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Abstract

Static estimators are commonly used as "soft-sensors" in the process industry. The per-

formance of the estimators depend on whether it is used for monitoring (open-loop) or for

closed-loop control applications. In this work, we propose to design estimators specialized

for each case. The approach is to minimize the estimation error for expected disturbances and

measurement noise. The main extension compared to previous work is to include measure-

ment noise and to provide explicit formulae for computing the optimal static estimator. We

also compare the results with standard existing estimators, e.g. PLS. The approach is applied

to estimation of product composition in a distillation column from combination of temperature

measurements.

Introduction

In a chemical plant, there are usually a large number of sensors which are used for monitoring

and control of processes. However, some process variables (e.g., composition) may be too difficult

or expensive to measure online. Estimators, also called soft sensors, work by predicting such

variables using available measurements (e.g. temperatures).
∗To whom correspondence should be addressed
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Both dynamic and static estimators may be used, but the simpler static estimators are most

common in the process industry. Since our method is a static estimator, our literature survey is

limited to this group. There are many approaches that have been used to obtain the static esti-

mators, including multivariate regression,1,2 artificial neural networks,3 support vector machine

regression,4 etc.

Principle Component Regression (PCR)5 and Partial Least Squares (PLS)6 are two of the most

used data analysis tools in chemometrics. These methods are based on projecting the solution to a

lower-dimensional subspace. The literature review by Wentzell and Montoto compared these two

methods, covering both experimental and simulation studies.7 In short, the advantage of PLS is

that the method obtains a small prediction error with fewer principal components than for PCR.

Because of the popularity of these methods, we are going to compare our method with the PLS

regression method.

The simplest model-based static estimator is the "inferential estimator" of Brosilow and cowork-

ers.8 Let ũ =

[
u d

]
represent the vector of independent variables, including the inputs u and the

disturbances d. Let x represent the process measurements and y the variables we want to estimate.

Let the linear static model in deviation variables be

x = X ũ (1)

y = Y ũ (2)

The "Brosilow" estimator is then simply the following least squares estimate of y

ŷ = Hxm (3)

where

H = YX† (4)

and X† is the pseudo inverse of the matrix X.
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Joseph and Brosilow8 discuss some of the weaknesses of this estimator. For "ill-conditioned"

plants with large condition number of X , they find that the estimate may be improved in some cases

by removing measurements, because this reduces the condition number. Intuitively, removing mea-

surements cannot be the optimal way of dealing with these problems, because we are throwing

away information. This is also clear when we consider the popular "data-based" regression esti-

mators, like Partial Least Squares (PLS) regression,9 where one does not remove measurements,

but instead removes weak "directions" in the data.

A fundamental problem with the Brosilow inferential estimator is that it fails to take into ac-

count measurement noise in an explicit manner. The main goal of this paper is to include the effect

of measurement noise in the derivation of the optimal model-based static estimator. This means

that we handle in an optimal manner the "high condition number problem", which has been a major

concern in previous work.1,8,10–12 The derivation is straightforward, but surprisingly it seems it has

not been presented before.

Another issue is that the Brosilow least squares estimator does not take into account whether

the estimator is used only for monitoring or for closed-loop operation. Actually, the latter is a

shortcoming of most existing data-based estimators. In the paper, we derive optimal estimators

for four cases as illustrated in Figure 1. Case S1 is the direct extension of the Brosilow inferential

estimator to include measurement noise. In case S2, the inputs u are used to control the variables

y at given setpoint ys. It is similar to case S1, except that the setpoint ys takes the role of the

inputs. Case S3 is a generalization where we control the variables z. Cases S1, S2 and S3 are

practically relevant if the estimator is used for monitoring only, because the estimate ŷ is not used

for control. Finally, case S4 is the relevant case when we use the estimator in closed loop (for

control purposes). Whereas the optimal estimators for cases for cases S1, S2 and S3 are least-

square estimators with a similar structure to the Brosilow estimator in (4), the structure for case

S4 is quite different and the mathematics to derive it are more complex. The derivation is based

on results for optimal measurement combination for self-optimizing control13 and is the main new

contribution of this paper.
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The derivation of the new static estimators is presented in section 2. The concept of some

well-known data-based estimators are described in section 3. In section 4 we discuss how we can

use our new ideas for optimal model-based to derive new data-based estimator. Finally, in section

5, we compare the new static estimators with previous work, including the Brosilow estimator and

regression based estimators on distillation case-studies.
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(a) S1: Monitoring case where u is a free variable
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(b) S2: Monitoring case where u is used to control the primary variable y
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(c) S3: Monitoring case where u is used to control the secondary variable z
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(d) S4= CL: "closed-loop" case where u is used to control the predicted
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Figure 1: Block diagrams for different cases

4



Derivation of Model-based Static Estimators

Problem definition

We define the following variables:

• u: inputs (degrees of freedom); these may include setpoints to lower-layer controllers

• d: disturbances, including parameter changes.

• x: all available measured variables.

• nx: measurement noise (error) for x.

• y: primary variables that we want to estimate

• z: secondary variables, which we may control, dim(z) = dim(u)

All variables are assumed to be deviation variables (away from the nominal or centered values).

