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ABSTRACT: This paper describes a systematic sensitivity analysis of optimal operation conducted on an activated sludge
process model based on the test-bed benchmark simulation model no. 1 (BSM1) and the activated sludge model no. 1 (ASM1).
The objective is to search for a control structure that leads to optimal economic operation, while promptly rejecting disturbances
at lower layers in the control hierarchy avoiding thus violation of the more important regulation constraints on effluent discharge.
We start by optimizing a steady-state nonlinear model of the process. Here, a new steady-state secondary settler mathematical
model is developed based on the theory of partial differential equations applied to the conservation law with discontinuous fluxes.
The resulting active constraints must be chosen as economic controlled variables. These are the effluent ammonia from the
bioreaction section and the final effluent total suspended solids at their respective upper limits, in addition to the internal recycle
flow rate at its lower bound. The remaining degrees of freedom need to be fulfilled, and we use several local (linear) sensitivity
methods to find a set of unconstrained controlled variables that minimizes the loss between actual and optimal operation;
particularly we choose to control linear combinations of readily available measurements so to minimize the effect of disturbances
and implementation errors on the optimal static performance of the plant. It is expected that the proposed methodology and
results obtained therein can be used in practice as general rules-of-thumb to be tested in actual wastewater treatment plants of the
kind discussed in this paper.

1. INTRODUCTION

Operation of wastewater treatment plants (WWTP) has been
the focus of intense research for at least the past 20 years as
seen from the myriad of paper contributions to the field (see,
for example, Olsson and Newel,1 Olsson et al.,2 and Olsson3).
These facilities, working as highly complex processes, should be
designed and operated in a way to mitigate the negative impact
of nuisance influent to the environment in order to conform to
increasingly stricter discharge regulations and pollutant limits
and at the same time meet tight operational budget restrictions.
Although optimization of wastewater treatment plants has

gained interest in both scientific and industrial communities,
surprisingly only few articles discuss the subject either from a
heuristic economic point of view4−6 or by formal optimization
using an explicit mathematical model of the process7−11 for
optimal design and operation. However, none of the
publications define an optimal operation policy from a
systematic viewpoint. Araujo et al.12 applied a systematic
procedure for control structure design of an activated sludge
process in which optimization for various operational
conditions were carried out using a mathematical model of
the process, where they imposed additional operational
constraints to the process following heuristics found in the
WWTP literature, for example, bounds restricting residual
oxygen in the anoxic and aerobic reactors, sludge retention time
(SRT) being constrained, and nitrate concentration lying
within specified limits. In fact, these variables should be let to
vary freely so that their optimal values constitute the result of
the optimization.

One important outcome of a systematic optimization
procedure is the definition of variables that should be
controlled to ensure optimal economic operation, namely, the
active constraints, and, if there are still degrees of freedom left,
the unconstrained variables that when kept constant at their
optimal nominal set points lead to near-optimal operation
avoiding the need for reoptimizing the process when
disturbances occur (the so-called self-optimizing control
technology).13 Except for Cadet et al.14 and Araujo et al.,12

no other reference was found that explored the selection of
output controlled variables for wastewater treatment processes.
However, Cadet et al.14 proposed a selection methodology
based on a sensitivity analysis (steady-state gain calculation)
and did not consider the more important issue related to the
economics of the system. On the other hand, although Araujo
et al.12 used a systematic procedure for the selection of
controlled variables, the limitations previously discussed about
their work gave incomplete information on the truly optimal
operation policy for the kind of activated sludge process object
of their analysis.
In this paper, a systematic sensitivity analysis of optimal

operation of an activated sludge process model based on the
benchmark simulation model no. 1 (BSM1)15 is conducted. It
must be clear that all analysis, and hence all conclusions, from
this work are based on the underlying mathematical model of
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the process and should not be considered as definite guidelines
for actual plant operation since the mathematical model may
not be able to reproduce many real plant situations. However,
the results can be used in practice as general rules-of-thumb to
be tested in actual wastewater treatment plants of the kind
discussed here. The paper is organized as follows: In section 2,
a short description of the process and relevant modeling issues
are discussed. Here, a new steady-state secondary settler
mathematical model is developed based on the theory of partial
differential equations applied to the conservation law with
discontinuous fluxes.16−19 Section 3 gives an outline of the
methodology used for sensitivity analysis, emphasizing the
importance of variable selection for optimal operation.
Application of these guidelines to a revised BSM1 is given in
section 4. Discussion of the results are presented in section 5,
and some conclusions are drawn in section 6. The most
important notation is summarized in Table 1.

2. PROCESS DESCRIPTION

Wastewater treatment plants are very complex units designed
to remove pollutants in the influent wastewater by biological
reaction and separation (settling) processes. Depending on the
characteristics of the wastewater, the desired effluent quality,
and the environmental or social factors, the treatment can be
achieved in different ways. In general, traditional wastewater
treatment processes include, as a first step, a mechanical
removal of floating and settleable solids, followed by a
biological treatment for nutrients and organic matter abatement
with secondary settling for separation of suspended solids, a
sludge processing/disposal unit, and water chemical treatment
when applicable. Here the continuous activated sludge process
is considered for the biological wastewater treatment with the
main purpose of nitrogen and carbon compound removal.
The BSM115 represents a fully defined protocol that

characterizes the process including the plant layout, influent

Table 1. List of Symbols

symbol description unit symbol description unit

BOD5 5 day biological oxygen demand gBOD/
m3

Qf flow rate to settler m3/d

c set of controlled variables Qr sludge recirculation flow rate m3/d
copt set of optimal values of controlled variables Qu sludge flow rate from settler bottom m3/d
d disturbances (disturbance set) Qw excess sludge flow rate (wastage) m3/d
CD sludge disposal production gSS/d rh particle behavior for increasing particle density
COD chemical oxygen demand gCOD/

m3
rp particle behavior at weak concentration values

eff effluent superscript SNH
(j) ammonia concentration in basin j gN/m3

EA aeration energy kWh/d SNO
(j) nitrate concentration in basin j gN/m3

EM mixing energy kWh/d SO
(j) oxygen concentration in basin j gO2/m

3

EP pumping energy kWh/d SO
sat oxygen saturation concentration gO2/m

3

F flux function SRT sludge retention time d
F optimal measurement sensitivity matrix t time d
Gy gain matrix from the unconstrained degrees of freedom to the

measurements
TN total nitrogen concentration gN/m3

Gd
y Gain matrix from the disturbances to the measurements TSS total suspended solids gSS/m3

H combination (coefficient) matrix u unconstrained degrees of freedom
J cost function u′ degrees of freedom used to control active

constraints
Juu Hessian matrix with respect to the unconstrained degrees of freedom uopt optimal values of the unconstrained degrees of

freedom
Jud Hessian matrix with respect to the unconstrained degrees of freedom

and disturbances
u0 original steady-state degrees of freedom

KLa
(j) oxygen transfer coefficient for basin j d−1 u0

opt optimal values of the original steady-state
degrees of freedom

L economic loss V(j) volume of basin j m3

kD sludge disposal price $/ton v0 theoretical maximum velocity m/d
kE energy price $/kWh v0′ practical maximum velocity m/d
KS kinetic parameter gCOD/

m3
vs settling velocity m/d

MLSS mixed liquor suspended solids gSS/m3 w wastage subscript
nd number of disturbance variables Wd disturbance scaling matrix
ny number of available measurements Wny measurement scaling matrix
nu number of unconstrained degrees of freedom X floculated solids concentration gSS/m3

nu′ number of degrees of freedom used to control active constraints y set of measurement variables
nu0 number of original degrees of freedom z spatial coordinate m

ny measurement errors ε excess flux m3/
(d·m2)

q flux m3/
(d·m2)

