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Abstract: We consider dynamic optimization of the energy consumption in a building with
energy storage capabilities. The goal is to find optimal policies which minimize the cost of
heating and respect operational constraints. A main complication in this problem is the time-
varying nature of the main disturbances, which are the energy price and outdoor temperature. To
find the optimal operable policies, we solve a moving horizon optimal control problem assuming
known disturbances. Next, we proposed simple implementation based on feedback control, which
gives near-optimal operation for a range of disturbances. The methods were successfully tested
using simulation, which show that there is a great economical gain in using dynamic optimization
for the case of variable energy price.

1. INTRODUCTION

Due to increasing energy consumption and prices and
greater concerns about greenhouse gases emissions, more
efficient electric power production and usage is sought.
Recently, great attention has been given to renewable gen-
eration sources like windturbine and photovoltaic parks.
Although efficiency-wise attractive, these alternative en-
ergy sources suffer a major drawback due to their sharply
varying energy production caused by wide-ranging weather
conditions. This is an important limitation since the en-
ergy production should cover the demand at any given
time.

One possible approach to overcome this, is demand side
load management where the large fluctuations in the
load are tackled by peak shaving and by shifting load
to more beneficial periods (Molderink et al., 2009). Field
tests in the USA have demonstrated that optimization
of domestic energy consumption with variables prices
can significantly reduce load peaks (Hammerstrom, 2007).
This can be achieved by manipulating the energy price
according to demand information and weather forecasts.
The dynamic energy pricing for demand load management
is in itself a non-trivial problem, and it is currently an
active research area. The interested reader is invited to
check the references Mardavij Roozbehani and Mitter
(2010) and Goudarzi et al. (2011) for more information.
This problem is outside the scope of this work.

In such a scenario, the adaptation of the energy consump-
tion by the final consumer is essential to the success of
the approach. Thus, in this article we focus on the local
building heating system optimization where the goal is the
minimization of energy costs.

The case studied here consists of a single room comprised
of a floor heating device, a radiator and a ventilation
system with adjustable flow. We consider bounds on the

floor temperature, the room temperature (air) and the
CO2 levels. The floor heat capacity is assumed to be large
enough so that we can store a considerable amount of
energy in it, hence, giving us an extra degree of freedom
for optimization. Other hardware configurations could
also have been employed. For example, one could use a
insulated tank filled with water.

The main complicating factor for this problem is the time-
varying nature of the disturbances in the outdoor tem-
perature and energy price. We assume that predictions
of the temperature and price variation are available, but
they are not necessarily correct. Thus, a dynamic real time
optimization (DRTO) scheme is proposed to compensate
this variations while minimizing the energy cost. In this
scheme, a dynamic optimization problem is solved at each
sample time with new states and disturbance measure-
ments.

A drawback of the DRTO is the fact that the system
operates in open-loop in between two consecutive opti-
mizations. This may yield sub-optimal or even infeasi-
ble solutions in case of large disturbances. To deal with
this problem, we propose simple solutions solely based on
feedback and offline analysis, where near-optimal control
inputs are generated at low computational and mainte-
nance costs. This extends the self-optimizing control idea
(Skogestad, 2000) to dynamic optimization problems. We
show that near-optimal solutions can be obtained by track-
ing optimally invariant trajectories, which we defined here
as being the function of the measurements whose optimal
profile does not change with disturbances.

The paper is organized as follows: Section 2 details the
derivation of the dynamic. Section 3 shows the formulation
of the dynamic optimization problem and describes the
solution method used. In Section 4, the implementation of
the optimal control solution is discussed and various com-
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Fig. 1. The system topology

parative results presented. Section 5 gives the concluding
remarks of the article.

2. MODELING

In this section, we develop a dynamic model based on en-
ergy and mass balances. The model describes a single 25m2

room comprised of a floor heating device, a radiator and a
ventilation system with adjustable flow. It is assumed that
all the heat lost by the floor is transferred to the air in the
room whereas the heat in the air can be lost both through
the walls and through the ventilation. The air entering
is assumed to be at outdoor temperature and behaves as
an ideal gas. The CO2 accumulation due to breathing is
modelled as a constant feed and the consumption of O2 is
neglected. To help visualizing the energy and mass flows
in the system it is useful to use system topology graph as
shown in Fig. 1. All state, manipulated and disturbance
variables are described in Table 1. Other constant param-
eters are summarized in Table A.1.

