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Abstract: A systematic plantwide control design procedure was proposed by Skogestad [2000].
The main goal of this procedure is, to design an optimal control structure for a complete
chemical plant based on steady state plant economics, also known as economic plantwide control.
In this work, we automated a key step of this procedure, which is the selection of controlled
variables, based on quantitative local methods. We applied the economic plantwide control
design procedure to a typical chemical plant process, which consists of a reactor, a separator
and a recycle stream with purge. We evaluated the economic performance of the designed
control structures for various disturbances and found that, although the automatic selection
of the controlled variables was based on local methods, the control structures performed quite

well, even for large disturbances.
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1. INTRODUCTION

Production plants today are facing difficult challenges im-
posed by the modern globalized markets. Global compe-
tition demands cheaper and more flexible production, in
order to retain profitability and competitiveness. Most of
the industrial process control strategies are designed to
work at some nominal operating conditions, and usually
are not designed to optimally handle frequent (daily or
weekly) changes in market conditions and prices, and thus,
to retain an optimal economic operation. The interesting
and at the same time challenging aspect of the plantwide
control design problem, is to design a control structure
that ensures stable and close-to-optimal economic opera-
tion, and at the same time meets the technical and prod-
uct quality constraints. These objectives must be satisfied
despite the occurrence of disturbances (including market
fluctuations, such as: raw material and products price
changes, product demand changes, energy price changes,
etc.). As Engell and Harjunkoski [2012] stated “the mer-
ciless global competition dictates the need for solutions
that keep the production cost low and adapt to changing
situations”.

However, despite the ever-increasing market pressure, the
problem of the plantwide control, also known as ”control
structure design for the complete plant” Skogestad [2004a],
is not new. Many different plantwide control design rules
have been suggested in the last decades. Larsson and
Skogestad [2000] provide an excellent overview of differ-
ent plantwide control design approaches. As mentioned in
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Downs and Skogestad [2011], 20 years ago the “Tennessee
Eastman Challenge problem” was designed so the vari-
ous plantwide control design procedures could be tested
against each other, but nevertheless, much of the research
done during over the previous decades, has not gained a
significant acceptance by the modern industry.

There are many different plantwide control design ap-
proaches, Engell [2007] states that, in order to minimize
the operation cost, in a such demanding environment of
frequent market condition changes, a new look on integra-
tion of process control and process operations is needed.
That paper provides a review of state of the art in in-
tegrated process optimization and control of continuous
processes. The two state of the art approaches for imple-
menting an optimal plant operation presented in detail in
his paper are: the self-optimizing control [Skogestad, 2000]
and direct online optimizing control [Marlin and Hrymak,
1997].

For the direct online optimizing control the main idea is,
to calculate the optimal input trajectory over some control
horizon by optimizing a rigorous nonlinear dynamic model
of a plant over some prediction horizon.

For self-optimizing control the idea is: using rigorous
nonlinear steady-state plant model select off-line some
“magic” self-optimizing variables. These “magic” variables
are defined in Skogestad [2004b] as: the controlled vari-
ables, that, when kept constant at nominal optimal values,
using the available degrees of freedom, indirectly result
in a close-to-optimal operation despite the occurrence of
disturbances.
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Since the direct online optimization approach guaranties a
near-optimal operation, it has gain a lot of attention from
process industry, but has failed to be adapted widely by
the industry, because it is too complicated and expensive
in many cases. Downs and Skogestad [2011] mention that
the usual industrial practice is to focus on unit operation
control, mainly because this is a simple strategy that is
easily understood by the operators and engineers. Thus
a plantwide control design procedure has to have three
essential characteristics in order to be applied by the
process industry engineers: (1) it has to be simple (without
the need for complex control technology, like real-time
optimization), (2) it has to be able to achieve near-optimal
operation, and (3) it should not “require the care and
feeding of experts”.

The economic plantwide control design procedure, as de-
scribed in Skogestad [2012], can be used to design control
structures that have the first two of the key characteris-
tic mentioned above. The main idea is to formulate the
optimal economic operation as a mathematical optimiza-
tion problem and then to design a control structure that
ensures close-to-optimal operation while satisfying the sta-
bility and robustness requirements. The suggested design
procedure is split into a top-down part, that aims to finds
an optimal control structure based on plant steady state
economics, and bottom-up part that aims to find a simple
and robust regulatory control structure which can be used
under varying economic condition.