δ dirac measure

Q(in) influent flow rate m3/d σ̅ maximum singular value
Qa internal recirculation flow rate m3/d (eff) effluent superscript

(in) feedflow rate to the WWT plant superscript
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loads, modeling and test procedures, and evaluation criteria.
Figure 1 shows a schematic of the process consisting of a
bioreaction section divided in five compartments, which can be
anoxic or aerobic, and a secondary settling device. In order to
maintain the microbiological population, sludge from the settler
is recirculated into the reaction section (returned activated
sludge, Qr). Also, part of the mixed liquor leaving the last
reactor can be recycled to the inlet of the bioreactor (internal
recycle, Qa) to enhance nitrogen removal. Moreover, excess
sludge at a rate Qw is continuously withdrawn from the settler
underflow.
The original BSM1 layout has the following characteristic

features: biological treatment reactor with two anoxic zones
(1000 m3 each) followed by three aerobic zones (1333 m3

each); nonreactive secondary settler with a surface of 1500 m2

and 4 m depth; recycled flow, Qr, from the secondary settler to
the front end of the plant; nitrate internal recycle, Qa, from the
fifth to the first tank; waste sludge flow rate, Qw, continuously
pumped from the secondary settler underflow.
From a modeling point of view, the original BSM1 is based

on two widespread accepted process models: the celebrated
activated sludge model no. 1 (ASM1)20 used to model the
biological process and a nonreactive Takacs one-dimensional
layer model for the settling process.21,22 The full model
equations, as well as the kinetic and stoichiometric parameters,
are given within the benchmark description.15 In addition,
inflow data are provided in terms of flow rates and ASM1 state
variables over a period of 14 days with 15 min sampling time.
All the information required for the proper implementation of
the model in virtually any platform can be found at the COST/
IWA 624 Web site (http://www.benchmarkwwtp.org).
Each reactor is modeled as a perfectly mixed, constant-

volume tank within which complex biological reactions give rise
to component mass balance equations, generating a system of
(coupled) ordinary differential equations. The ASM1 is a well-
established and reliable model widely used among WWTP
modelers, and further discussion on its known capabilities of
reproducing with considerable fidelity the behavior of the
reaction section of an activated sludge process can be found in
the vast wastewater literature.
2.1. Settler Model Development. Unfortunately, the

same degree of high reproducibility cannot be attributed to the
secondary settler mathematical model because these units
display very complex mechanisms that are not still fully
understood.23 Nevertheless, much progress has been made
toward building a physically sound model for the secondary
settler based on the theory of partial differential equations
applied to the conservation law with discontinuous fluxes.16−19

While these more meaningfully grounded mathematical models
satisfying fundamental physical properties24 still have not found
widespread application in the WWT field, it is commonplace to

resort to approximate models of the settler, and the one due to
Vitasovic22 later used by Takacs21 is the most widely used
representation of the secondary settler in published studies and
commercial software environments. Some authors,25−27 how-
ever, pointed out many setbacks related to this model, among
which is the fact that the number of discretization layers is not
in agreement with numerical convergence and without
distinguishing model formulation and numerical solution, but
instead it is used solely as a model parameter in order to match
experimental observations.28 In fact, numerical simulations have
shown24 the failure of Takacs’s model to represent the complex
behavior of secondary settlers under certain conditions, and this
has led researchers to switch to more reliable physically
meaningful sedimentation models. One such development is
described by Diehl,16 who formulated and analyzed dynamically
the settler model based on the one-dimensional scalar mass
conservation law, eq 1,

δ∂
∂

+ ∂
∂

=X z t
t z

F X z t z s t z
( , )

( ( ( , ), )) ( ) ( )
(1)

where X is the flocculated solids concentration, δ is the Dirac
measure, s is the source, and F is the flux function, which is
discontinuous at three points in the space coordinate z, namely,
at the inlet and the two outlets. Further details are given in the
cited references; however it should be emphasized that the
model described in Takacs21,22 is a time discrete version of eq 1
and that the key challenge is the solution method of the partial
differential equation described in eq 1.
We here are interested in the sensitivity of the static

optimum of the settler coupled with the biological reaction
section, and the steady-state solutions of the above equation as
given by Diehl18,19 provide the basis for our analysis. In Table 2
and Figure 2, we partially reproduce the results from ref 18.

Figure 1. Schematic representation of the BSM1 activated sludge process.

Table 2. All the Steady States of the Settler18

region in Figure 2 excess flux Xe Xu

1 ε < 0 0 s/qu

2 ε < 0 0 s/qu

1 ε < 0 0 f(XM)/qu

2 ε = 0 0 f(XM)/qu
p ε = 0 0 f(XM)/qu

1 ε = 0 0 f(Xf)/qu

4 ε = 0 0 f(Xf)/qu

1 ε > 0 [s − f(Xf)]/qe f(Xf)/qu

5 ε > 0 [s − f(XM)]/qe f(XM)/qu

2 ε > 0 [s − f(XM)]/qe f(XM)/qu

3 ε > 0 [s − f(Xf)]/qe f(Xf)/qu
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The development presented next is believed to be new, since
no reference thereof has been found in the available literature.
A given settler feed condition, represented by the pair (Xf, s),
where s = qfXf with qf = Qf/A (A is the cross-sectional area of
the settler), can be located anywhere in the 11 regions reported
in Table 2. Figure 2 represents those regions and depicts a
general flux curve in the thickening zone (i.e., below the feed
point), which is given by f(X) = Xvs(X) + quX. In this
expression, vs(X) is the settling velocity law, here given by the
double exponential, eq 2,21

= ′ −− − − −v X v v e( ) max(0, min( , (e )))r X X r X X
s 0 0

( ) ( )h min p min

(2)

which contains five parameters that are usually found
experimentally: v0, the theoretical maximum velocity obtained
at the intersection of the vs vertical axis and the extension of the
right exponential curve; v0′, the practical maximum velocity;
Xmin, the minimum concentration below which the settling
velocity vanishes (we here consider Xmin is a fraction f ns of Xf,
that is, Xmin = fnsXf);