Table 1. Variables description

State variables Description Unit

Tf Floor temperature K
Tr Room temperature K
mr Mass of air kg
w CO2 mass fraction -

Manipulated variables Description Unit

Qf Floor heat input kW
Qr Room heat input kW
m̂in Air inflow kg/s

Disturbance variables Description Unit

To Outdoor temperature K
p Energy price $/kW

The energy balance for the floor is simply

dEf
dt

= Qf − qf,r (1)

where the energy transfer to the room (air) qf,r is given
by

qf,r = UAf,r(Tf − Tr). (2)

Since the floor mass is constant we get

dTf
dt

=
Qf

mfcp,f
− UAf,r
mfcp,f

(Tf − Tr) (3)

The energy balance for the room is

dEr
dt

= Qr + qf,r + qo,r + qwall − qr,o (4)

The mass of air in the room is not constant, therefore we
get

dEr
dt

= cp,rTr
dmr

dt
+ cp,rmr

dTr
dt

(5)

Using the mass balance we have

dmr

dt
= m̂in − m̂out (6)

where
m̂out = k(Pr − Po) (7)

is the out flow and Pr = mrRTr

MrVr
is the pressure inside the

room. Combining Eq. 6 and (5) with (4) and using

qo,r = m̂incp,rTo
qr,o = m̂outcp,rTr
qwall = UAr,o(To − Tr)

we obtain
dTr
dt

=
Qr

mrcp,r
+
m̂in

mr
(To − Tr) (8)

+
UAfr
mrcp,r

(Tf − Tr) +
UAr,o
mrcp,r

(To − Tr)

Finally, the component mass balance of CO2 is given by

d(wmr)

dt
= m̂inwin − m̂outw +B (9)

using the product rule for differentiation we have

d(wmr)

dt
= mr

dw

dt
+ w

dmr

dt
(10)

and using the total mass balance in Eq.(6) yields

dw

dt
=
m̂in

mr
(win − w) +

B

mr
(11)

For sake of simplicity in the notation, we define the
control inputs uT = [Qf , Qr, m̂in], the state vector xT =
[Tf , Tr,mr, w] and the disturbances dT = [To, p]. Hence,
we can pack the dynamics into the vector function f such
that dx

dt = f(x, u, d). In the next section we describe how
to use this model to find optimal heating polices.

3. DYNAMIC OPTIMIZATION

This section presents the dynamic optimization problem
and the approach used to solve it. It starts off by presenting
the continuous time optimal control problem we would like
to solve and evolves in a stepwise manner presenting mod-
ifications that helps the solution. Finally, we present the
full discretization method based on orthogonal collocation
as well as the formulation of the nonlinear program. The
implementation is discussed in the subsequent section.
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3.1 Problem definition

The optimization objective is to minimize the energy costs
over an infinite horizon. A solution method is to use a
moving horizon approach where we solve an optimal con-
trol problem within the fixed interval [t0, t0 +h] where the
horizon h is large enough to capture important trends in
the system. At each time point t0 a different optimization
problem (12) is solved with different initial condition x0
that is unknown in advance. We formulate our moving
horizon problem in the Lagrangian form as:

min
u

∫ t0+h

t0

p(t)(Qf +Qr) dt (12)

subject to

ẋ = f(x, u, d), x(t0) = x0 (13)

Tr ≥ Tmin (14)

Tf ≤ Tmax (15)

w ≤ wmax (16)

Qf ≤ Qmax (17)

Qr ≤ Qmax (18)

Qf , Qr ≥ 0 (19)

3.2 Singular optimal control problem

Define the Hamiltonian functional of the optimal control
problem (12).