The third characteristic could be realized by automating
the plantwide control design. An automated procedure
could widen the industrial acceptance of state of the art
strategies for optimal plant operation, by hiding the un-
necessary complexities from the process control engineers,
thus having a significant impact on the production costs
and environmental footprint on a global scale. The hier-
archical decomposition of the economic plantwide control
design into a stepwise top-down and bottom up procedures
could provide the basic framework for automating the
entire design procedure, which is the ulterior goal behind
the work presented in this paper.

A key step in automating the entire procedure is to
automate the selection of the controlled variables for the
economic layer. Our main focus here, is to show that this
can done by selecting self-optimizing controlled variables
based the quantitative local methods described in [Alstad
et al., 2009].

In this work we apply the economic plantwide control
design procedure to a typical chemical plant, emphasizing
the automatic selection of the self-optimizing control struc-
ture, using quantitative local methods. We evaluate the
economic performance of the selected control structures
and compare them against a simple strategy of keeping the
unused degrees of freedom at their nominal optimal values.
As a typical chemical plant, we consider a process, which
consists of a reactor, a separator and a recycle stream
with purge. The specific process flow is selected, because
it incorporates the basic structure of most of the chemical
plants and because it has been studied extensively in the
process control literature [Larsson et al., 2003],[Jacobsen
and Skogestad, 2011],[Wu and Yu, 1996].
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Fig. 1. Feedback implementation of optimal operation with
separate layers for optimization (RTO) and control.
[Alstad et al., 2009]

This paper is structured as follows: Section 2 presents
a brief summary of the top-down part of the economic
plantwide control design procedure. In Section 3, we
present the mathematical formulation of optimal operation
and the main ideas behind the derivation of Nullspace
method and the Exact local method. We describe the
reactor-separator-recycle (RSR) process and the software
used for this work in Section 4. A step by step application
of the top-down part of the economic plantwide control
procedure for the RSR process with emphasis on the
automatic selection of self-optimizing CVs is presented
in Section 5, and in Section 6 we evaluate the economic
performance of these self-optimizing control structures and
discuss the results. Section 7 gives a brief overview the
work and concludes the paper.

2. ECONOMIC PLANTWIDE CONTROL DESIGN
PROCEDURE

This section presents brief summary of the top-down part
of the economic plantwide control design procedure as
described in Skogestad [2004a] and Skogestad [2012]. The
nomenclature for the inputs, disturbances, measurements
and noise, used in this section, is depicted in Fig. 1.

Step 1: Define the operational objectives (eco-
nomics) and constraints.

First, operational objectives are defined as a scalar cost
function J and the operational constraints are identified
and formulated. For production plants, a typical cost
function is:

J = ZpF,i Fr;+ ZPU,i Fy;+ pr,i Fp;, (1)
where: Fp;, Fy; and Fp; are the feed, utility and prod-
uct streams flow rates, respectively. The terms pr;, pu.
and pp; are their respective prices. Typical operational
constraints are: the product quality specifications, process
safety requirements, equipment limitations, bounds for
temperatures, pressures, flows, etc.

Step 2: Determine the steady-state optimal opera-
tion

In this step, first an operational mode has to be chosen
before proceeding with the analysis:
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e Mode 1: Given throughput (maximize the efficiency).
This mode corresponds to some tradeoff between
valuable product recovery and minimal energy usage.

e Mode 2: Maximum throughput (maximize the pro-
duction). When the product prices are high compared
to energy and raw product prices it is optimal to
increase the production to maximum.

(a) Identify the steady state degrees of freedom
Identify all the degrees of freedom (DOFs) that af-

fect the cost function J. First, the dynamic DOFs up
are identified. They correspond to the actual manipu-
lated variables e.g valves and /or other adjustable elec-
trical and mechanical variables. Then, all the DOFs,
that either don’t have any effect on the cost function
J (e.g. an extra bypass valve on a heat exchanger), or
are used to control outputs that have no effect on the
cost(e.g. valves that are used to control tank levels),
are fixed at some realistic value and are excluded from
further analysis. The remaining DOF's are the steady
state DOFs ugg known also as optimization DOF's.

