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from Loss method

Maryam Ghadrdan*, Ivar J. Halvorsen**,Sigurd Skogestad*

* Department of Chemical Engineering, Norwegian University of
Science and Technology, N-7491 Trondheim, Norway, Emails:
ghadrdan@nt.ntnu.no, skoge@nt.ntnu.no,

** SINTEF ICT, Applied Cybernetics, N-7465 Trondheim, Norway,
Email: ivar.j.halvorsen@sintef.no

Abstract: In this paper, we study different possibilities to overcome the inverse response
problem which is caused by combining different measurements with fast and slow dynamics
to form an estimator. Our goal is to obtain a response with ”No inherent limitation”.
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1. INTRODUCTION

Reliable and accurate measurement of product composi-
tions is one of the important issues in distillation col-
umn control. On-line composition measurement devices
are usually expensive and unreliable. In addition, there is
usually a considerable time delay that may be a limitation
for control performance. On the other hand, temperature
measurements are fast, inexpensive and reliable and are
used for distillation column control in industry instead of
composition analyzers.

Commonly, simple linear relationships, y = Hx, are
used to estimate composition (y) based on temperature
measurements (x).

Using a combination of measurements leads to a better
steady-state estimate (compared to single measurements),
but dynamically it may give rise to right-half plane zeros
(inverse response behaviour) in the transfer function from
input u to the estimate y, which limit the closed-loop
performance for SISO systems. We have y = Hx = HG,u
(see Figure 1). The appearance of a RHP zero in the square
transfer function G = HG,(s) from u to y is common. The
measurements have different dynamics (G,(s)) as they are
located at different positions in the plant. This is noted by
Alstad (2005) who considered a simple example with two
measurements and one input.

¥(s) = HGz(s)u(s)

Here, G, is modeled as a rational transfer function on the

form g;(s) = n“”ES;, thus the resulting estimator is:

= higi(s)u(s) + haga(s)u(s) (1)
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The poles of the resulting transfer function G are identical
to the poles of the two subsystems, while the zeros are
changed. For systems where hig; and hogs have opposing
effects, this may lead to right-hand plane zeros.

We have studied three approaches to overcome this prob-
lem:

e Cascade Control:
The idea is to close a fast inner loop based on a
single measurement with no RHP-zero and adjust the
setpoint on a time scale which is slower than the RHP-
Z€ro.

e Use of measurements from the same section of the
process:
If the dynamic behavior of the selected measurements
are similar, then it is less likely to get RHP-zero.
However, this gives a larger steady-state error.

e Filters:
Low-pass filters will keep the system optimal at
steady state. The idea is to filter the measurements
before they are combined to give the estimate. The
filtered measurements are y = HHpu

2. MOTIVATING EXAMPLE

We first illustrate the ideas with a simple example. After-
wards, we will give some guidelines for the case study of a
distillation column.

Consider a system with two measurements x and one input

u
1
G, = [91] T
g2
s+ 1
Assume the estimator matrix H is
H=[2-1]

u(s)

2.1 No dynamic compensation

The transfer function from u to y is
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Fig. 1. Block diagram of the estimation
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The RHP zero in G(s) will limit the achievable closed-loop
performance. Thus, we have introduced an unnecessary
limitation on performance.

3. CASCADE CONTROL

Now we consider if we can avoid the effect of the RHP
zero using cascade control. We assume that we control the
faster measurement xs (H%) in an inner loop. The desired
closed-loop time constant is assumed to be 7. = 0.1 (time
units).
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Fig. 2. Block diagram of the estimation with a cascade
loop

Using the SIMC PI-tuning rules with § = 0 and 7. = 0.1,

we have
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The resulting controller and loop transfer functions be-
come
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We see that the RHP zero still remains. This is explained
from the following theorem.

v =Hx = X2

Theorem 1. Cascade (inner-loop) control can not move the
zero of HG,,

Proof. The expression for the estimated primary variable
is
¥ = hix1 + haxo

where

X1 = g1u

X9 = gaou
Assume we control xo in an inner cascade loop.

u=K(s)(x1s —x1)

So,
o K(s)g2 «
T4 E(s)g
g1
X1 = —X2
g2
The transfer function from x55 to y is
. g1 Kgo
= (h1== + hg) —=—Xo,4 3
y (192 2)1—|—Kg22 (3)

The term (h1g1 + hage), which includes the RHP zero, is
unchanged.