H = L(x, u, d, t) + λT f(x, u, d) + νT gI(x, u) (20)

where λ and ν are the multipliers, gI denotes the set of
inequality constraints gI ≤ 0 and L(x, u, d, t) = p(t)(Qf +
Qr). The necessary conditions of optimality for this prob-
lem include (Kirk, 1970):

∂H
∂u

= 0 (21)

Its clear that, for this problem, u enters linearly in H and
∂H
∂u does not depend explicitly on u. Hence, the necessary
conditions of optimally do not determine directly the
minimizing u and the control problem is singular. It
is known that a singular optimal control problem may
create troubles when direct numerical methods are used
if accurate control profile is sought. It can be shown
that the Hessian matrix becomes very ill-conditioned as
the time step size decreases (Biegler, 2010). To avoid
convergence problems, we modify the cost function by
adding a quadratic term:

min
u

∫ t0+h

t0

p(t)[β(Qf +Qr)
2 + (Qf +Qr)]dt (22)

where the weighting factor β is adjusted such that the
linear term dominates the expression. In a constant price
scenario the two formulations are equivalent since it would
be optimal to simply minimize the input usage.

3.3 Disturbance modelling

The main disturbances are the outdoor temperature To(t)
and energy price p(t). For simplicity, we assume that p(t)
is periodic and follows

p(t) = p0 +Apsign[sin(ωpt+ φp)] (23)

where parameters the Ap and φp are uncertain. More
general dynamic pricing polices can also be treated in this

framework in a straightforward manner. We assume the
weather predictions are available numerically from weather
models such that we can interpolate the predictions using
polynomials. Therefore, we assume we have the predictions
T̂o(t) = P (t) where P is a polynomial fitted using the
weather model data. For this case study we have used
weather prediction data from (yr.no, 2012). It would not
be realistic to embed a weather forecast model in the
optimization loop due to its highly complex nature.

3.4 Softening constraints

During operation is possible that a disturbance brings the
system outside the feasible region. The formulation based
on hard constrains (14)-(19) would then fail to produce a
reasonable solution since the initial state would already be
infeasible. This problem can be overcome by softening the
output constraints (14)-(16). It would not make sense to
soften the input constrains as they represent real physical
limitations.

Firstly, we rewrite the output constraints in a vector form
such that we have ho(x, u) ≥ 0. Next, we introduce a vector
of slack variables ε and define the following constraints in
the optimization problem:

ho(x, u) ≥ 0− ε (24)

ε ≥ 0 (25)

Finally, the cost function is modified by adding penalties
for the violation of the constraints

min
u

∫ t0+h

t0

{p(t)[β(Qf +Qr)
2 + (Qf +Qr)] +µ · ε}dt (26)

The linear penalty function was chosen because it is exact
in the sense that minimizing (26) also minimizes the
original cost function (22) provided that µ is large enough
(Nocedal and Wright, 2006).

3.5 Simultaneous approach

The dynamic optimization stated so far is infinite dimen-
sioned and in order to solve it numerically, a discretiza-
tion method is needed. We have decided to discretize the
problem using orthogonal collocation methods. In this ap-
proach, both the states and manipulated variables profiles
are approximated by orthogonal polynomials and their
coefficients become the decision variables. The polynomial
approximation of the states is required to respect the
model equations only at the solution of the optimization
problem. This formulation yields a large-scale sparse non-
linear program (NLP) and is known as the simultaneous
approach (Biegler, 2010).

For simplicity, we first transform the problem to the Mayer
form by expanding the state vector with J̇ = p(t)[β(Qf +
Qr)

2 + (Qf + Qr)] + µ · ε such that we have zT = [x, J ]

and ż = f̂(z, u, d). The equivalent dynamic optimization
problem is

min
u
J(t0 + h) (27)

subject to the constraints (17)-(19) and the model ż =

f̂(z, u, d).

