
then a one-step PI tuning was proposed based on the
static model. This method could stabilize the system on a
wide range of valve opening in both experiments and Olga
simulations.
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Appendix A. MODEL IDENTIFICATION
CALCULATIONS

Stable closed-loop transfer function:

y(s)

ys(s)
=

K2(1 + τzs)

τ2s2 + 2ζτs+ 1
(A.1)

The Laplace inverse (time-domain) of the transfer function
in (A.1) is (Yuwana and Seborg (1982))

y(t) = ∆ysK2 [1 +D exp(−ζt/τ) sin(Et+ ϕ)] , (A.2)

where

D =

[
1− 2ζτz

τ +
(
τz
τ

)2] 1
2√

1− ζ2
(A.3)

Table 1. PI tuning values in Olga simulation

set-point valve opening Kc τI
67.36 14 0.5 8400
67.19 16.1 0.7 9600
67.07 18.2 0.94 10800
66.99 20.1 1.23 12000
66.93 23.24 1.56 13200
66.88 – 1.93 14400
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E =

√
1− ζ2

τ
(A.4)

ϕ = tan−1

[
τ
√

1− ζ2

ζτ − τz

]
(A.5)

By differentiating (A.2) with respect to time and setting
the derivative equation to zero, one gets time of the first
peak:

tp =
tan−1

(
1−ζ2

ζ

)
+ π − ϕ√

1− ζ2/τ
(A.6)

And the time between the first peak (overshoot) and the
undershoot:

tu = πτ/
√
1− ζ2 (A.7)

The damping ratio ζ can be estimated as

ζ̂ =
− ln v√

π2 + (ln v)
2

(A.8)

where

v =
∆y∞ −∆yu
∆yp −∆y∞

(A.9)

Then, using equation (A.7) we get

τ̂ =
tu

√
1− ζ̂2

π
. (A.10)

The steady-state gain of the closed-loop system is esti-
mated as

K̂2 =
∆y∞
∆ys

. (A.11)

We use time of the peak tp and (A.6) to get an estimate
of ϕ :

ϕ̂ = tan−1

[
1− ζ̂2

ζ̂

]
−

tp

√
1− ζ̂2

τ̂
(A.12)

From (A.4), we get

Ê =

√
1− ζ̂2

τ̂
(A.13)

The overshoot is defined as

D0 =
∆yp −∆y∞

∆y∞
. (A.14)

By evaluating (A.2) at time of peak tp we get

∆yp = ∆ysK̂2

[
1 + D̂ exp(−ζ̂tp/τ̂) sin(Êtp + ϕ̂)

]
(A.15)

Combining equation (A.11), (A.14) and (A.15) gives

D̂ =
D0

exp(−ζ̂tp/τ̂) sin(Êtp + ϕ̂)
. (A.16)

We can estimate the last parameter by solving (A.3):

τ̂z = ξ̂τ̂ +

√
ζ̂2τ̂2 − τ̂2

[
1− D̂2(1− ζ̂2)

]
(A.17)

Then, we back-calculate to parameters of the open-loop
unstable model. The steady-state gain of the open-loop
model is

K̂ =
∆y∞

Kc0 |∆ys −∆y∞|
(A.18)

From this, we can estimate the four model parameters in
equation (5) are

â0 =
1

τ̂2(1 +Kc0K̂p)
(A.19)

b̂0 = K̂pâ0 (A.20)

b̂1 =
K̂2τ̂z
Kc0τ̂2

(A.21)

â1 = −2ζ̂/τ̂ +Kc0b̂1, (A.22)

where â1 > 0 gives an unstable system.

Appendix B. CALCULATION OF STATIC
NONLINEARITY PARAMETERS

From equation (22) we have

ā =
1

ρ̄

(
w̄

Cv

)2

(B.1)

Where Cv is the known valve constant, w̄ is the steady-
state average outlet flow rate and ρ̄ is the steady-state
average mixture density. The average outlet mass flow is
approximated by constant inflow rates.

w̄ = wg,in + wl,in (B.2)

In order to estimate the average mixture density ρ̄, we
perform the following calculations, assuming a fully open
valve.
Average gas mass fraction:

ᾱ =
wg,in

wg,in + wl,in
(B.3)

Average gas density at top of the riser from ideal gas law:

ρ̄g =
(Ps +∆Pv,min)Mg

RT
(B.4)

where Ps is the constant separator pressure, and ∆Pv,min

is the (minimum) pressure drop across the valve that
exists with a fully open valve. In the numerical simulations
∆Pv,min is assumed to be zero but in our experiments it
was 2 kPa.
Liquid volume fraction:

ᾱl =
(1− ᾱ)ρ̄g

(1− ᾱ)ρ̄g + ᾱρL
. (B.5)

Average mixture density:

ρ̄ = ᾱlρl + (1− ᾱl)ρ̄g (B.6)

In order to calculate the constant parameters P̄fo in (24),
we use the fact that if the inlet pressure is large enough
to overcome a riser full of liquid, slugging will not happen.
Taitel (1986) used the same concept for stability analysis,
also this was observed in our experiments. we define the
critical pressure as

P ∗
in = ρLgLr + Ps +∆Pv,min (B.7)

This pressure is associated with the critical valve opening
at the bifurcation point z∗. From (24), we get P̄fo as the
following:

P̄fo = P ∗
in − ā

f(z∗)
2 (B.8)
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