(b) Identify the important disturbances and their
expected range Here, the important disturbances
are identified. The “importance” of a disturbance is
proportional to the sensitivity of the cost function
to that disturbance. Typically the important distur-
bances are: the feed flows, feed composition, prices
(included in the cost function)and back-off from con-
straints.

(c) Identify the active constraints regions

Here, the active constraints regions for the the ex-

pected disturbance range are identified. A straight-
forward approach, for mapping these regions, is to
optimize the process over a fine grid of points in the
disturbance space, thus determining which constraints
are active at every point. A more resourceful approach,
which tracks the active constraint boundaries is re-
ported by Jacobsen and Skogestad [2011].

Step 3: Select primary (economic) controlled vari-
ables.

Every steady state DOF identified in the step 2(a) needs
to be paired with a primary controlled variable.

First, pair them primarily with the active constraints,
which can be considered as the obvious self-optimizing
variables, since keeping them at the nominal optimal val-
ues, results in an optimal operation. The active constraints
could be inputs u or outputs y. While, the implementation
for the active inputs constraints is trivial (e.g. valve fully
open or closed), for output constraints that can not be
violated, special care, in terms of safety margins (back-
off), is required.

Then, the self-optimizing controlled variables for the re-
maining DOFs are identified. The main steps involving
the selection of those variables are:

(a) Identify the candidate measurements
Identify all the candidate measurements y and esti-
mate the expected static measurement error n¥. The
measurements should include the inputs too u(e.g. the
flow rates measurements).
(b) Select the primary (economic) controlled vari-
ables (CVs) for the remaining DOF's

As primary CVs ¢ we may select a single or combi-
nation of measurements, based on the structure of the
H matrix, that is: ¢ = H y. The selection is based
on:

(I) Qualitative approach (based on the following

Skogestad’s heuristic rules)

(1) The optimal value of a CV should be insen-
sitive to disturbances.

(2) The CV should be easy to measure and
control.

(3) The CV should be sensitive to manipulated
variable (MV) variations.

(4) For cases with two or more CVs, they
should be not closely correlated.

(II) Quantitative approach

(1) Brute force approach

Grid the expected disturbance space and
evaluate the cost function J at each point of
the grid, including estimated measurement
noise, while keeping a subset (of n,, size) of
candidate CVs set at their nominal values.
Choose for pairing the subset of CVs that
gives the lowest loss. While this method is
the simplest to understand and apply, it is
the most time consuming method. Even if
we consider single individual measurements
as CV candidates, it still remains almost a
hopeless combinatorial optimization prob-
lem to attack for large number of inputs
n, and measurements n, , since it requires
nev,,,, different CV combinations to be
considered, where:

nevn = (1) )

(2) Local approaches
Local approaches are based on the Tay-
lor series expansion of the cost function
around the optimal nominal point. These
are: the Maximum gain rule [Skogestad and
Postlethwaite, 2005], the Nullspace method
[Alstad and Skogestad, 2007] and the Exact
local method [Alstad et al., 2009].
The last two local methods are described in
the section 3.

We note that, Step 3 has to be repeated for each distinct
active constraint region. When the process moves to a new
region with different active constraints, the control struc-
ture must be switched to the one designed for that region.
Otherwise this could result a large economic penalty or
even infeasibility.

Step 4: Select the location of throughput manipu-
lator (TPM)

The TPM or the process “gas pedal” is usually a flow in the
process that is set. There are two key concerns regarding
the location of the TPM:

(a) Economics
The location of the TPM is going to affect how
tight some active constraints can be controlled, thus
affecting the economic loss.
(b) Structure of the regulatory control system
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The location of the TPM has a significant impact
on the regulatory control structure, because of the ra-
diation rule [Price and Georgakis, 1993], which states
that “a self-consistent the inventory control structure
must be radiating around the location of a fixed flow”.

The selection of TPM location is a very important
step because it links the top-down and the bottom up
parts of the procedure.

We do not consider the bottom up procedure, because it
is out of the scope of this paper. We refer the reader to
[Skogestad, 2012].