4. FILTERING

Here we use individual compensators (or filters) on the
measurements as illustrated by the block Hp in Figure 3
The diagonal matrix Hp is applied on the measurements
to improve the dynamic behavior. It is required that
H(0) = I. This means that the steady-state gain should
not change, because it is already optimal. Each of the
filters are simple first-order low-pass
1

E 0
Hyp = TS+ 1 1

0 -
TS + 1

or lead-lag,

TF1nS + 1

Tr14S + 1
0

0
Trans 1
Trogs + 1
Four different filters are used for the case-study, see Table
1. Figure 4 shows the step responses with the four filters.
Note that we can make the transfer function from x to
v as fast as we want. From this example, it is seen that

Hr =
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Fig. 3. Block diagram of the estimation system including
filter (H)

the lead-lag filters are performing better in making the
response fast than the low-pass filters. One can optimize
the filter parameters to get the best performance. In
this particular example, it is not clear what the best
performance means. The transfer function from x to y is at
most second order and there are no limitations on control
performance.
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Fig. 4. Step response of all Gs
4.1 Distillation Case-study

We have designed a steady-state estimator H for a multi-
component distillation column based on data from the
simulator in UNISIM. The saturated liquid feed stream
is an equi-molal mixture of methanol, ethanol, 1-propanol
and 1-butanol. The column is separating the two light
components from the two heavy components in a column
with 36 stages. The concentration of 1-propanol in the
distillate and the concentration of ethanol in the bottom
product are 0.0124 and 0.0274 respectively. Figure 5 shows
the value of H from each tray in the column for the two
estimated values.

5 10 15 20 25 30 35
Tray no.: Top=1
Fig. 5. Steady-state contribution of temperatures to the

estimates (H), Dashed: top composition estimate,
Solid: bottom composition estimate

Table 1. Different filters and the final transfer
functions

Filter matrix Transfer function from u to y

1
0
Hpy = | s+1 1 G1=HHF1Gz=m
3s+1
1 0
Hpo = 1 Gy = HHp»G, = 2581
F2 — 0 2 = 2Ly = (Bs+1)(s+1)
| 3s+1 ]
1 0
Hps = 0 s+1 GgZHHF;gGm:ﬁ
| 3s+1 |
3s+1 0
Hps=| s+1 G4=HHF4GI=SJ%1
0 1

Figure 6 show the open-loop response of the primary
variables (solid line) and the estimated values (dashed line)
to a change in boilup (V). An inverse response is seen in
the estimate of the top composition. To check why this
is happening, the contribution of the temperatures to the
final estimate is studied. Figures 7-8 show the temperature
changes as each of the degrees of freedom is perturbed,
and the contribution of each of the trays to the estimate
of the top composition. Figure 8 is actually obtained by
multiplying H to each of the time-series vectors of the
measurements. The perturbation is small enough so that
the results in the negative and positive directions are
similar.
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Fig. 6. Top and bottom estimates with -1% change in
boilup

As a simple trial, by adding first-order filters on the 6th,
16th and 17th stages which display a fast response to
change in boilup (see the first 100 minutes in Figure 8),
we see in Figure 9 that the inverse response is removed.