In this section, we derive optimal "open-loop" and "closed-loop" static estimators. By "optimal",

it is meant that we for a linear estimator of the form

ŷ = Hxm (5)

want to minimize the expected prediction error

e = y− ŷ (6)

The measurement signals xm, corrupted by measurement noise nx, are

xm = x+nx (7)
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We use linear static models for the primary variables y, measurements x, and secondary vari-

ables z (see Figure 2)

y = Gyu+Gd
y d (8)

x = Gxu+Gd
x d (9)

z = Gzu+Gd
z d (10)

In terms of the notation used for the Brosilow inferential estimator in (1) we have

X =

[
Gx Gd

x

]
(11)

Y =

[
Gy Gd

y

]
(12)

Plant
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0Gy
d
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d

u

nx
xm

Figure 2: Block diagram for the linearized plant

In addition, the expected magnitude variables of the independent variables for each case (see

Figure 1) is quantified by weighting matrices (Wu, Wd , Wnx ,Wys , Wzs), as explained in detail

below.

Estimators used for monitoring (cases S1, S2 and S3)

With the term “open-loop”, it is implied that the predicted variables ŷ = Hxm are used for moni-

toring, that is, they are not used for control purposes. It should be noted that this is not the same as

implying that the variables in a given system are uncontrolled. We can think of three main types

of open-loop monitoring estimators are illustrated in Figure 1:
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Case S1. Predicting primary variables from a system with no control, i.e. the inputs u are free

variables.

Case S2. Predicting primary variables from a system where the primary variables y are measured

and controlled, i.e. the inputs u are used to keep y = ys.

Case S3. Predicting primary variables from a system where the inputs u are used to control the

secondary variables z, i.e. z = zs.

We first consider case S1 in detail. Cases S2 and S3 are then straightforward extensions.

Case S1

Case S1 is the direct extension of the Brosilow estimator to include noise. To find the optimal

estimator for open-loop operation, the prediction error has to be expressed as a function of the

system and the estimator.

Lemma 1. For a given linear estimator , when applied to the system defined in equations (5)-(9),

and considering that u is a free variable, the prediction error can be expressed as

e(H) =

[
(Gy−HGx)

(
Gd

y −HGd
x
)
−H

]
u

d

nx

 (13)

Proof. An expression of ŷ as a function of u, d and nx can be obtained by substituting equations

(7) and (9) into equation (5).

ŷ = H
(

Gxu+Gd
x d+nx

)
Using the definition of prediction error and substituting the expression for ŷ, we will have

e(H) = (Gy−HGx)u+
(

Gd
y −HGd

x

)
d−Hnx
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which is the same as equation (13). Q.E.D.

Next, we derive an expression for the expected prediction error, assuming that u, d, nx are

normally distributed with given weight matrices.

Lemma 2. Expected prediction error. Let the disturbance and noise be normalized on the form

u = Wuu′

d = Wdd′

nx = Wnxnx′

where the elements u′, d′ and nx′ of the normalized vectors u′, d′ are assumed to be normally

distributed with zero mean and unit standard deviation;

u′ ∼ N (0,1)

d′ ∼ N (0,1)

nx′ ∼ N (0,1)

The diagonal scaling matrices Wu, Wd and Wnx contain the standard deviations of the elements

in u, d and nx respectively.

From Lemma 1 the prediction error can be expressed as

e =
[
(Gy−HGx)Wu

(
Gd

y −HGd
x
)

Wd −HWnx

]
︸ ︷︷ ︸

M(H)


u′

d′

nx′


The expected value of the 2-norm of the prediction error (variance) then becomes

E(‖e‖2) = ‖M(H)‖2
F
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Proof. Let d̃ =


u′

d′

nx′

. Then, e = Md̃, and noting that ‖e‖2 = tr
(
eeT), the expected value of

the 2-norm of the prediction error can be written as

E(‖e‖2) = E
[
tr
(
Md̃d̃T MT)]

= E
[
tr
(
MT Md̃d̃T)]

= tr
(
MT ME

[
d̃d̃T ])

where tr(.) denotes the trace of the matrix and E [.] is the expectation operator.

Since

∥∥∥∥∥∥∥∥∥∥


u′

d′

nx′


∥∥∥∥∥∥∥∥∥∥
∼N (0,Inu+nd+nx), by substituting the normal distribution in the definition

of expected value we have

E
[
d̃d̃T ]= Var

(
d̃
)

In addition, we know that the square root of the trace of the matrix MT M is actually the defini-

tion of Frobenius norm of matrix M. So,

E(‖e‖2) = tr
(
MT M

)
= ‖M‖2

F

Q.E.D.

From Lemma 2, the expected value of the 2-norm prediction error (variance) is minimized by

selecting H to minimize ‖M‖F . This leads to the following theorem

Theorem 1. The optimal "open-loop" estimator following the linear relationship

ŷ = Hxm
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that minimizes the variance of the prediction error (Lemma 1 and 2)

e = y− ŷ

when u is a free variable, is

H1 = Y1X†
1 (14)

where X† is the pseudo-inverse of X, and

Y1 =

[
GyWu Gd

y Wd 0

]
X1 =

[
GxWu Gd

x Wd Wnx

]
(15)

If X1 has full column rank, we have X†
1 =

(
XT

1 X1
)−1 XT

1 . If X1 has full row rank, we have X†
1 =

XT
1
(
XT

1 X1
)−1. For the general case, where X1 has neither full row nor column rank, the pseudo-

inverse may be obtained using the singular value decomposition

Proof. In Lemma 2, we showed that minimizing ‖e(H)‖2 is equivalent to minimizing ‖M(H)‖2
F

for the expected prediction error. M(H) can be rewritten as

M = Y1−HX1

The optimization problem then becomes

min
H
‖Y1−HX1‖

and we recognize that this is the least squares problem with the known optimal solution.