Proceeding to the discretization, we first divide the time
interval into N time periods. Within each time period i the
control inputs are represented by Lagrange interpolation
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u(t) =

K∑
j=1

l̄j(τ)uij (28)

where

l̄j(τ) =

K∏
k=1,6=j

τ − τk
τj − τk

(29)

The collocation equations for the differential equations can
be written as

K∑
j=0

l̇j(τk)zij − hif̂(uik, zik, dik) = 0 (30)

where i ∈ [1, . . . , N ], k ∈ [1, . . . ,K], l̇l(τ) =
dlj
dτ and

K is the degree of the polynomials. The length of the
time intervals hi are considered fixed and are not decision
variables for the optimization problem. In fact, for this case
we have chosen N = 1 which leads to a pseudospectral
method. This class of methods can give very accurate
solutions for dynamic optimization problems with smooth
profiles (Biegler, 2010). Finally, the collocation points τk
are chosen as the roots of the Gauss-Legendre orthogonal
polynomials. The resulting NLP is as follows:

min J(t0 + h) (31)

s.t.

K∑
j=0

l̇j(τk)zj − hf̂(uk, zk, dk) = 0 (32)

ho(xk, uk, dk) ≥ −εk, εk ≥ 0 (33)

k ∈ [1, . . . ,K] (34)

The above problem is formulated in Matlab and solved
using the sparse NLP solver SNOPT. This solver employs a
sparse SQP algorithm with quasi-Newton approximations
to the Hessian. Gradient information is obtained using
automatic differentiation approach. The interface between
Matlab and SNOPT is handled by the optimization envi-
ronment TOMLAB.

4. IMPLEMENTATION APPROACHES

We propose the implementation of a dynamic real time
optimization where the optimal control problem is solved
in a moving horizon fashion. At each time sample, t0,
a dynamic optimization problem is solved with a new
initial state and disturbance measurements. We specified a
horizon length h = 24h so that all the important dynamics
are captured. However, only the first portion of the optimal
profile corresponding to t ∈ [t0+ts] is implemented, where
ts < h is the time between successive optimizations. In
this paper we assume limited computation power so that
we need to have ts = 2h. During this period the optimal
inputs are extracted by using the Lagrange interpolation
shown in (28).

In order to improve the accuracy of the solution and im-
prove the convergence, the NLP is solved with successively
larger number of collocation points, where the solution
to the previous lower dimensioned problem is used as an
initial guess for the next one. Here, we solve the NLP with
K = 25 and then K = 45 collocation points. Another
important point is the warm start of the NLP solver.
This is done in two steps: first, the control inputs from
previous solutions are shifted to to the next time window

by assuming the inputs remain constant in the final time
period. Then, the shifted inputs are used to simulate the
model and the states are extracted. The shifted inputs and
the simulated states are the initial guess to the next op-
timization problem. The overall algorithm is summarized
as follows:

Algorithm 1 Simple moving horizon optimal control

Initialize: x0, h, ts, initial guess xg and ug
while t ≤ tf do

Solve the NLP (31)-(34)
Implement solution for t ∈ [t0, t0 + ts]
Measure or estimate x(t0 + ts)
Set x0 ← x(t0 + ts)
Shift previous solution ug ← uopt(t) with t ∈ [t0 +

ts, t0 + ts + h]
Use ug to simulate the model from x0 and obtain xg
Set t← t0 + ts

end while

4.1 Nominal optimal solution

Assuming perfect predictions, the solution for a whole day
obtained with Algorithm 1 is shown. Figure 2 depicts
the nominal price variations, the outdoor temperature
variation and the accumulated energy cost. This temper-
ature profile corresponds to the temperature measured in
Trondheim, Norway on 03 January 2012 provided by the
Norwegian Meteorological Institute which made the data
freely available in (yr.no, 2012).

For the sake of comparison, we also implemented the
most trivial solution to the problem where the room
temperature is kept at minimum allowed value by varying
the heat input Qr using a PI controller. To get a fair
comparison, the optimal air inflow was used. The second
heat input,Qf , was left unused. Note that keeping the
room temperature at minimum allowed value is, in fact,
the optimal policy if we would like to minimize the energy
consumption instead of the economical cost.

A comparison between the optimal profiles and the simple
strategy is given in Figures 3 and 4. Some interesting
conclusions can be drawn from this results. First, notice
that it is optimal to overheat the room and floor above the
minimum constraint when the price is low. In this case,
when the energy is cheap we will store enough heat in
order to meet the temperature constraints until the next
low price valley. We also confirmed (not shown here for
brevity) that the air inflow is increased just enough to
meet the CO2 level constraint. This is trivial since over-
ventilation would unnecessarily cool the room down and
it would require extra energy to keep the temperature
constraint.