3. LOCAL QUANTITATIVE METHODS

Here, we focus on step 2(b) of the procedure described
in the previous section. We present the mathematical
formulation of the optimal operation and the lay down the
ideas behind the two local methods, the Nullspace method
and the Exact local method. The work presented here is
follows [Alstad et al., 2009], unless otherwise stated. The
nomenclature used in this section, if not explicitly defined,
is depicted in the Fig. 1.

Optimal operation of the plant, with respect to the steady
state DOFs u, can be defined as:
J(u,d)

where: the ¢;(u,d) are the operational constraints. We
assuming that the w here includes only the remaining
steady state DOFs and that the d includes the parameter
variations too.

minimize
u

subject to

For a given d, the solution of the problem 3 gives the opti-
mal value for the cost function J°P(d) , the optimal input
values u°Pt(d) and the optimal output values y°P(d).

We define the loss as the difference between the cost using
non optimal inputs u and the optimal cost JP!(d):

L = J(u,d) — JP(d) (4)

The loss can be approximated around a moving u°P*(d)
using Taylor expansion series. Assuming that the active
constraints set doesn’t change for a given disturbance, the
quadratic approximation of the loss function is derived by
Halvorsen et al. [2003]:

1
L= §(u — P Ty (u — uP?) (5)
Assuming that the number of independent steady state
degrees of freedom w is equal to the independent CVs
c, that is n, = n., the constant set point policy can be
formulated as:

Ac= HAy (6)
where: Ae = ¢ — c¢g denotes the difference between the
actual ¢ and the nominal ¢, values of CVs. If the noise is
included the constant setpoint policy implies that cs = ¢+
ny

The linearized (local) model in terms of deviation variables
is formulated as:

Ay =GYAu + GYAd (7)
Ac = HGYAu + HGYAd (8)

We define the s/caled disturbances d’ and scaled measure-
ments noise nY as:

Ad = WaAd' (9)
nY = W,vn? (10)
The self-optimizing control can be described, in terms of
the variables defined in this section, as the selection of
optimal H in ¢ = H y, such that, if ¢ kept at its nominal

optimal values ¢s (constant set point policy), it results in
minimal or acceptable loss [Yelchuru and Skogestad, 2011].

Nullspace method

The derivation of this method is quite straightforward,
details can be found in [Alstad and Skogestad, 2007].
Assuming that there is no measurement noise n¥ = 0, for
optimal operation the (6) becomes:

Ac?' = HAy°P!
Ay°P! can be written as:
Ay = FAd
Combining the equations(11) and (12) results:
Ac' = HFAd (13)

where: F' = 63’9: = 7(GyJ7;,;'Jud - GY) is the optimal
sensitivity matrix. For practical purposes its easier to
calculate the F' by reoptimizing non-linear steady state

plant model for small disturbance variations.

(11)
(12)

An optimal operation based on constant set policy means
Ac®Pt = ( for any Ad # 0.

Theorem 1. (Nullspace method). [Alstad and Skogestad,
2007] If the number of measurements n, is equal or
larger than the number of inputs n, plus the number of
disturbances ng, that is ny, > n, + nq and F' is evaluated
with constant active constraint set, then it is possible to
select the matrix H as a basis for the null space of F,
H € N(FT), such that, HF = 0

Which means that any H such that, HF = 0 results in
an optimal operation.

Ezact local method

This method is recommended when the measurment noise
is not negligible.

To minimize the average and the worst case loss for

< 1 Alstad

2
et al. [2009] formulated the the problem for finding a

measurement combination as follows:
. 1
H:argm}}nHJgu(HG?’)_IHYH (14)

where: Y = [FW4W,], the x denotes 2-norm for the
worst case scenario and Frobenius norm for minimizing
the average loss.

’

the expected noise and disturbances, y
n

In the same paper they derived the analytical solution for
Frobenius norm case of the problem (14):

H" = (YY) 'G¥(GY"(YYT)'GY) " Tu 2 (15)
Kariwala et al. [2008] showed that the H obtained for

Frobenius norm is in some sense super optimal. It mini-
mizes both worst case loss and the average case loss.
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Yelchuru and Skogestad [2011] based on the analytical
solution (15) derived and proved the following theorem:

Theorem 2. (Simplified analytical solution). [Yelchuru and
Skogestad, 2011] Another analytical solution to problem in
(14) is

HT =(yY")~'g¥qQ
where: @ is any non-singular matrix of n. X n.