H1 = Y1X†
1

Q.E.D.
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Figure 3 shows an interpretation of Theorem 1, which is a direct generalization of the Brosilow

estimator, when we also include noise. Note that the elements in Y1 corresponding to nx′ is zero.

xm †
1X 1Y

ŷ

d

u

n x

 
  
  

Figure 3: Interpretation of Theorem 1

This estimator is optimal for the case where the process input u are truly independent variables,

that is, when we have no control (case S1 in Figure 1).

Case S2

We now consider the case where the inputs u are used to keep the outputs y at given setpoints ys.

This means that ys replaces u as independent variables. It is assumed that dim(y) = dim(u).

Theorem 2. The optimal “open-loop” estimator H for closed-loop operation, where the degrees of

freedom u are adjusted such that the primary variables y are kept at the setpoints ys, that minimizes

the variance of the prediction error y− ŷ for normally distributed setpoint changes, disturbances

and noise (of magnitudes Wys , Wd and Wnx respectively) is

H2 = Y2X†
2

where

Y2 =

[
Wys 0 0

]
X2 =

[
Gcl

x Wys FWd Wnx

]
(16)

where Gcl
x = GxG−1

y and F = Gd
x −GxG−1

y Gd
y
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Proof. We assume that u is used to keep y = ys (with no control error). Solving equation (8) with

respect to u when y = ys gives

u = G−1
y ys−G−1

y Gd
y d

By combining equations (9), (7) and (5) with the above equation, the following expression for ŷ as

an explicit function of ys, d and nx is obtained,

ŷ = H
[
GxG−1

y ys +
(

Gd
x −GxG−1

y Gd
y

)
d+nx

]

Here,
(
Gd

x −GxG−1
y Gd

y
)
=
(

∂x
∂d

)
y=ys

is the optimal sensitivity F,13 and GxG−1
y =

(
∂x
∂ys

)
d

is known

as the closed-loop gain Gcl
x . So, the above equation becomes

ŷ = H
[
Gcl

x ys +Fd+nx
]

With the assumption that y = ys, the prediction error becomes

e = y− ŷ =

[ (
I−HGcl

x
)
−HF −H

]
ys

d

nx


Proceeding analogous to Lemmas 1 and 2 and Theorem 1, using ys = Wsy′s results in the given

preposition. Q.E.D.

Case S3

The following theorem generalizes theorems 1 and 2.

Theorem 3. The optimal “open-loop” estimator H for closed-loop operation where the degrees

of freedom u are adjusted such that the secondary variables z are kept at the setpoints zs, that

minimizes the variance of the prediction error y− ŷ for normally distributed setpoint changes,
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disturbances and noise (of magnitudes Wzs , Wd and Wnx respectively) is

H3 = Y3X†
3

where

Y3 =

[
Gcl

y Wzs F′yWd 0

]

X3 =

[
Gcl

x Wzs F′xWd Wnx

]
where Gcl

y = GyG−1
z , Gcl

x = GxG−1
z , F′y = Gd

y −GyG−1
z Gd

z and F′x = Gd
x −GxG−1

z Gd
z

Proof. We assume that u is used to keep z = zs (with no control error). Solving equation (10) with

respect to u when z = zs gives

u = G−1
z zs−G−1

z Gd
z d

By combining equations (8) and the above expression for u, we have

y = GyG−1
z︸ ︷︷ ︸

Gcl
y

zs +

(
Gd

y −GyG−1
z Gd

z︸ ︷︷ ︸
)

F ′y

d

Introducing the optimal sensitivity F′y and the closed-loop gain Gcl
y we get

y = Gcl
y zs +F′yd

By combining equations (9), (7) and (5), the following expression for ŷ as an explicit function of

ys, d and nx is obtained.

ŷ = H

GxG−1
z︸ ︷︷ ︸

Gcl
x

zs +

Gd
x −GxG−1

z Gd
z︸ ︷︷ ︸

F ′x

d+nx


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Using the definition of prediction error with the expression for ŷ and y gives

e(H) =

[ (
Gcl

y −HGcl
x
)

(F′y−HF′x) −H
]

zs

d

nx


Proceeding analogous to Lemma 2 and Theorem 1, will result in the given proposition. Q.E.D.

Note that Theorem 3 is a generalization of Theorems 1 and 2, since setting z= u gives Theorem

1 and setting z = y gives Theorem 2.

The "closed-loop" estimator (Case S4)

In this section, we derive an expression for the optimal estimator under the assumption that the

prediction ŷ = Hxm is used for controlling the primary variables, that is, we have ŷ = ys (assuming

integral action in the controller). It is assumed that dim(y) = dim(u).