15 rh, which determines the particle
behavior for increasing particle density; rp determines the
particle behavior at weak concentration values.
Because Xf and s are the input variables to the settler, which

are primarily functions of the biological activity in the reaction
section, the flow rate through the bottom of the settler, Qu (or
its flux counterpart, qu = Qu/A), is the sole degree of freedom
(manipulated variable) in the settler and can be used as a
decision variable for optimization. It is also the sum of the
wastage sludge and the outer recycle, Qu = Qw + Qr, as depicted
in Figure 1. From an optimum economic operation point of
view, the smaller Qw, the smaller is the cost of wastage
treatment and, hence, the smaller is the total cost. Because Qr is
primarily a function of the biological activity in the reaction
section, we can presume that minimizing Qu via Qw reduces the
cost of operation of the entire system. Thus, for a given feed
(Xf, s), we can therefore conclude that optimal operation of the
settler lies in the overloaded region, up to the point where one
of the first of either X(eff), COD(eff), BOD5(eff), or TN(eff) (which
are all functions of the suspended solids in the clarification
zone) becomes active, as long as the cost of wastage treatment
is positive (since anaerobic digestion of sludge can be indeed
lucrative if one considers that the resulting biogas can be
commercialized).
From Figure 2, the overloaded region spans four distinct

subregions. In regions 1 and 5, Xf is small, which may not be
the case for activated sludge processes due to the large
concentration of suspended solids that is usually formed in the
biological reactors. We then focus our analysis on the more

“concentrated” regions 2 and 3 in order to determine the
constitutive equations of the settler to be used for optimization.
The excess flux, ϵ, is defined as in eq 319

ϵ ≡ −X s s f X( , ) ( )f fmin (3)

where the limiting flux, fmin(X), is given by eq 429

α≡ =
∈

∈α< < ⎪

⎪⎧⎨
⎩

f X f
f X X X X

f X X X X
( ) min ( )

( ), ( , )

( ), [ , ]X Xmin
M m M

M maxmax (4)

where XM is a minimizer of f(X), Xm is a value strictly less than
XM satisfying f(Xm) = f(XM), and Xmax is the maximum
suspended solids concentration. For regions 2 and 3, the
excess flux ϵ(Xf, s) is then eq 5,

ϵ =
− ∈

− ∈⎪

⎪⎧⎨
⎩

X s
s f X X X X

s f X X X X
( , )

( ), ( , )

( ), [ , ]
f

M f m M

f f M max (5)

In any case eq 6 describes an equation for the solid
concentration in the effluent X(eff), where qe = Q(eff)/A, Q(eff)

being the effluent flow rate.

=
ϵ

=
ϵ

−
⇒ = −

ϵ
X

X s
q

X s
q q

q q
X s

X

( , ) ( , ) ( , )(eff) f

e

f

f u
u f

f
(eff)

(6)

For region 2, eq 7 applies,

= −
−

q q
s f X

X

( )
u f

M
(eff) (7)

and taking s = qfXf and f(XM) = XMvs(XM) + quXM into eq 7
gives eq 8,

=
−
−

+
−

q
X X

X X
q

X

X X
v X( )u

(eff)
f

(eff)
M

f
M

(eff)
M

s M
(8)

Analogously for region 3, with f(Xf) = Xfvs(Xf) + quXf, eq 9 is
found,

= +
−

q q
X

X X
v X( )u f

f
(eff)

f
s f

(9)

We can reasonably assume that, because Xf and XM are large,
Xf ≫ X(eff) and also that XM ≫ X(eff). Hence eq 10 applies.

≅
− ∈

− ∈

⎧
⎨⎪

⎩⎪
q

X
X

q v X X X X

q v X X X X

( ), ( , )

( ), [ , ]
u

f

M
f s M f m M

f s f f M max (10)

Because the pair (Xf, s) is primarily dependent on the
biological activity in the reaction section, eq 11 holds.

>

>

∈
∈

∈ ∈

⎡
⎣⎢

⎤
⎦⎥q

X
X

q

v X v X

[ ] and

[ ( )] [ ( )]

X X X
X X X

X X X X X X

f [ , ]
f

M
f

( , )

s f [ , ] s M ( , )

f M max

f m M

f M max f m M (11)

Therefore, the smallest value of qu, and hence the minimum
wastage disposal cost, is achieved in region 2 where Xf ∈ (Xm,
XM). Moreover, having Xf ∈ (0, Xm) or Xf ∈ (XM, Xmax)
depends on the reaction section being able to produce such Xf,
which may not be feasible. This is indeed the case for the
activated sludge process considered in this paper as shown later

Figure 2. The steady-state chart of the settler.18
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in the optimization section. However, for large throughputs,
that is, high loads during long periods, it may be the case where
Xf ∈ (XM, Xmax), and we have to switch to region 3 where qu is
higher.
As a consequence of the previous analysis, the steady-state

model of the settler that holds for optimization purposes is
given by eq 12,

=
−

=

=

∈

X
s f X

q

X
f X

q

X q

X X X

M

( )

( )

( )

( , )

u

(eff) M

e

M

u

M u

f m M (12)

where M is a function that computes the local minimizer of
f(XM). In addition, we can also calculate the steady-state
concentration of suspended solids in the clarification (Xcl) and
thickening zones (Xth) as in eq 1318

+ =

=

g X s f X

X X

( ) ( )cl M

th M (13)

where g(Xcl) = Xclvs(Xcl) − qeXcl.
Note that although in this paper a nonreactive settler is

considered, we here follow17 and treat the dissolved oxygen in
the settler in a special way. We assume that the oxygen is
consumed within the settler and, as a consequence, the oxygen
concentration at the settler’s outlets is set to zero, which is
indeed a realistic assumption. This results in a more
conservative computation of the oxygen demand in the
reaction section.
In this paper, the BSM1 protocol15 with the modified

secondary settler model proposed above is reimplemented as a
Matlab script, and we use the ADMAT30 package to compute
first-order information based on automatic differentiation for
explicit optimization. XM is computed implicitly together with
the other model equations as the solution of df(X)/dX = 0 with
d2f(X)/dX2 > 0 as a constrained condition for minimum.

3. CONTROLLED VARIABLE SELECTION
METHODOLOGY

In this section, a summary of the sensitivity analysis procedure
used in this work is discussed. It is not supposed to be an
exhaustive discussion on the subject; instead, we give the
necessary elements for a proper understanding of the main
ideas lying behind the method. Indeed, this plantwide
procedure has been successfully applied to other processes as
described in various publications in the field.31−36,12 Indeed, a
review of this methodology and others, more heuristics as well
as applications thereof can be found in Rangaiah and
Kariwala.37

The methodology is mainly based on the first four steps,
known as “top-down analysis”, of the more general procedure
described in Skogestad,38 where economic variable selection is
the key issue. The analysis conducted is of local nature, that is,
we use linearized models of the process to develop the
methodology. In general, one should always, for a final
validation, check the linear results against simulations on the
nonlinear model of the process.