5. OPTIMIZATION OF THE FILTERS

The filter time constants can be optimized to give the
best performance. The objective function can be defined
as minimizing the H,, norm

mil’lHGref _HHFGmHoo (4)
Hp

where Gy.r is the desired transfer function from input
to the estimate. For monitoring purpose, the best perfor-
mance means the closest response to the actual composi-
tions. So, in this case G;..¢ would be the transfer function



O

-0.1r b
02k \¥
_0.3F \ 1

0.4

-0.5F

-0.67

Temperature difference

-0.7r

-0.8-

-0.9r

200 400 600 800 1000 1200 1400 1600
time(min)

Fig. 7. Temperature changes in the column with -1%
change in boilup and constant Reflux ratio
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filters with no change in SS). Table 2 shows the values of
the filter time constants for this optimization.
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Fig. 8. Contributions to the top composition estimate with
-1% change in boilup and constant Reflux ratio
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Fig. 9. Estimated composition in the top and the filtered
estimate. Filters are on 6th, 16th and 17th measure-
ments

from the inputs to the real primary variables. Figure 10
shows the optimized filtered top estimate together with
the real primary value and the unfiltered estimate which
is obtained from the steady-state calculations. We have
focused on the first 100 min, since we don’t want to let the
steady-state offset value be part of the objective function
value. As it is seen in Figure 10, the filtered estimate
matches perfectly the real primary variable value in the
first 100 minutes and it diverges to get to the steady state
value of the unfiltered estimate (note that these are LP

Fig. 10. Estimated composition with optimized filters

Table 2. The time constants of the filters from

optimization
[ Tray no. [ H for top comp. [ TR ]

5 -0.0043 1039.8
6 -0.0013 1338.3
7 0.0012 33.6

8 0.0028 514.1
9 0.0037 1209.1
10 0.0036 55.0

11 0.0029 1211.4
12 0.0018 1589.6
13 0.0004 554.6
14 -0.0010 1976.2
15 -0.0021 909.4
16 -0.0030 1424.3
17 -0.0032 466.6
18 -0.0025 1640.2
19 -0.0006 278.2
20 0.0023 19.8

21 0.0015 8.3

22 0.0005 1577.0
23 -0.0003 484.9
24 -0.0008 1158.8
25 -0.0010 1026.5
26 -0.0009 925.0
27 -0.0005 860.4
28 0.0000 1992.7
29 0.0006 868.7
30 0.0009 1404.7
31 0.0005 831.4
32 -0.0009 4774

5.1 Explicit solution for the optimization problem

In this section, we want to solve the optimization problem
by considering it as a model-matching problem and solving
Nehari problem obtained from it. The problem is to
compute an upper bound v and then compute a Q such
that
[T — T2QT3le < v

An optimal Q exists if the ranks of the two matrices
T2(jw) and Ts3(jw) are constant for all 0 < w < o0
Francis (1987). Our reason to use this method is shown



by the motivating example. We saw that we can not be
sure about the structure of the filters, i.e. being lead-lag
or LP, etc. The following Theorem is obtained from Francis
(1987), based on which an algorithm to find an optimal Q
is proposed Francis (1983).
Lemma 2. Let U be an inner matrix and define
U~

B= [I —uuU~ }

Then, [BG] . = G-

Proof. It suffices to show that E~YE =1

Lemma 3. Suppose F and G are matrices with no poles
on imaginary axis with equal number of columns. If

F
& <o (5)
then
1Glloe <7 (6)
and
IFG, oo <1 (7)

Proof. Equation (6) follows immediately from (5), be-
cause

F
Gl < 1| & I

~% — G~G has a spectral factorization:

7 -GYG =G;G, (8)
where G,, G, € RH,, Define
F
c=1-1| &I )
and
9:=G;'f (10)
where f is a Lbo-vector of unit norm. Starting from (9),
we have
F 2
g9z < (r=9lglz

SHEHES

< g, FFg> <

(v—e¢?<g,9>

v’ <g,9> —e2y—e)lgl3

Proof. (i) Let
Ving = Inf {7 [|[Y|looc < 7,dist (R,RH) < 1}

choose € > 0 and then choose v such that a +¢ > v > a.
Then there exist Q in RH., such that

T; — T2Qle <
From Lemma 2 we have:

ur
[ Vo] - <

This is equivalent to

Uu;T, - U,
19Ty o9 e < (13)
This implies from Lemma 3 that
[Y]low < v (14)
[UFTY, ' = U,QY, o < 1 (15)
The latter inequality implies
dist (R, U,RH, Y, ') < 1 (16)