Theorem 4. The optimal "closed-loop" estimator H (denoted HCL) following the linear relation-

ship

ŷ = Hxm (17)

that minimizes the variance of the prediction error

e = y− ŷ

for normally distributed sets of d,nx and ys (of magnitudes Wd , Wnx and Wys , respectively) as-

suming that the degrees of freedom u are adjusted to keep the prediction at the setpoint (ŷ = ys ),

is

HCL = arg(min
H

∥∥∥∥H
[

FWd Wnx

]∥∥∥∥
F
) (18a)

s.t. HGx = Gy (18b)
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where the sensitivity matrix F is defined as

F =

(
∂x
∂d

)
y=0

= Gd
x −GxG−1

y Gd
y (18c)

Comment: Note that (18b) is equivalent to HGcl
x = I

Proof. An expression for the prediction as an explicit function of u, d and nx is achieved by com-

bining Equations (9), (7) and (5) to get

ŷ = H
(

Gxu+Gd
x d+nx

)
(19)

Using a controller with integral action, the prediction ŷ is held at the setpoints ys by manipu-

lating u. Solving equation (19) with respect to u when ŷ = ys, gives

u =−(HGx)
−1 H

(
Gd

x d+nx
)
+(HGx)

−1 ys (20)

and inserting this into (8) yields

y =−Gy (HGx)
−1 H [Fd+nx]+Gy (HGx)

−1 ys (21)

where F =
(
Gd

x −GxG−1
y Gd

y
)

is the optimal sensitivity. Inserting the expression for y into the

prediction error e, remembering that the prediction is kept at the setpoint (ŷ = ys), gives

e = y− ŷ = y−ys =−Gy (HGx)
−1 H(Fd+nx)+

[
Gy (HGx)

−1− I
]

ys (22)

Introducing normalized (weighted) variables, gives

e =−Gy (HGx)
−1 H

[
FWd Wnx

] d′

nx′


︸ ︷︷ ︸

e1(H)

+
[
Gy (HGx)

−1− I
]

ys︸ ︷︷ ︸
e2(H)

(23)
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In the first term of equation (23), we have extra degree of freedom, because if we pre-multiply

H by a matrix D, we will have

e1 (H) = e1 (DH)

where D is any nonsingular square matrix. This follows because

(DHGx)
−1 DH = (HGx)

−1 D−1DH = (HGx)
−1 H

Since D can be chosen freely without affecting e1 (H), we may choose it such that the last

term is zero, e2 (H) = 0, corresponding to having HGx = Gy. This means that the optimal H

can be found by minimizing the first term (e1) in equation (23), subject to the constraint HGx =

Gy. This problem is equivalent to solving the constrained minimization problem (18) which is

convex.13 Q.E.D.

Comment: The optimization problem in equation (18) is expressed with open-loop gains (Gx

and Gy), but can also be expressed with closed-loop gains by just substituting the open-loop gains

for the closed-loop gains. This can easily be shown by postmultiplying the constraint HGx = Gy

with G−1
y on both sides of the equality, to get HGxG−1

y = HGcl
x = I.

Analytical Solution for H

If F̃ ,

[
FWd Wnx

]
is full rank, which is always the case if we include independent measure-

ment noise (so that Wnx is full rank), then we may alternatively use the analytic expression in

Theorem 5.

Theorem 5. Under the assumption that F̃F̃T is full rank, an analytical solution for the problem

(18) is

HT
CL =

(
F̃F̃T)−1 Gx

(
GT

x
(
F̃F̃T)−1 Gx

)−1
Gy (24)

Proof. The proof is in the paper written by Alstad et al.13 and is based on first vectorizing the

problem and then using standard results from constrained quadratic optimization. Q.E.D.
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Remark 1. One special case, when the expression for H in equation (24) applies also for

Wnx = 0, is when there are more independent than measurements, because F̃F̃T then remains full

rank.13

Remark 2. The solution (24) is equivalent to the following14

HCL = D
((

F̃F̃T)−1 Gx

)T
(25)

where

D = Gy

(
GT

x
(
F̃F̃T)−1 Gx

)−1
(26)

The following example shows the effect of noise for various cases.

Example 1

We consider a scalar case with one input (u), one disturbance (d), one measurement (x), one output

y, and with the following model matrices

Gx = Gd
x = 1

Gy = Gd
y = 1

Wu = Wd = Wys = 1

This corresponds to the case where y = x and we have F = 0.

For case S1, Theorem 1 gives

Y1 =

[
1 1 0

]
X1 =

[
1 1 Wnx

]

and we find

H1 =
2

W2
nx +2
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For case S2, Theorem 2 gives

Y2 =

[
1 0 0

]
X2 =

[
1 0 Wnx

]

and we find

H2 =
1

W2
nx +1

For case S4, Equation 24 gives

F̃F̃T = (Wnx)2

and we have HCL = 1 for all values of the measurement noise Wnx .

Table 1 shows the optimal H for the three cases for some values of the measurement noise.

For the "monitoring" cases (H1 and H2), the optimal estimator gain H approaches zero when the

measurement noise goes to infinity, but this does not occur for the closed-loop estimator (HCL).

The reason is that the estimate ŷ = HCLxm is used for control, that is, u is changed such that ŷ is

equal to ys. If we used an estimator where HCL → 0 then we would need u to go to infinity, which

is not optimal.

Table 1: Optimal H matrix for different values of the measurement noise in Example 1

Wnx H1 H2 HCL
0 1 1 1
1 0.67 0.5 1
5 0.074 0.038 1
∞ 0 0 1

Data-based Estimators

So far we have assumed that we have available a model, which are given by Gx, Gd
x , Gy and Gd

y

in equations 8 and 9, and the expected magnitudes of disturbances and measurement noise, etc.
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were given by weighting matrices (e.g. Wd and Wx
n). Here, we consider the data-based case where

we start from the observations collected in the matrices X and Y. We want to obtain a linear

relationship between the data sets.