In this paper, we use optimal measurement combinations39

for unconstrained variable selection, that is, the ones left after
choosing the active constraints as “primary” economic variables.
The basic idea is to select combinations, c, of the measure-
ments, y, such that c = Hy, where H is a (static) selection
matrix. To determine H, two approaches are developed based
on a linearized model of the process and a second-order Taylor
series expansion of the cost function used for optimization; two
sources of uncertainty are assumed, which are represented by
eq 1, external disturbances (d), and eq 2, implementation
(measurement) errors (n). The first of the two approaches
combines these uncertainties in one single scaled vector to
minimize the worst case economic loss (L), defined as the
difference between actual operation (with a given control
structure in place) and operation under optimal control. In the
second approach, we first minimize the loss with respect to
external disturbances and then, if there are still available
measurements, minimize the loss with respect to implementa-
tion (measurement) errors.
Below we give more details on each step of the sensitivity

analysis procedure38 and for that we consider an existing plant
and that we have available a steady-state usually nonlinear
mathematical model of the process.
1. Define operational objectives. We first quantify the

operational objectives in terms of a scalar cost function (here
denoted J), that should be minimized or, equivalently, a scalar
profit function, P = −J, that should be maximized. A typical cost
function is given as in eq 14,

= +

−

J cost of feed cost of utilities (e.g., energy)

revenue from valuable products (14)

In addition to the definition of an economic objective, in most
cases operation takes place under constrained conditions, such
as minimum and maximum values on process variables for
process safety, environmental regulations, product specifica-
tions, and control limitations. These can be included in the
above formulation by defining inequality constraints (g ≤ 0).
2. Determine the steady-state optimal operation. Using a

steady-state model of the process, identify degrees of freedom
and expected disturbances and perform optimizations to assess
sensitivity for the expected disturbances.
Usually, the economics of the plant are primarily determined

by the (pseudo) steady-state behavior,40 so the steady-state
degrees of freedom (u0) are usually the same as the economic
degrees of freedom. Which variables to include in the set u0 is
immaterial, as long as they make up an independent set. One
simple way to identify these degrees of freedom is to use a
flowsheet of the process and count the number of independent
manipulated variables that can be affected.
The important disturbances (d) and their expected range for

future operation must then be identified. These are generally
related to feed rate and feed composition, as well as external
variables such as temperature and pressure of the surroundings.
We should also include as disturbances possible changes in
specifications and active constraints (such as product
specifications or capacity constraints) and changes in
parameters (such as equilibrium constants, rate constants, and
efficiencies). Finally, we should include as disturbances the
expected changes in prices of products, feeds, and energy. Note,
however, that some disturbances may have a small effect on the
optimal operation of the process. It is therefore desirable to
discriminate the important disturbances that should be
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considered for steady-state analysis. In this paper, we identify
important disturbances to calculate the actual loss in the
variable selection step using a nonlinear model of the process.
In order to achieve near-optimal operation without the need

to reoptimize the process when disturbances occur, one needs
to minimize the loss in eq 15,

= − ≥c d c d dL J J( , ) ( ( ), ) 00 0
opt

(15)

where J0(c, d) is the value of the cost for a chosen set of
constant set point variables c that fulfill all remaining degrees of
freedom and J0(c

opt(d), d) is the value of the cost after
reoptimization. Clearly, the loss in eq 15 depends on the
objective function as well as on the measurements through c,
since c is a function of the available y. We then need to learn
about the sensitivity to disturbances not only of the cost
function but also of the measurements.
To optimize the operation, we select the nominal disturbance

d and vary the values of the degrees of freedom in an optimal
way (u0

opt(d)) so as to minimize the cost (J0(x, u0, d)), while
satisfying the constraints. Mathematically, this steady-state
optimization problem can be formulated as in eq 16,

=

≤

x u d

f x u d

g x u d

Jmin ( , , )

subject to

model equations ( , , ) 0

operational constraints ( , , ) 0

u 0 0

0

0

0

(16)

where x are internal variables (states). In f(x, u0, d) = 0, possible
operational equality constraints (like a given feed flow) are also
included. The main objective is to determine the optimal
nominal operating condition to be used in the variable selection
step.
3. Select “economic” (primary) controlled variables. In this

step, the issue is the implementation of the optimal operation
point found in the previous step in a robust and, most
importantly, simple manner. We need to identify as many
economic controlled variables (c) as there are economic
degrees of freedom (u0). For economic optimal operation,
active constraints must be selected,41 which in turn consumes
part (u′) of the degrees of freedom. For the remaining degrees
of freedom (u, where nu = nu0 − nu′), we select variables for
which close-to-optimal operation is achieved with constant
nominal set points, even when there are disturbances.13

Because our considerations in this paper are of local nature,
we assume that the set of active constraints does not change
with changing disturbances, and we consider the problem in
reduced space in terms of the remaining unconstrained degrees
of freedom, u, which can be expressed as in eq 17,42

=

=

x u d

f x u d

g x u d

Jmin ( , , )

subject to

model equations ( , , ) 0

active constraints ( , , ) 0

u 0

active (17)

where we consider as active constraints a subset gactive(x, u, d) of
g(x, u0, d) for which optimal values are always at bounds for all
disturbances. By elimination of the states using the equality
constraints in eq 17, the unconstrained optimization problem
can be expressed simply as in eq 18,

u dJmin ( , )
u (18)

Note that although J0 and J are numerically the same, they do
not share the same mathematical structure. Indeed, J is
generally not a simple function in the variables u and d but
rather a functional.
Ensuring active constraint operation consumes part of the

degrees of freedom for optimization. The remaining degrees of
freedom need to be fulfilled, and we select variables such that
when kept at optimal set points lead to near-optimal economic
operation despite disturbances, that is, the deviation (loss L in
eq 15) from reoptimization as a function of disturbances should
be small. The optimal set points of c are then determined from
the optimization at the nominal operating point. This is the
celebrated self-optimizing control technology.13 A quantitative
way to determine the set c is based on a quadratic
approximation of the cost function J as given by eq 18. It
can be shown39 that the second-order accurate expansion of the
loss function is given by eq 19,

= − − = = || ||u u u u z z zL J
1
2

( ) ( )
1
2

1
2

T
uu

Topt opt
2
2

(19)

with z = Juu
1/2(u − uopt), where Juu = (∂2J/∂u2)uopt is the Hessian

of J with respect to u evaluated at uopt, and uopt is the optimal
value of the manipulated variables. We consider that c is
expressed as a linear combination of the available measure-
ments y as in eq 20,

=c yH (20)

where H is a real constant matrix, the coefficient matrix, and
dim(c) = dim(u).
Now, assume we have a linearized (local) model of the

process in terms of deviation variables as in eq 21,

It can then be shown39 that z can be expressed as function of
the more appropriate uncertainty variables, eq 22,

where d′ and ny′ are the scaled disturbance and measurement
error variables related by d = Wdd′ and ny = Wn

yny′ (Wd and Wn
y

are scaling matrices), and Md and Mn
y are given by eqs 23 and

24, respectively

= − FM M H Wd n d (23)

= −M M HWn n ny y (24)

where

= −M J HG( )n uu
y1/2 1

(25)

and F = i∂yopt/∂d is the optimal measurement (yopt) sensitivity
with respect to the disturbances, which can be found explicitly
by eq 26,39

= − −−F G J J G( )y
uu ud d

y1
(26)

where Jud = [∂2J/(∂u∂d)]uopt,dnom.
Therefore, we choose to compute the worst-case loss (Lwc)

for the expected disturbances and measurement noise as given
by eq 27,39
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In other words, we need to find H that minimizes σ̅(M), that is,
H = arg minH σ̅(M). There are basically two approaches to
solve for this minimization problem.
The first approach solves the minimization problem in eq 27

at once by combining disturbances and measurement errors in
one vector, and in this case, an explicit formula for H is given by
eq 28,39