U, is right-invertible in RH,, and Y, is invertible in RH.
So, (17) gives

dist (R,RHs) < 1
Lemma 5. For R in RL
dist (R,RH,) = dist (R, H) = ||ITr|

(17)

Proof. We have
dist (R, RH,) > dist (R, Hoo) = |||
The latter is the Nehari’s theorem. Choose ¢ > 0 and set
B :=|ITr||. Then
dist [(8+ ) R Hao| = (8+¢)7" T

=B/ (B+e

<1
This inequality implies that there exists X in RH,, such
that

1B+ R=X|o < 1
Thus,
dist (R,RH) < B+¢
=dist (R, Hy) + €

<g,FFg> <<g,(v* = G"G)g > —€(2y — ¢) |G, |8,

The last step used the inequality
1= [|Gogll < [Gollsollgll2

Now using (8) we get

IFgll3 < 1Gogll3 — €2y = €) |GolI32
Hence,

IFGSfI5 < 1—e(2y =€) [Goll
Since f was arbitrary, we find that

IFGH3 < 1—e(2y—¢) [Goll

Since €(2y —€) > 0, we arrive at 7

Theorem 4.
(ii) Suppose v > «, G, X € RH,

X =UoQY,!
Then [T — T2Qllc < v

(11)

dist (R, RHy) < dist (R, Hy)
The general algorithm to obtain Q is as follows

Step 1 Compute Y and ||Y]|oo

Step 2 Find an upper bound «; for o (||Ti|ls is the
simplest choice)

Step 3 Select a trial value for « in the interval (||'Y||c0,1]

Step 4 Compute R and ||T'g||. Then [|Tg|| < 1 iff o < .
Change the value of y correspondingly to meet this
criteria

Step 5 Find a matrix X such that |R — X||o < 1.

(i) a=inf{y: Y] < 7, dist (R, RH,) < 1Step 6 Solve X = U,QY, " for Q

In our case, T, is the transfer function G,y from input
to the primary variables (the top composition estimate
change by boilup flow perturbation), and T is the transfer
function G from input to the measurements (a matrix
of 28x1 transfer functions of the temperature change by
boilup flow perturbation).



6. DISCUSSION

Specifying G, for control purpose is not that easy. When
the system is not only stabilizable but also controllable,
one can make the closed-loop eigenvalues arbitrarily fast
Antsaklis and Michel (1997). We need to know what is the
fastest response we can get. One idea is to specify a first-
order transfer function with the smallest time constant in
the process as the desired transfer function from inputs
to the estimates. From Skogestad and Morari (1987) we
know that the internal time constant are smaller than the
external time constants. These can be found from changing
the two inputs boilup and reflux rate at the same time
such that the external flows remain constant. This is very
difficult to do in practice. The responses to internal flow
changes while the external flows are constant are shown in
Figures 11 and 12.
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Fig. 11. Top composition, AL = AV, AD = AB =0
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Fig. 12. Bot. composition, AL = AV, AD =AB =0

The transfer functions of the compositions when the in-
ternal flows are changed so that the external flows remain
constant are as below. The reason is that for high pu-
rity distillation, the product compositions are sensitive to
changes in external flows and the effect of internal flows
may not be seen since the gain is small.

—7.99¢ — 5

s+ 0.00135)AV

—4.92e¢ — 4
Azp = (exp(—0.33s) x —oe =
v = (erp(=0.38) ¥ ~==55073

Ayp = (exp(—2s) X

JAV  (18)

7. CONCLUSION

In this paper, we have discussed different methods to over-
come the band-width limitations caused by combining dif-
ferent measurements with different dynamics to build the
static estimators. We have shown that adding filters is the
best option. By using filters, we will correct the dynamic
behavior while keeping the optimal steady-state estimator
untouched. We have done it with two approaches. First, we
suggested filtering some of the measurements based on the
insight from the process. Then, we use a more systematic
way to construct a filter which is almost optimal.
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