Y = XB+B0 (27)

where B and B0 as optimization variables. B0 is normally zero if the data are centered.

Least Squares Solution

The least-square solution to this problem is

B = YX† (28)

It can be seen to be a direct generalization of the "monitoring" estimators in Theorems 1,2 and 3.

Principal Component Regression (PCR) Method

A variant of Least Square is PCR. It starts with a principal component singular value analysis of

the data matrix X, to remove directions in X data with little information. The matrix is truncated

to rank a, where a is the number of principal components, and gives X̃ = ŨaΣ̃aṼT
a . The optimal

estimator is then

BPCR = YX̃†

where X̃† is the inverse of the truncated SVD of the matrix X.

Partial Least Square (PLS) Method

In its general form PLS creates orthogonal score vectors (called latent vectors or components) by

maximizing the covariance between different sets of variables. There are several different algo-

rithms generating bases which all give the same predictor, when there is one Y variable. Rosipal

et al. present a review of the different forms.15 The first approach was nonlinear iterative par-
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tial least squares (NIPALS) by Wold et al.16 The predictor data matrix X = [x1,x2, . . . ,xr], con-

taining the values of r predictors for N samples is compressed into a set of A latent variable or

factor scores T = [t1, t2, . . . , tA], where a≤ r. These factors are determined sequentially using NI-

PALS. The orthogonal factor scores are used to fit a set of N observations to m dependent variables

Y = [y1,y2, . . . ,ym].

There are some assumptions which are inherent in the problem definition or some in the solu-

tion procedure, which are as follows:17

1. Assume centered data generated according to the latent variable model

2. Weight matrix should have orthonormal column vectors

3. The number of y variables is less than the number of components (m≤ A)

4. Components of measurement variables and response variables are independent, i.e. diagonal

expectations E
(
xk,xT

k

)
= 0 and E

(
yk,yT

k

)
= 0

5. The most important assumption is that the outputs and the input data have linear relationship.

The NIPALS method includes various iterative orthogonalization (deflation) processes. Di

Ruscio et al. has presented a new interpretation and description of the basic PLS solution which is

non-iterative, which is more interesting for control community.18 This solution can be expressed

in terms of some weighting vectors only. The equivalence between this method and the NIPALS

version of the PLS method is demonstrated by Elden et al. by proving that they give the same

sequence of orthogonal basis vectors.19 The weight matrix Wa is of size r× a (so the number of

components, a, should of course first be specified). They have first calculated the weight vectors

by an orthogonalization process. The solution is parameterized as B = Wap, where the vector p

is chosen to minimize the Frobenius norm of Y−X×B = Y−X×Wa× p for some specified

weighting matrix Wa.

The orthogonalization process for calculating the weight vectors is not unique. It is evident

that any weighting matrix defined as Wa := WaD (where D ∈ Ra×ais defined as a non-singular
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transformation matrix) can be a solution for this problem, as mentioned by Di Ruscio et al.18 So,

by taking the weights Wa from the Krylov subspace or from the space which span the Krylov

subspace, the optimal weights will be found in the sense that an iterative Ordinary Least square

(OLS) converges the fastest to the OLS solution, i.e. in a minimum number of iterations.18

New data-based estimation

We want to use our results for the optimal model-based estimators, to derive data-based estimators.

The first step is to obtain the required model to use for cases S1-S4 in Theorems 1-4.

Monitoring cases

For cases S1-S3, all the optimal estimators are on the form H = YX†, so we may use the data

directly. The result will be identical to the conventional least squares solution, which from our

derivation should be the optimal estimator for the case when there is no measurement noise for y.

Closed-loop estimator

Let us now consider the more interesting case S4, where we want to find the optimal estimator

to be used for closed-loop operation. To use Theorem 4, we need to have information about

F̃ =

[
FWd Wnx

]
and GxG−1

y = Gcl
x .

This information can be obtained by transforming the original data in Y and X, to match the

"closed-loop" form as given by the matrices Y2 and X2 in (16):

Y2 =

[
Wys 0

]
X2 =

[
Gcl

x Wys F̃
]
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This may be done as follows. Collect all the experimental data in the big matrix Yall .

Yall =

 Y

X

 (29)

Then

1. Perform a singular value decomposition on the data matrix Y = UΣVT

2. Multiply the data matrix Yall with the unitary matrix V to get YallV on the desired form

YallV =

 Wys 0

Gcl
x Wys F̃

 (30)

where F̃ =

[
FWd Wnx

]
. F̃ is denoted Xopt in the following.

Note that F is defined as
(

∂x
∂d

)
y=0

. Since V is a unitary matrix, the magnitude of the prediction

error does not change when it is multiplied by V, so ‖YV−HXV‖F = ‖Y−HX‖F . This follows

because the singular vectors satisfy VT = V−1, so we have

YV = UΣ =

[
U1 U2

] Σ1

0

=

[
U1Σ1 0

]

Gcl
x can be easily calculated. To find Gx and Gy, which are needed to calculate the optimal H

matrix (denoted by BCL in the following), we assume that the degrees of freedom are chosen to be

the primary variables. This will result in Gy = I.