= ̃ ̃ ̃ ̃− − −H FF G G FF G J( ) ( ( ) )y y y
uu

T T 1 T T 1 1 1/2
(28)

where F̃ = [FWd Wn
y] and F̃F̃T must be full rank. This expression

applies to any number ny of measurements.
The second approach, called the extended nullspace

method,39 solves the minimization problem in eq 27 in two
steps: first minimizing the loss with respect to disturbances and
then, if there are still enough measurements left, minimizing the
loss with respect to measurement errors. One justification for
this methodology is that disturbances are the reason for
introducing optimization and feedback in the first place.
Another reason is that it may be easier later to reduce
measurements errors than to reduce disturbances. It can be
shown that the explicit expression for H in this case is given by
eq 29,39

= ̃ ̃− − † −JH M W G W( )n n
y

n
1 1 1

y y (29)

where J ̃ = [Juu
1/2 Juu

1/2 Juu
−1 Jud]. There are four cases where eq

29 can be applied:
Case 1. “Just-enough” measurements are chosen, that is, ny =

nu + nd. Here, the expression for H becomes eq 30,

= ̃ ̃− −GJH M ( )n
y1 1

(30)

which is the same as having H in the left null space of F, that is,
H ∈ N(FT).
Case 2. Extra measurements (select just enough measure-

ments) are also included, that is, ny > nu + nd, and we want to
select a subset of the measurements y such that ny = nu + nd.
The solution is to find such a subset that maximizes σ̲(G̃y)
using, for example, existing efficient branch-and-bound
algorithms.43 The resulting G̃y is then used to compute H in
eq 30.
Case 3. Extra measurements (use all available measure-

ments), that is, ny > nu + nd. H is calculated using eq 29, where
† denotes the left inverse, calculated as A† = (AT A)−1AT for
any given matrix A.
Case 4. “Too few” measurements are available, that is, ny < nu

+ nd. In this case, the optimal H in eq 29 is not affected by the
noise weight and therefore becomes

= ̃ ̃− †H M J G( )n
y1

(31)

where † denotes the right inverse, that is, A† = AT(AAT)−1.
The above procedure boils down to selecting suitable

candidate measurements, that is, identify ny vis-a-vis nu + nd,
and find that linear combination (matrix H) of all, or a given
subset of measurements, which results in the smallest loss
among every possible solution. One big hurdle to be
surmounted is the numerical calculation of Juu and Jud. For
some ill-posed problems, it may become an intractable task, and
one solution is to compute F numerically instead, since F =

dyopt/dd. Hopefully, the extended nullspace general formula, eq
29, can, after some matrix algebra, be reformulated as in 32,

= − ̃† − † −H M G G G F W G W( ) [ ( )]( )s
y y

d
y

n
y

n
1 1

y y (32)

where Ms = (Juu
−1/2Mn) can be any nonsingular nu × nu matrix.

In this case, we could select Mn = Juu
−1/2 so that eqs 28 and 29

are independent of Hessian information.
It should be clear that the linear method just described is

local in nature, so only small variations around the optimal
values can be considered. Many large disturbances will certainly
move the operating conditions significantly, and only a
nonlinear model of the process could represent such a case.

4. RESULTS
In this section, we focus on the application of the
aforementioned procedure to the mathematical model
described in section 2, starting with the definition of optimal
operation. It is worth mentioning that a nonlinear steady-state
model of the process is the main requirement and that the
analysis is based on steady-state considerations only.

4.1. Step 1. Operational Objectives. The operational
costs in a wastewater treatment plant depend on the wastewater
system itself and can be divided into manpower, energy,
maintenance, chemical usage, chemical sludge treatment, and
disposal costs. However, in this work, the objective is to reduce
the cost of energy and sludge disposal as much as possible.
Therefore, the following costs are considered: required
pumping energy, EP, expressed in kWh/d; required aeration
energy, EA, expressed in kWh/d; required mixing energy when
aeration need is too low to provide adequate mixing, EM,
expressed in kWh/d; sludge disposal, CD, expressed in $/d.
To express the partial costs over a certain range of time, Θ,

we adopt the expressions proposed in Alex et al.15 The total
energy due to the required pumping energy depends directly on
the recycle flow (Qr), on the internal recycle (Qa), and on the
waste sludge flow rate (Qw) through eq 33:

∫=
Θ

+ +
+Θ

E Q t Q t Q t

t

1
(0.004 ( ) 0.008 ( ) 0.05 ( ))
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t

t

a r wP
0

0

(33)

with the flow rates in m3/d. The aeration energy can be
calculated from eq 34, which is a function of the oxygen
saturation concentration, SO

sat, in each bioreactor volume, V, and
KLa, the combined mass transfer coefficient for oxygen:
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Θ × ×
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0
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(34)

with KLa expressed in d−1 and i referring to the reactor zone
number. In addition to aeration, mechanical mixing might also
be supplied to avoid settling. The mixing energy is then a
function of the compartment volume and can be computed by
eq 35:

∫ ∑=
Θ

<

=

+Θ

=
⎪

⎪⎧⎨
⎩

E
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24 0.005 d , if ( ) 20
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i
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i

M
1

L
( )

0

0

(35)

The sludge disposal production per day is expressed as in eq 36
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where TSSw represents the total suspended solids wasted with
Qw. Assuming a constant energy price, kE = $0.09/kWh, and a
sludge disposal cost of kD = $80/ton, the total cost in $/d can
be calculated as in eq 37:

= + + +k E E E k Ccost ( ) [$/d]E P A M D D (37)

The overall cost function in eq 37 is then averaged over time
for steady-state purposes and minimized subject to environ-
ment regulations for the effluent and some constraints related
to process operability. These constraints are listed in Table 3.

The effluent environmental regulation constraints on COD,
TSS, TN, BOD5, and SNH and the values for the manipulation
constraints are taken from Alex et al.15

4.2. Step 2. Steady-State Optimal Operation. Using the
information given in the process flowsheet in Figure 1, we find

that there are eight manipulated variables that correspond to
eight steady-state degrees of freedom (u), namely, Qw (excess
sludge flow rate), Qr (external recirculation flow rate), Qa

(internal recirculation flow rate), and KLa
(1−5) (mass transfer

coefficient of oxygen in each basin). These are the last four
entries in Table 3. The liquid levels in the reactor tanks are
assumed to be constant at maximum capacity due to the
overflow layout considered for the plant. Note that from the 11
valves in Figure 1, the feed valve is not an available degree of
freedom since it is a disturbance to the process; the valve at the
outlet of the last basin is only used to possibly adjust this basin
level; and the valve at the effluent line has indeed no steady-
state effect.

4.2.1. Remark 1. We here consider KLa as a manipulated
variable to avoid including details of basin and aeration systems
geometry into the model because the actual manipulated
variable, namely, the flow of compressed air, is generally a
function of the type qair = F(KLa, db, h, La, f, B, α, γ, ν, A, D),
where db is the diameter of bubbles, h is the submergence of
aerators, La is the liquid depth in the aeration basin, f is the
width of the aeration band, B is the width of the aeration basin,
α is the correction factor relating the overall mass-transfer
coefficient (KLa) of the wastewater to that of tap water, γ is the
temperature correction factor, ν is the water viscosity, A is the
sectional area of the basin, and D is the coefficient of molecular
diffusion. One such relation given in Khudenko and Shpirt44 is
reproduced in eq 38.