(16)

Which results in a quite elegant solution to the original
problem 14.

4. PROCESS DESCRIPTION

In this section we describe the details of the reactor-
separator-recycle process used as a case study in this work.

4.1 Process description

A generic chemical plant, which consists of a reactor, a
separator and a recycle stream with purge, is used as
a case study. The specific process was chosen because it
incorporates the basic structure of many chemical plants
and because it has been studied extensively in the pro-
cess control literature [Larsson et al., 2003],[Jacobsen and
Skogestad, 2011],[Wu and Yu, 1996]. In this work, we used
the same process parameters and reaction set as [Jacobsen
and Skogestad, 2011], so the reader can refer to that paper
for any details omitted here. The process flow diagram is
illustrated in Fig. 2.

A fresh feed Fy of raw product A and recycle stream R
are fed into a continuously stirred tank reactor (CSTR).
Two parallel reactions take place in the CSTR:

A— B (17a)
A—2C (17b)
where: B is the desired product and C a byproduct. The

reaction rates are modelled as first-order kinetics. The
reaction rate model is given by:

Eai
ri:Aiexp<Rf>

where: E, ; is the activation energy, R is the gas constant
and T is the temperature. The reaction parameters are
given in Table 1.

(18)

The effluent F' of the reactor is sent to the distillation
column, where the product B is separated as a bottom
product and the unreacted A and C are distilled. Part of
the distilate D is removed as P purge, while the rest of it
R is recycled back to the CSTR.

The column model used here is a ideal multicompo-
nent model based on the ”Column A” in [Skogestad and
Postlethwaite, 2005]. The main assumptions in the model
are: constant relative volatilities, constant molar overflows,
constant pressure over the column, liquid dynamics based
on Francis’ wier equation. Some of the column parameters
are given in Table 2. The column tray temperatures are

estmated using:
Ty =Y wi;Th, (19)

where: Tj is the temperature of the jy, tray, Ty ; is the
boiling temperature of the pure component 7 and x; ; is
the composition of component ¢ in the j;, tray.

Table 1. Reaction kinetics parameters

Reaction,  Reaction rate constant, Activation energy,
) A;, [unitsil} Ea i, [J/mol]

A—B 1x10° 6 x 10*

A—2C 5 x 10° 8 x 10*

Fig. 2. Process flow diagram for the reactor-separator-
recycle process

Table 2. Distillation column parameters

Parameter  Value ‘ Parameter Value
aac 0.70 number of stages 30
aBpc 0.60 feed stage location 15

Table 3. Nominal process values

Parameter Value

[Ty, 4, Tv,B, Tb,c] [370, 400, 340] [K]

[pv, pB, pF, pP]  [0.01, 2, 1, 0.5] [8/mol]
P 0.8 [kmol/4]

4.2 Process optimization and simulation

For this investigation we developed a steady state MAT-
LAB model and a dynamic SIMULINK model of the
described above process. For the optimization needs
the builtin MATLAB® non-linear optimization function
(fmincon) was used. For simulation purposes we used
SIMULINK® with odel5s solver.

5. ECONOMIC PLANTWIDE CONTROL DESIGN
IMPLEMENTATION

This section presents the implementation of the top-down
part of the economic plantwide control design procedure
as described in [Skogestad, 2004a] and [Skogestad, 2012].
The nomenclature used in this section is depicted in Fig.
2.

Step 1: Define the operational objectives (eco-
nomics) and constraints.

Cost function: The cost function is derived based on (1):
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J=prFo+pyV —ppP —ppB
where: Fy is the reactor feed flow rate, V is the column
boilup, B is the bottom product flow rate and P is the
purge flow rate. The pg, pv, pg and pp are their respective
prices.

Operational constrants: For this process the opera-
tional constraints are: the product specification and equip-
ment limitations.