The closed-loop data-based estimator (BCL) suffers from the same weakness as ordinary least-

squares, giving poor results for ill-conditioned matrices and underdetermined systems. Performing

a principal component analysis on the X data will remove the weaker directions containing noise

resulting in a well-conditioned matrix. Then, closed-loop data-based estimator can be applied to

the data. We call this “truncated closed-loop estimator” (B†
CL).
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Examples

Example 2

To investigate the performance of the estimators, they were applied to a linear approximation

of a binary distillation column model - Column A20 - subjected to different control cases. Full

information about the model and the source codes are online. There are two inputs, namely the

reflux flow and the boilup, and one disturbance, which is the change in feed composition. The

linearized model for open-loop system for the two primary variables is

y =

 0.8754 −0.8618

1.0846 −1.0982

u+

 0.8812

1.1188

d (31)

where the primary variables are compositions of the two main components in the top and

bottom products. The model for the eight measurements (temperatures) is

xm =



−64.665 65.413

−171.884 173.569

−226.276 227.842

−130.878 130.911

−195.132 193.623

−142.092 140.419

−55.816 55.013

−11.818 11.634



u+



−67.174

−180.728

−242.622

−146.618

−207.430

−146.928

−56.667

−11.897



d+nx (32)

These measurements are chosen from the top and bottom sections in the column. The two sec-

ondary variables, which are reflux flow and a temperature measurement from 25th tray of column,

are given by

z =

 1 0

−195.132 193.623

u+

 0

−207.4297

d (33)

23



This means that the reflux flow rate and the temperature measurement from 25th tray are controlled

and their setpoints are the degrees of freedom. The disturbance and noise variances are as below

for all cases:

d∼N
(
0,0.052I2

)
nx ∼N

(
0,0.52I8

)
Since there is no control in the first case, the standard deviation in u (σ≈ 0.05) was selected to

give a small standard deviation in y. The resulting standard deviations in the primary variables for

all cases are the same.

Table 2: Four operation cases

Operation Estimator Input variables Variable distribution

Open-loop H1 u u∼N
(
0,0.082I2

)
y = ys H2 G−1

y
(
ys−Gd

y d
)

ys ∼N
(
0,0.0052I2

)
z = zs H3 G−1

z
(
zs−Gd

z d
)

zs ∼N
(
0,
[

0.052 22 ]
I2
)

ŷ = ys HCL (HGx)
−1 [H(Gd

x d+nx)+ys
]

ys ∼N
(
0,0.0052I2

)

For the data-based estimators, calibration data was generated by drawing 32 random values for

u, d, ys and zs with the distributions given in Table 2, and calculating the corresponding output

variables xm and y for the respective cases (except case 4). This gave one set of calibration data

with 32 experiments: X (8 × 32) and Y (2 × 32). The median of the prediction error for 150

runs are used to assess the estimators’ performances because noise and variation in input variables

resulted in a distorted picture of estimator performance by outliers.
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Model-based estimators

Table 3 shows the results of validation for model-based for different cases. For each case (S1, S2,

S3 and S4), the matrix H is obtained first, using theorems 1-4. For example for case S4 we obtain

HCL =



−0.0024 0.0008

0.0004 −0.0041

−0.0001 −0.0017

−0.0025 −0.0001

0.0011 0.0004

0.0003 0.0013

0.0007 −0.0026

−0.0037 0.0005


Then, they were validated on the data generated randomly for each case (S1, S2, S3, S4),

with the given standard deviations for nx, u, zs, ys (see Table 2). The validation is done by first

calculating u for the given case and then substituting into the model. The reported data in Table

3 shows the median of the prediction errors. In Table 3, the diagonal elements correspond to the

optimal estimators for the intended cases, and, as expected, the prediction error is smallest along

the diagonal. Note that the cases are not comparable along the rows because of different variances

for different cases. Calibrating with one case and validating with another is mostly applicable to

the last case. So, the shaded cells are actually showing the more interesting data.

Table 3: The mean prediction error of the model-based estimators applied to four operation cases

Cases
Estimator S1 S2 S3 S4

S1 0.0168 0.0248 0.0177 0.1972
S2 0.271 0.0156 0.035 0.0221
S3 0.0207 0.0224 0.0176 0.1021

S4= CL 0.0187 0.0187 0.0187 0.0187

The prediction errors are equal for all the cases for S4 due to the constraint Gy = HGx. The
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closed-loop estimator generally gives the best performance.

Data-based estimators

Table 4 shows the results of validation for data-based estimators. As mentioned in the previous

section, the dashed cells are the more interesting data.

Table 4: The mean prediction error of the data-based estimators applied to four operation scenarios

Loss

C
al

ib
ra

tio
n

D
at

a

Operation Estimator S1 S2 S3 S4
S1 BLS,1 0.017 0.019 0.018 0.02
S2 BLS,2 0.316 0.016 0.061 0.173
S3 BLS,3 0.077 0.022 0.017 0.054
S1 BPCR,1 0.017 0.018 0.017 0.018
S2 BPCR,2 0.379 0.015 0.069 0.192
S3 BPCR,3 0.091 0.023 0.016 0.065
S1 BPLS,1 0.016 0.018 0.017 0.018
S2 BPLS,2 0.352 0.014 0.067 0.192
S3 BPLS,3 0.077 0.021 0.016 0.055
S1 BCL,1 0.018 0.02 0.018 0.020
S2 BCL,2 0.132 0.018 0.028 0.067
S3 BCL,3 0.077 0.022 0.017 0.053
S1 B†

CL,1 0.017 0.019 0.017 0.019
S2 B†

CL,2 0.130 0.016 0.028 0.066
S3 B†

CL,3 0.088 0.024 0.016 0.061

Figure 4 shows the "closed-loop" performance with two different data sets. The number of

measurements is increased from 8 to 41 (the total number of stages). All estimators are trained

on calibration data from case 2 and validated on case 4. The performance of new closed-loop

estimator (shown with BCL in Figure 4) and the ordinary least square estimator (shown with BLS

in Figure 4) was deteriorated when then the system was over-determined with low number of data.