αγ=
⎛
⎝⎜

⎞
⎠⎟

⎛
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⎞
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⎛
⎝⎜

⎞
⎠⎟K a

h
d

f
B

q

L A
0.041L

b

0.67 0.18
air

a (38)

Table 3. Constraints to the Process

constraint unit status

COD(eff) ≤ 100 gCOD/m3 regulation constraint
TSS(eff) ≤ 30 gSS/m3 regulation constraint
TN(eff) ≤ 18 gN/m3 regulation constraint
BOD5

(eff) ≤ 10 gBOD/m3 regulation constraint
SNH
(eff) ≤ 4 gN/m3 regulation constraint
Qw ≤ 1845 m3/d manipulation constraint
Qr ≤ 36892 m3/d manipulation constraint
Qa ≤ 92230 m3/d manipulation constraint
KLa

(1−5) ≤ 360 d−1 manipulation constraint

Figure 3. Influent flow rate and organic and nutrient compounds for the given weather events and long-term data1 (the considered steady-state
optimization disturbances are highlighted).
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Since our unconstrained variable selection analysis is local
(linear) in nature, we here choose as disturbances for this
purpose the most important inputs in the influent,15 which are
the flow rate, Q(in), the chemical oxygen demand, CODin, the
total suspended solids concentration, TSSin, the total nitrogen
concentration, TNin, and the surrounding temperature, T.
Obviously, each of these are considered acting upon the process
one at the time.
On the other hand, for nonlinear loss evaluation, we must

define more realistic disturbance scenarios. Compared with
other process industries, a wastewater treatment plant is subject
to very distinct operation modes because of daily, weekly, and
seasonal variation in the incoming wastewater. In this paper, we
consider the influent load data as given by the IWA Task Group
in the benchmark Web site. The data are presented in terms of
ASM1 state variables and influent flow rates. In general, these
data reflect expected diurnal trend variations in weekdays,
which are typical for normal load behavior at a municipality
treatment facility. Four different weather/influent conditions
are considered in four different data sets and from those,
different events are deduced for our purposes: (1) The dry
weather f ile (Figure 3a,b) gives what is considered to be normal
diurnal variations in flow and organic pollutant loads. In the
following, the average input compositions and flow rate are
considered as nominal conditions for the BSM1 plant. (2) The
rain weather f ile (Figure 3c,d) represents a long rain event. (3)
The storm weather f ile (Figure 3e,f) is a variation of the dry
weather file incorporating storms. The first storm event in this
file is of high intensity and short duration. The second storm
event assumes the sewers were cleared of particulate matter
during the first storm event; hence, only a modest increase in
COD load is noted during the second storm. (4) The long-term
weather f ile (Figure 3g,h) represents 1.5 year data where the
first 6 months, starting in winter time, give training data and the
last 12 months, starting in summer time, correspond to the
monitoring period. Variation in temperature during one year
time are also considered. This overcomes one of the recognized
limitations45 of the BSM1 model: the availability of short time
data sequences, which in turn results in a long-term benchmark
model no. 1 (BSM1_LT). It focuses on long-term process
performances and considers temperature variations during one
year.
As step change disturbances from the nominal operation for

steady-state optimizations, we consider different conditions
from the different data sets. Starting from the nominal
conditions (Figure 3a,b), average values of influent during dry
weather, Table 4 summarizes the given disturbances to be used

for nonlinear computations in terms of influent flow rate and
load. The average composition and flow rate, d1, and the
average values for the process inputs during the rain period,
marked as d2 region, are taken from the rain weather depicted
in Figure 3c,d. From Figure 3e,f, we can identify the given
disturbance as d3 representing the average condition during the
whole period and d4 as the average during the storm time.
Variations in temperature during one year time are reported in
Figure 3g,h, and we consider the average (d5), minimum
(d5,min) and maximum (d5,max) values for the temperature. In
fact, one particular advantage of studying this process is the
availability of the weather event profiles for different weather
conditions (as well as the long-term data) because it definitely
aids the sensitivity analysis with the actual upsets to the plant.
The importance of this sort of discrimination is well
documented in Gernaey et al.45

To achieve optimal operation, we select the active constraints
as variables to be monitored,41 whereas the difficult issue of
deciding which unconstrained variables to select is resolved by
recurring to the concepts of step 3 of the procedure described
in the preceding section. The starting point for the selection of
primary (economic) variables is the optimization of the process.
To this end, the BSM1 model plus the proposed model of the
secondary settler is reimplemented as a script in MatLab and
the nominal optimization is performed subjected to the
constraints given in Table 3. The in-built MatLab subroutine
“fmincon.m” is the optimizer of choice, and in order to make
the optimization run more robustly, we used an automatic
differentiation software30 to compute first-order (sparse)
information, that is, Jacobians and gradients.

4.3. Step 3. Controlled Variable Selection. The results
of the optimization can be seen in Table 5, which gives the
values of relevant variables involved in the process. Three
constraints are active, namely, TSS(eff) (upper limit), SNH

(eff)

(upper limit), and Qa (lower limit). As expected (see discussion
in section 2), TSS(eff) is at its maximum to make Qw small. In
general, the reason free ammonia (SNH

(eff)) is active at its upper
bound is that because nitrification is an oxygen-demanding
process and because the transfer efficiency of oxygen from gas
to liquid is relatively low so that only a small amount of oxygen
supplied is used by the microorganisms, the aeration demand
(EA), which is the major cost contributor in a wastewater
treatment plant, is high. The fact that Qa = 0 is somehow
surprising. However, from a practical point of view, Qa = 0 is
possible. In fact, the internal recirculation is needed in the pre-
denitrification configuration of the activated sludge process as
carbon source (in this way, no external carbon source, like
methanol, is added into anoxic zones) and to enhance
denitrification in the system. In our case, the return sludge
from the secondary settler returns quite sufficient organic
matter and nitrate for denitrification; for this reason, Qa might
be avoided in a more economically convenient way. The
optimization results show that at the given steady-state
conditions the original pre-denitrification configuration could
be beneficially replaced by a different configuration with lower
oxygen concentration profile along the bioreactor. Of course,
Qa would be certainly needed dynamically together with higher
dissolved oxygen concentrations to enhance the capabilities of
the control system in terms of reductions of the effluent peaks
and disturbance rejection as long as some reset is programmed
to always send it back to its steady-state optimal values, that is,
Qa = 0. Another interesting fact is that the process is optimally
operated aerobically, that is to say, with no anoxic zone. The

Table 4. Weather Profiles Events and Derived Disturbances

Q(in)

[m3/d]
COD(in)

[gCOD/m3]
TSS(in)

[gSS/m3]
TN(in)

[gN/m3]
T

[°C]

d0 (nominal) 18446 381 211 54 15
d1 21320 333 183 48 15
d2 40817 204 116 28 15
d3 19746 353 195 50 15
d4 34286 281 101 37 15
d5 20850 347 199 41 15
d5,min 20850 347 199 41 9
d5,max 20850 347 199 41 21
expected range
max(|d0 − di,max)|, |
d0 − di,min)|)