The optimal energy cost for one day was $12.45, whereas
the simple temperature controller gave a cost of $21.62,
which is considerably higher than the optimal. The energy
usage is 12.5kWh and 10.9kWh, respectively. It is clear
that this difference in the cost is proportional to the
ratio between high and low energy price. Notice that,
in a constant price scenario, the optimal is to keep the
temperatures at the minimum allowed value.
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Fig. 2. Disturbances - energy price and outdoor tempera-
ture.
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Fig. 3. Temperatures - green lines: optimal solution; ma-
genta lines: simple temperature controller with con-
stant setpoint.

4.2 Near-optimal solution by tracking optimally invariant
trajectories

In this section, we propose a simple control implementa-
tion that gives near-optimal solutions without the need for
re-optimization online. The main idea is to find a function
of the measurements whose trajectory is optimally invari-
ant to disturbances and then track the trajectory using
standard feedback controllers. The structure is shown in
Fig. 5 where cr(t) is the optimally invariant reference
trajectory that we wish to track. In the sequel, we will
derive a procedure to obtain such trajectories.

We define y ∈ Rny as the vector of known variables
(measurements), which may include states, disturbances
and control inputs. The disturbance model of price and
outdoor temperature is parametrized by a vector of con-
stants d0. However, the real (unknown) parameters are
denoted by d, and we may have deviations ∆d = d − d0.
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Fig. 4. Inputs and energy cost - green lines: optimal
solution; magenta lines: simple temperature controller
with constant setpoint.

The nominal optimal measurement trajectory is referred
to as y0(t, d0).

It can be shown that if the cost function J is twice con-
tinuously differentiable in a neighbourhood of the nominal
solution and the linear independence constraint qualifica-
tions and the sufficient second-order conditions hold, then
the optimal sensitivity matrix F is well defined:

F (t) =
∂yopt(t, d)

∂d
(35)

and, a first order, local approximation of the optimal
solution in the neighbourhood can be obtained from

yopt(t, d) ≈ y0(t, d0) + F (t)∆d (36)

Here, we are after a function of measurements c(y(t), d)
whose optimal value is independent of d, i.e., we want
copt(y(t), d) = c0(y(t), d0) for any d sufficiently small. A
simple choice is a linear combination of the measurements:

c(t) ≡ H(t)y(t) (37)

where H(t) is a nu×ny matrix, and c(t) is a nu×1 vector.
This way we can write

copt(t, d) = H(t)[y0(t, d0) + F (t)∆d] (38)

and we define the nominal combination of measurements:

c0(t, d0) = H(t)y0(t, d0) (39)

By subtracting (39) from (38) we obtain:

copt(t, d)− c0(t, d0) = H(t)F (t)∆d (40)

Therefore, the optimal combination copt(t, d) equals the
nominal c0(t, d0) for any d if we select H(t) such that
H(t)F (t) = 0. This is always true ifH(t) lies in the left null
space of F (t). Using this approach we obtain a trajectory
copt(t, d) that is optimally invariant due to disturbance. We
can transform the problem of implementing u(t) in a ’open-
loop’ manner to a reference tracking problem with optimal
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setpoints cr(t, d) = copt(t, d) (see Fig. 5). By tracking cr,
a simple controller automatically generates inputs u that
are optimal for any disturbance d sufficiently small and
thus, the online optimization is avoided.

The whole procedure has offline and online steps which are
summarized as follows:

Offline:

• Solve the dynamic optimization problem with d0;
• Select appropriate measurements y;
• Compute the optimal sensitivities F (t) and the com-

bination H(t);
• Compute the reference trajectories cr(t) = H(t)y0(t).

Online:

• Track the reference cr by a feedback controller.

Remark: It is only possible to choose H in the left null
space of F if the number of independent measurements
respect the condition ny ≥ nu + nd where nd and nu are
the number of disturbances and inputs, respectively. See
(Alstad and Skogestad, 2007) for proof.