This is because they were forced to use the weak directions and assimilate noise and collinearity.

Since the truncated closed-loop estimator (B†
CL in Figure 4) filters out the noise, it results in better

performance. Comparing the two figures in Figure 4, we will see that if the data-based estimators

are given enough data they will approach their model-based counterparts.
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Figure 4: Median prediction error for two sample sizes (validated for S4)

Example 3

The next example is from a multi-component distillation column (4 components) which is simu-

lated rigorously. The schematic of the distillation process with estimator is shown in Figure 5.
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Figure 5: Schematic of the distillation process with estimator

The two lightest and the two heaviest products are supposed to be separated in the column. The

feed stream is a saturated liquid mixture of methanol, ethanol, 1-propanol, 1-butanol. Disturbances

are composition, flow rate, quality, Pressure in the feed stream and also condenser pressure.The

composition setpoints for 1-propanol in the top (xC3 in D) and ethanol in the bottom (xC2 in B) of

prefractionator are 0.0095 and 0.038 respectively.

Here we show how simple the closed-loop model-based estimator can be derived by choosing

the right variables as manipulated variable. We can actually consider u to be any two variables

from the process. For the sake of simplicity and because we can use the close-loop information of

the system, we select the inputs to the estimation model to be equal to the product compositions,

in our case

u = y =

[
xC3inD xC2inB

]
This will make the case easier and the matrices will be as below:

Gy = I

Gd
x = F

Gd
y = 0
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We use exactly the same information for PLS method. X and Y in PLS method are the first and

second row of Yall matrix (Equation (29)) respectively. We have assumed that we have temperature

sensors in every 4th tray. The matrices in the following show the fitting matrices for the two

methods (B for PLS and HCL is from equation 24).

B =



−0.0045 0.0075

0.0113 −0.0076

−0.0036 0.0037

−0.0038 −0.0013

0.0074 −0.0092

−0.0055 0.0152

−0.0022 0.0057

0.0011 −0.0140



HCL =



−0.0038 0.0080

0.0104 −0.0082

−0.0028 0.0041

−0.0035 −0.0011

0.0059 −0.0101

−0.0049 0.0156

−0.0019 0.0059

0.0010 −0.0141


Figure 6 shows the dynamic behaviour of the model as disturbances happen and also of the esti-

mators. It is shown that the estimated values can track the real composition very well. It should be

noted that the steady state value is more in focus since the methods under study are static estima-

tors. The dynamic behaviour can be corrected by feedback.
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Figure 6: Estimated and model Composition values for the case with two temperature controls
and with the consideration of 8 measurements

Further Examples

Some additional examples are provided by Skogestad et al.,14 where the new closed-loop estima-

tor is compared with PCR and PLS. It is also suggested that adding "artificial noise" may provide

additional degrees of freedom for our method. This is particularly relevant when there are a large

number of measurement (x), but relatively few samples, for example, for spectroscopic data, be-

cause it is then difficult to obtain a good estimate of Wnx using equation (30). The idea is to add

an extra diagonal matrix W′
nx to the end of Xopt = F̃, which contains the expected noise for each

measurement x along its diagonal.
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Discussion

Relationship to self-optimizing control

This work originated from considering the "indirect control problem"10 using the "exact local

method" in self-optimizing control. In "indirect control" the objective is to find a set of controlled

variables c = Hx such that by keeping c constant, we indirectly keep the primary variables y

constant (or more specifically, at their desired setpoints ys), in spite of disturbances d and measure-

ment noise nx. This can be viewed as a special case of "self-optimizing control" with cost function

J = ‖y− ŷ‖2. We can then apply the theory that has been developed for "self-optimizing" control,

which includes the "exact local method". This directly leads to the result in Theorem 4, when the

"extra degrees of freedom" in H are selected such that c = ŷ. This requires some explanation. In

indirect control, we adjust the inputs u by feedback to keep c = Hx = 0 (constant). Note that we

will generate the same inputs u (for a given d and nx), also if we keep c′ = Dc = 0 where D is any

invertible matrix. The matrix D is the so-called "extra degrees of freedom" in H.

It is clear that one good variable c = Hx to use for indirect control of y is the estimate ŷ.

However, if we look the other way around, then the optimal c will not necessarily correspond to

an estimate of y (ŷ). However, there are extra degrees of freedom in selecting c = Hx, we can use

these extra degrees of freedom (i.e., the D-matrix), to make c = Hx equal to ŷ, which is in fact

done when we select H such that HGx = Gy (see Theorem 4).

Comparison with work of Pannocchia and Brambilla

Our paper provides an extension of the results of Pannocchia and Brambilla11 on "steady-state

closed-loop consistency" to include also measurement noise. In addition, we have shown, in agree-

ment with the results in the paper by Hori et al.,10 that we can always achieve "perfect consistency"

for setpoint changes, that is, the use of the "extra degrees of freedom" in H, makes it possible to

always have the norm from ys to the prediction error (y− ŷ) equal to zero, without sacrificing the

norm from disturbances (d) to the prediction error. In the notation of Pannocchia and Brambilla11
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this means that we can always make εr = 0 without sacrificing the norm of εd .