22371 100 110 26 6
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possible reason is due to the attempt to minimize the high
aeration costs, and to the fact that the effluent total nitrogen
and ammonia constraints are quite easily attained for the given
influent loads. Optimization of the process assuming the
original configuration of the BSM1 model where the first two
tanks are operated anoxically, that is, with KLa

(1) = KLa
(2) = 0,

was also conducted (see column dubbed “original” in Table 5),
resulting in a higher cost of operation.
It is worth notice at this point that since the settler is

modeled as a nonreactive process, the ammonia concentration
in the effluent matches, at least at steady-state, the one in the

last aerobic tank, and this also applies for all other soluble
components. In practice, however, there is an anoxic condition
in the settler that favors denitrification with an improved final
total nitrogen of about 15% smaller compared with the
nonreactive model assumed in this paper.46

Because those three active constraints must be implemented
to ensure optimal operation,41 we are left with five degrees of
freedom, and we use the local methods described in step 3 of
the procedure to decide for the best (optimal) set of
unconstrained self-optimizing control variables to fulfill the
available degrees of freedom. We consider the measurements

Table 5. Effect of Disturbances on Optimal Values of Selected Variables in the System

variable unit nominala originala status measurement range measurement noise

cost $/d 428.294 460.641
EP $/d 17.365 20.278
EA $/d 250.815 259.612
EM $/d 0.000 21.600
CD $/d 160.114 159.151
SO
(1) gO2/m

3 0.1 0.0 measurement #1 0−10 0.250
SNO
(1) gN/m3 1.4 0.2 measurement # 2 0−20 0.500
SNH
(1) gN/m3 14.9 16.1 measurement #3 0−50 1.250
SO
(2) gO2/m

3 0.2 0.0 measurement #4 0−10 0.250
SNO
(2) gN/m3 2.4 0.0 measurement #5 0−20 0.500
SNH
(2) gN/m3 12.5 16.8 measurement #6 0−50 1.250
SO
(3) gN/m3 0.2 0.3 measurement #7 0−10 0.250
SNO
(3) gN/m3 3.4 2.5 measurement #8 0−20 0.500
SNH
(3) gN/m3 9.6 11.7 measurement #9 0−50 1.250
SO
(4) gO2/m

3 0.2 0.3 measurement #10 0−10 0.250
SNO
(4) gN/m3 4.8 5.0 measurement #11 0−20 0.500
SNH
(4) gN/m3 6.7 7.6 measurement #12 0−50 1.250
SO
(4) gO2/m

3 0.2 0.3 measurement #13 0−10 0.250
SNO
(5) gN/m3 6.2 7.7 measurement #14 0−20 0.500
SNH
(5) gN/m3 4.0 4.0
MLSS gSS/m3 5856.5 5983.8 measurement #15 0−10000 250.000
SRT d 13.83 14.20
FM gCOD/gSS/d 0.2 0.2
COD(eff) gCOL/m3 67.0 67.3
TESS(eff) gSS/m3 30.0 30.0
TN(eff) gN/m3 13.3 15.0
SNH
(eff) gN/m3 4.0 4.0
BOD5(eff) gBOD/m3 4.6 4.7
TSSw gSS/m3 10458.0 10238.0 measurement #16 0−10000 250.000
SNO
w gN/m3 6.2 7.7
Qw m3/d 191.4 194.3 measurement #17 0−100000 2500.000
Qr m3/d 22922.0 25349.2 measurement #18 0−100000 2500.000
Qa m3/d 0.0 3199.9
Qw/Q

(in) 0.01 0.01
Qr/Q

(in) 1.24 1.37
KLa

(1) d−1 122.77 0.00 measurement #19b 0−360 9.000
KLa

(2) d−1 123.03 0.00 measurement #20b 0−360 9.000
KLa

(3) d−1 100.44 184.13 measurement #21b 0−360 9.000
KLa

(4) 97.18 159.98 measurement #22b 0−360 9.000
KLa

(5) d−1 88.28 142.67 measurement #23b 0−360 9.000
Q(in) m3/d 18446.0 18446.0 measurement #24 0−100000 2500.000
SNH

(in) gN/m3 31.6 31.6 measurement #25 0−50 1.250
COD(in) gCOD/m3 381.2 381.2 measurement #26 0−1000 25.000
TSS(in) gSS/m3 211.3 211.3 measurement #27 0−10000 250.000
TN(in) gN/m3 54.4 54.4
T(in) °C 15.0 15.0 measurement #28 5−25 0.625

aWe here assume that measurement accuracy for concentration is 15% of the range. For the other measurements, the accuracy is given by the range
of the measurement noise. bThese measurements can be inferred from, for example, eq 38.
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indicated as such in Table 5, which according to Alex et al.15 are
readily available for the process. Moreover, the range and noise
level for each measurement variable are also provided,15 where
the measurement noise corresponds to 0.25% of the maximum
value of the measurement interval. Overall, there are ny = 28
measurements, nu = 5 manipulated variables, and nd = 5
disturbances, and clearly with ny > nu + nd one can expect to
substantially reduce the loss for both disturbances and
measurement errors.
Because there are as many measurements as there are

manipulated variables and disturbances, one can compute
various H matrices. The methods considered in this paper are
(1) the combined disturbances and measurement errors using
all available measurements, where H is computed by eq 28, in
which case, H1 is a 5 × 28 combination matrix, (2) the
extended nullspace using all measurements, with H computed
by eq 32, in which case, H2 is also a 5 × 28 combination matrix,
and (3) the extended nullspace using just enough measure-
ments, where G̃y in eq 32 is found by a branch and bound
algorithm,43 in which case, H3 is a 5 × 10 combination matrix.
Note that we here normalize the magnitude of the elements

in each matrix H such that ∥H∥F = 1, where ∥·∥F is the
Frobenius norm.
4.3.1. Remark 2: Ranking of the Losses. The losses as

computed by eq 27 must satisfy Lwc
H1 < Lwc

H2 < Lwc
H3 since one of

the options for H1 is to use only the measurements selected by
H3, hence Lwc

H1 < Lwc
H3. In addition, Lwc

H1 < Lwc
H2 because the

computation of H1 includes both disturbances and measure-
ment errors simultaneously. Finally, because H2 uses all
measurements, the resulting loss for H3 must be larger than
that for H2, that is Lwc

H2 < Lwc
H3.