Here, we assume the air inflow qin will remain at nominal
trajectory such that two manipulated variables are avail-
able. Thus, since we are considering two disturbances we
will need at least ny = 2 + 2 = 4 measurements and we
seek two trajectories c1(t) and c2(t) to track. Defining the
measurement vector y = [Tf , Tr,mr, p]

T we compute the
optimal sensitivities F (t) for the whole horizon and obtain
H(t) and the reference trajectory cr(t). As controllers, we
use two decentralized P controllers. Note that the only way
to adapt to price changes is by measuring it explicitly as
the model of the physical process does not depend on price
explicitly.

This idea was tested by considering a disturbance in the
phase shift (φp) of the energy price as well as a mismatch
between prediction and actual outdoor temperatures. Fig-
ure 6 compares the predictions with the measured dis-
turbance values. We compare the proposed method with
the moving horizon strategy given in Algorithm 1 and
with the true optimal solution assuming perfect knowledge
of the disturbances. Figures 7 and 8 depict the output
and input trajectories for the three different cases. The
economical comparison is shown in bottom Fig. 8. The
proposed simple method works surprisingly well for this
case, given a relative loss of optimality of only 0.3175%.
The relative loss given by the moving horizon strategy
with imperfect disturbance model was 24.4%, which is
considerably higher.

One of the reasons for the success of the method is the fact
that, in this range of disturbances, the dynamics are close
to linear and, therefore, the linear approximation of the
NLP ends up near the true solution. A drawback of this
approach is that it cannot explicitly handle constraints.
Therefore, for a realistic implementation the proposed
method should be combined with a periodic solution of
the dynamic optimization where a new reference solution
is obtained, and new invariant trajectories c(t) are com-
puted. The idea is to recompute the optimal sensitivities
F (t) online after solving the current NLP and then apply
the approach shown in Fig 5 in between two successive

cr(t)+

−

y(t)
C

u(t)

c(t) y(t)

System

H(t)

d

Fig. 5. Proposed implementation based on simple feedback

optimizations. This requires, however, fast online calcula-
tions of the sensitivities as those provided by the methods
proposed by (H. Pirnay and Biegler., 2012). Similar idea
has been published in (Würth et al., 2009) where the
authors proposed to use sensitivity based neighbouring-
extremal updates combined with real-time optimization.
In this way, the frequency of optimizations can be greatly
reduced.
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Fig. 6. Disturbances - solid lines: measured; dash-dotted
lines: predicted

5. CONCLUSION

In this paper various solutions to the optimal heating of a
room problem have been proposed. We proposed a moving
horizon dynamic optimization method, which uses predic-
tions to compute the optimal heating polices and ensure
feasibility. We showed that, in a scenario where the energy
price is time varying, the economical benefit of using a real
time dynamic optimization scheme is substantial. Finally,
simple solutions based on feedback control and offline was
derived and successfully tested. The simulation exampled
showed that very little loss of optimality could be ob-
tained for relatively small disturbances. The benefit of this
method is the negligible online computational cost and the
simplicity of the implementation. The ideas discussed here
could also be applied to any other problem with energy
storage capabilities where the energy price changes, such
as the dynamic optimization of supermarket refrigeration
systems.
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Fig. 7. Temperatures - blue lines: Algorithm 1 with imper-
fect predictions; orange lines: proposed implementa-
tion as shown in Fig. 5; green lines: optimal solution
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Algorithm 1 with imperfect predictions; orange lines:
proposed implementation as shown in Fig. 5; green
lines: optimal solution; magenta line: cost of a simple
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Appendix A. MODEL PARAMETERS

Table A.1. Parameters description

Parameter Description Value Unit

UAf,r Heat transfer coefficient floor 0.1801 kJ/(s ·K)
UAr,o Heat transfer coefficient walls 0.0216 kJ/(s ·K)
mf Mass of the floor 3000 Kg
cp,f Heat capacity of the floor 0.63 kg/kJ
cp,r Heat capacity of the air 1.005 kg/kJ
k Valve constant 100 kg/(bar · s)

win CO2 fraction in flow 6.16 · 10−4 -
B CO2 generated by breathing 9.02 · 10−6 kg/s
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