The inclusion of measurement noise is important, because this is often a critical factor. As

an example, consider the estimation of the two product compositions in a distillation column

(y =

[
xD xB

]
) based on temperature measurements (x = T). For a binary distillation column

with constant pressure, temperature and compositions are uniquely related. So, if there were no

measurement noise (nx = 0), one could in theory have a perfect estimate of y by measuring the

temperature at the two columns ends (x =

[
TD TB

]
), irrespective of any disturbances in feed

composition or feed rate (which may affect stage efficiency). However, in practice, the estimate

will be poor because of measurement error, especially for high-purity columns. For example, as-

sume the bottom product of a methanol/water distillation column should be about 99.99% water.

At 1 atm, the boiling point of this mixture will be approximately (0.9999×100◦C + 0.0001×

65◦C = 99.9965◦C, whereas the boiling point of 100% water is 100.00◦C. Thus, if we have a

measurement error of more than 0.0035◦C (which we certainly will have), then the temperature

measurement will be useless to infer composition as it would lead to predicting negative compo-

sitions. Thus, due to measurement error (nx), we need to locate the temperature sensor away from

the column end, and the optimal location can be found using the methods presented in this paper

which include measurement noise.

Measurement selection

The results presented in this paper also provide the basis for optimal measurement selection, which

extends Algorithm 1 in Pannocchia and Brambilla11 to include measurement noise. For example,

assume there are 10 candidate measurements, and there are 2 outputs that we want to estimate (i.e,

we have 2 y’s and 2 u’s). Assume that we want to use 4 out of these 10 measurements. There

are then 210 candidate measurement sets, and we find the best set by computing for each set the

prediction error using Theorem 4. To avoid checking all sets, we can also use the branch and bound

method developed by Kariwala and Cao.21
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Comparison to standard data-based estimators

1. In least squares regression (LS), one gets B = YX−1, or more generally B = YX†, where

X† denotes the pseudo inverse of X. In principal component regression (PCR), one uses B =

YX†
a where X†

a = ∑
a
i=1

1
σi

νiuH
i denotes the pseudo inverse of X = UΣVH with only a principal

components included. Thus, in both LS and PCR one inverts the X-matrix, while with the new

estimation method, see equation (25) in Theorem 3, one considers only a part Xopt = F̃ of the

transformed X-matrix. It is optimal because the corresponding Y data are zero. The proposed

method seems a bit similar to PLS in that we use the data for Y to affect the X-data (we get Xopt

from X by using the SVD of Y).

2. Comparing the regression equations of our new estimator and PLS, we realize that the PLS

method has one more degree of freedom (B0), which provides an optimal centering of the data. We

may include this degree of freedom into our method as follows: By assuming deviation variables,

we may write

Y−Y0 = H(X−X0) (34)

or

Y = HX+H0 (35)

where H0 = Y0−HX0. By writing

H0 = diag(H0)×1− vector (36)

Equation (35) then can be written as

Y′ = H′X′ (37)

where H′ =
[

H diag(H0)

]
and X′ =

[
X 1− vector

]
.

Thus, by just adding 1’s to the end of the X-data, one can optimize to find H′, and then find H

and H0.
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3. The general equation for B in PLS is22

BPLS = Wa
(
WT

a XT XWa
)−1 WT

a w1 (38)

Comparing this with H for our closed-loop estimator in equation (25), we see that Xopt = F̃ is

a variation of WaX. Xopt is actually XV in our method, where V is the right singular vector. It acts

as some sort of Wa.

We must assume that Xopt = F̃ is full rank (invertible) to use the analytic expression in equation

(25). If F̃ does not have full rank one may use some pseudo-inverse of F̃ (similar to PCR). This

adds degrees of freedom to the method, which in PLS is the size of the matrix Wa and is specified

in the first step (the number of components in PLS). The problem of invertibility is solved by

manipulating Wa matrix.

4. The PLS method for univariate data is optimal in the prediction error sense.18 However,

the PLS algorithm for multivariate data is not optimal in the same way as the PLS algorithm for

univariate data. There are reports that from the literature that the PLS solution using different

approaches are not equivalent. For example de Jong’s SIMPLS23 is not equivalent to Herman

Wold’s NIPALS.

5. As mentioned before, the reports from different studies showed that PLS always give a

higher coefficient of determination (denoted R2 in statistics) than PCR (Table 1 in the paper by

Wentzell et al.7). However, some authors24–26 have taken a closer look on the shrinkage properties

of PLS and have shown that PLS nearly always can be improved in principle, so the regression

method as such is not optimal.

Conclusion

In this paper, we have introduced a new class of static estimators based on minimizing the pre-

diction error. We have considered four different cases, where the first three (S1-S3) correspond to

cases where the estimator is used for monitoring, and the fourth case (S4) is when the estimator is
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used in closed-loop. The new estimators (Theorems 1-5) are derived based on the assumption that

we have available a linear process model. If only we have data available, then these may directly

be used for the three monitoring estimators (S1-S3). For the closed-loop estimator (S4), we have

proposed a method to extract the data, see equations (29) and (30). For the data-based case, the

new estimators have been compared with the established PCR and PLS estimators, and the results

were found to be comparable (see Figure 4). For a specific case, our new estimators should be

better as they are optimal in terms of minimizing the prediction error, but PCR and PLS are found

to generally give good predictions.
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