IB,B S 0.9 TR S 390 [K]
Mg < 11000 [mol] V <30 [mOI/s]
R Z 0 [rnol/s] P Z 0 [mol/s]
B >0 [mol/s]

where: zp p is the composition of B in the bottom product
stream B, T’ is the reactor temperature, M is the reactor
holdup, R recycle stream, P purge stream.

Step 2: Determine the steady-state optimal opera-
tion For this process we assumed that the feed is given,
thus the operational mode is Mode 1: Given throughput.

(a) Identify the optimization degrees of freedom
analysis
Dynamic degrees freedom:

Uup = [Lv‘/vaB7FaRaTR]
Steady state degrees freedom:
uss = [La ‘/a F7 R7 TR]

D and B are used to control the levels Mp and Mp
respectively, which have no steady state effect on the
cost but have to be controlled for stabilizing the plant.

(b) Identify the important disturbances and their
expected range

We consider as main disturbances for this case the
energy price, py and the feed flow, Fy :
d= [F07 pV]

(c) Identify the active constraints regions To map
the active constraints regions the disturbance space
was gridded into 200 x 200 points and for each point
optimal solution was found. The active constraints
regions are illustrated in Fig. 3. There are four distinct
regions, where various constraints are active and a fifth
region of operational infeasibility, where there is no
longer possible to handle more feed without violating
some of the constraints:

(I) ZB’B,TR,MR,R
(II) xB,BvTR7MR
(III) TB,B, TR7 _]\4'1{7 1%
(IV) TB,B, TR7 ]\IR7 V, R
(V) Infeasible

Step 3: Select primary (economic) controlled vari-
ables.

We assume nominally the process operates in the first
region (I). The nominal operational point is:

FO,nom =0.8 [km()l/s], PV,nom = 0.06 [$/m01}

We choose the pairings (Input, Output) as follows: for the
the output constraints based on Skogestad’s rule ”pair
close” [Skogestad, 2012] and for the inputs we just fully
open or close them.

(Vizpp) (S,Tr) (F,Mg) (R, Closedvalve)
The control structure of the selected pairings are depicted
in Fig 2.

(a) Identify the candidate measurements
We select the following measurements and estimate
the expected noise magnitudes:
column and reactor temperatures (noise =1 [K])
T, Ts, Ty, Th3 Th7, To1, Tos, T30, Tr,
the input flows (noise +2 %)
L7‘/7D7B7F5F07P
reactor level(noise £100 [mol])
Mpg
compositions (noise £0.01)
TB,D,TB,B,TB,F-
(b) Select the primary controlled variables for the
remaining DOF's

After pairing the active constraints and levels, only
1 DOF left , that is L. Based on the two qualitative
methods, described in 3 we select a self-optimizing
controlled variable to pair it with L.

First, we calculate the optimal sensitivities F by
perturbing the disturbances and re-optimizing the pro-
cess for the perturbed values. The optimal deviations
of the measurements divided by the variation of dis-
turbances provide the F' matrix:

Ayopt

Ad
Then, we calculate the gain matrix GY by perturbing
the inputs and then simulating the process until it
reaches the new steady state. The gain matrix is
calculated by dividing the measurements variations by
the input deviation:

F =

Ay
- Au

To select an H ,based on the Nullspace method, we
select a basis from the left null space of FT.

For the selection of H based on the Exact local
method we use the equation (16), where we set Q = I.

The selection of the self-optimizing control structure
for any nominal point has been automated based on
the procedure described in this step. We use the steady
state process model in MATLAB for the optimization
part and dynamic model in SIMULINK for the simu-
lations.

We evaluate the performance of these control struc-
tures against keeping the L at its nominal optimal
value, in the section 6.

GY

Step 4: Select the location of throughput manipu-
lator

For a given feed the TPM is already set by the feed flow
Fy. The level control is selected to be in the direction of
the flow downstream of the location of the feed. For more
details we refer the reader to [Aske and Skogestad, 2009]

6. EVALUATION OF LOSS BASED ON DYNAMIC
PLANT SIMULATIONS

Here we evaluate the economic performance of the self-
optimizing control structures (CV’s selected based on the
Nullspace method and the Exact local method) against the
simplest strategy, that is, to keep the unconstrained degree
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Fig. 3. Active constraints regions for the reactor-separator-
recycle process

of freedom L at its nominal optimal value. We disturb the
process and evaluate the loss for various disturbances. The
economic performance for different disturbance values is
depicted in Fig. 6.

First, we evaluate the loss for feed flow changes Fj for
the control structures with and without measurement
noise(see Fig. 6(a)). Then, we evaluate the loss for the
energy price changes py. Again this is done for all the
control structures with and without noise (see Fig. 6(b)).
Last, we evaluate the loss for simultaneous py and Fj
changes for the same control structures (see Fig. 6(c)).

We can clearly see that the self-optimizing control struc-
tures outperforms the simple strategy for the feed flow
changes case and the simultaneous energy price and feed
flow changes case, as shown in Fig. 6(a)) and Fig. 6(c))
respectively. For the case with only energy price changes
the performance is simular all for the control structures,
as can be seen in Fig. 6(b)). This maybe explained by the
high sensitivity of the cost function to changes in feed flow
F0 and low sensitive to changes in energy price py for this
nominal operational point.

As can bee seen in all the subfigures of Fig. 6, the
performance of the Nullspace based control structure is
very simular to the one based on Exact local based for
cases with noise, despite the fact that the Nullspace
method doesn’t take account the noise. This may be
explained by relatively low sensitivity of the cost function
to noise, thus making the noise negligible.

7. DISCUSSION AND CONCLUSION

We introduced this work by identifying the demand for
optimal and more flexible production, imposed by the
modern globalized competition. In order to minimize the
operation cost in an environment of frequent market condi-
tion changes, an integrated process control and optimiza-
tion approach is needed [Engell, 2007].

We presented briefly two state of the art integrated ap-
proaches: the self-optimizing control and direct online op-
timization control, and argued that, in order for a control
structure design procedure to be widely accepted by the
process control industry it to has be [Downs and Skoges-
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Fig. 4. Evaluation of the performance of different control
structures for various disturbance

tad, 2011]: (1) simple, (2) efficient (resulting in an optimal
operation), (3) should not require a very high expertise.

We identified that the economic plantwide control design
procedure can be used to design control structures that
fulfil the (2) and (3) requirements. But in order to fulfil
the requirement (1), we could simplify the control struc-
ture design procedure, by automating it, thus hiding the
unnecessary complexities.
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The hierarchical decomposition of the economic plantwide
control to stepwise top-down and bottom-up parts could
provides a solid framework for automating the entire
design procedure, which is the ulterior goal behind this
work.

We identified, as a key step to automate the entire pro-
cedure, the automatization of the controlled variables se-
lection for the economic layer. In this work, we show that
this can be done quite efficiently based on the quantitative
local methods, described in [Alstad et al., 2009].

We present the main algorithm for the economic plantwide
control design procedure, emphasizing the systematic se-
lection of the self-optimizing control structure, using quan-
titative local methods. To understand better these meth-
ods we present a mathimatical formulation of the optimal
economic operation and lay the basis for the derivation
of the two local methods: the Nullspace method and the
Exact local method. We present briefly the use of these
methods to select the self-optimizing controlled variables.

As a case study, we apply the economic plantwide control
design procedure to a process, which consists of a reactor,
a separator and a recycle stream with purge. The specific
process flow is selected because it incorporates the basic
structure of most of the chemical plants and because it has
been studied extensively in the process control literature
[Larsson et al., 2003],[Jacobsen and Skogestad, 2011],[Wu
and Yu, 1996]

We evaluate the economic performance of the designed
control structures, and compare them against a simple
strategy of keeping the unused degrees of freedom at their
nominal optimal values. We found that, although the auto-
matic selection of the self-optimizing controlled variables
was based on local methods, they performed quite well
even for large disturbances. Therefore the systematic se-
lection of the controlled variables based on quantitative
local basis could be considered as a successful approach
to automate this essential step of the economic plantwide
control procedure.

The automation of the economic plantwide design proce-
dure, especially the integration of the automatic design in
the major process simulators, could potentially improve
the optimality of the production plants on a global scale,
thus having a large effect on the production costs and
environmental footprint.
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