4.3.2. Remark 3: Scaling of H before Computing the Loss.
Scaling of H does not change the loss as given in eq 27, with
Mn computed via eq 25 with second-order information (Juu)
available, since
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The above derivations are local in nature since we have
assumed a linear process model and a second-order Taylor
series expansion of the objective function in the inputs and the
disturbances. Thus, the proposed controlled variables are only
globally optimal for the case with a linear model and a quadratic
objective. However, in this Article, for a final validation, the
sensitivity of the proposed control structure at steady state
through the actual losses is checked using the nonlinear model
of the process as given in Table 6. This table shows that the
losses are about the same order of magnitude for a given

disturbance. Although Lwc
H1 < Lwc

H2 < Lwc
H3 is true in a linear fashion,

the extended nullspace method, like any other local method,
does not guarantee that the rank of linear and nonlinear losses,
that is, those calculated from the nonlinear model of the
process, is the same.
Also from Table 6, we can see that feasibility is not always

guaranteed, and indeed only the alternative where H was
computed using the extended nullspace method with “just-
enough” measurements is feasible for all disturbance spectra. In
this particular case, the variables (to be combined) chosen by
the branch-and-bound algorithm that maximized the minimum
singular value of G̃y were y = [SO

(3) SO
(4) SNO

(3) MLSS KLa
(1) KLa

(2)

KLa
(3) KLa

(4) COD(in) T(in)], and their respective linear
combinations are given by eq 40
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In the above expressions, the matrix H is scaled with respect
to the measurements such that the new matrix Hy = HDy,
where Dy = diag[span(y)] and span(y) is given as the
measurement range in Table 5. Note that the measurements
that most affect the selected controlled variables are related to
the COD at the plant inlet. The most sensitive variable to
measurement change is c2 as ∥Hy(2, :)∥2 = 210, and c3 is the
less sensitive one with ∥Hy(3, :)∥2 = 27. All in all, not much
physical information can be inferred from the above expressions
since the extend nullspace method is purely mathematical in
nature.

Table 6. Nonlinear loss calculation for various disturbances

unit d1 d2 d3 d4 d5 d5,min d5,max

Costopt $/d 426.783 490.086 420.555 599.359 419.829 491.283 357.955
CostH1 $/d 427.088 507.184 420.615 602.525 420.361 494.371 Inf
LossH1 % 0.072 3.489 0.014 0.528 0.127 0.629 Inf
CostH2 $/d 427.067 Inf 420.601 Inf 419.937 507.737 359.401
LossH2 % 0.067 Inf 0.011 Inf 0.026 3.349 0.404
CostH3 $/d 426.970 495.860 420.597 608.948 420.368 492.817 358.711
LossH3 % 0.044 1.178 0.010 1.600 0.128 0.312 0.211
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One can argue whether to include all five measured
disturbances in the extended nullspace method using “just-
enough” measurements since then there would be no need to
infer the effect of disturbances from the other process
measurements, which is a good “feedforward” strategy that
could improve control quality. We tested this option and found
that the best set of variables (to be combined) chosen by the
branch-and-bound algorithm that maximized the minimum
singular value of G̃y were y = [Qr KLa

(1) KLa
(2) KLa

(3) KLa
(4)

Q(in) SNH
(in) TSS(in) COD(in) T(in)]. Nonetheless, the nonlinear

loss calculations (not detailed this time) showed this choice
gives infeasible operation for disturbances d4, d7, and d8 and was
therefore not selected.

5. DISCUSSION

This paper focused on the application of a sensitivity analysis
procedure to the BSM1/ASM1 wastewater treatment process.
The work is based upon a steady-state analysis of a rigorous
nonlinear model of the plant where the settler was modeled by
the static one-dimension scalar mass conservation law with
discontinuous fluxes, since the more traditional Takacs’s model
fails to represent the complex behavior of secondary settlers.
The resulting mathematical representation of the settler
operation under steady-state conditions brings about a
smoother function that may help convergence of the computa-
tional routine used to numerically optimize the model. The goal
was to minimize operational costs subject to the most
important requirement of delivering effluent within the
regulation constraints given in Table 3. However, some aspects
of the application of the aforementioned procedure to the
WWTP need to be addressed.
The nominal optimization results showed that it is

economically optimal to keep effluent suspended solids and
ammonia concentrations at their respective upper bounds and
that no internal recirculation of sludge should be used, at least
under the steady-state assumption. Indeed, optimizations based
on the nonlinear model of the process for the given set of
disturbances confirm that these variables are always active (see
Table 7). When operating the process dynamically, one may
consider using Qa to control some internal variable so as to
improve the disturbance rejection capability of the process. If
these variables are controlled at their respective optimal set
points (active constraint control), a choice had to be made on
the selection of the remaining five degrees of freedom, and we
use the sensitivity analysis based on a plantwide procedure to
decide on which five variables to fixor control at their respective

nominal optimum values. The exact local (linear) method and
the extended nullspace method based on the concept of self-
optimizing control were used to systematically select those
variables such that the cumbersome combinatorial curse of
choosing and testing 5 out of 28 possible variable combinations,
resulting in 98 280 possible control structures, is avoided. The
combination matrices H were easily computed using
elementary matrix algebra, as described by formulas 28, 29,
and 30. The only burden with those calculations lies in the
computation of the optimal matrices Juu, Jud, and F. Since
accuracy of second-order information found numerically is
known to be difficult to guarantee, in addition to assuring
positive definiteness of Juu, calculation of F might become more
attractive, and a replacement formula for eq 29 was derived as
in eq 32. Mn in this equation can be freely selected, as long as it
is a nonsingular matrix, and we choseMn = Juu

1/2 so to avoid the
need to compute Juu. Moreover, since the solution for H in eq
28 is not unique,39 we can also find a nonsingular nu × nu D
matrix such that Hnew = DH is another yet solution, and we can
select D as a function of Juu

1/2; in this paper, we assumed D =
Juu

−1/2.

6. CONCLUSION

This paper discussed the application of a sensitivity analysis
procedure for selection of economic controlled variables for
optimal operation of a wastewater treatment plant. For the
given modified mathematical model of the process where a new
model of the settler was developed based upon the static one-
dimension scalar mass conservation law with discontinuous
fluxes theory, keeping the active constraints (SNH

(eff), TSS(eff),
and Qa) at their optimal values and using linear combinations of
the measurements as the five remaining unconstrained degrees
of freedom can guarantee near-optimal operation with
minimum economic loss when operating at the nominal
optimal mode despite the severe disturbances that affect the
process. Future work will focus on the design of a control
system for the wastewater treatment process discussed in this
contribution along with the dynamic performance assessment
of proposed control configurations.

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: antonio@deq.ufcg.edu.br.

Notes
The authors declare no competing financial interest.

Table 7. Optimal Constraint Values for the Set of Disturbances in Table 4

constraint unit nominal d1 d2 d3 d4 d5 d5,min d5,max

CODeff < 125 gCOD/m3 67.0 64.6 51.7 66.1 56.6 64.7 64.0 66.7
TSSeff < 30 gSS/m3 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
TNeff < 18 gN/m3 13.3 13.0 12.7 12.8 14.8 10.3 15.8 7.3
SNH
eff gN/m3 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
BOD5eff < 10 gBOD/m3 4.6 4.8 5.3 4.7 5.3 4.8 5.5 4.2
Qw < 1844.6 m3/d 191.4 189.0 250.9 185.7 342.0 205.1 262.3 146.2
KLa

(1) < 360 d−1 122.8 117.7 83.7 123.6 67.8 145.5 51.5 148.6
KLa

(2) < 360 d−1 123.0 124.4 135.8 122.2 160.7 111.3 124.2 118.3
KLa

(3) < 360 d−1 100.4 102.6 124.7 99.8 148.9 91.7 110.8 102.7
KLa

(4) < 360 d−1 97.2 99.7 121.0 95.4 143.8 79.8 102.5 84.7
KLa

(5) < 360 d−1 88.3 89.7 103.4 85.9 125.5 62.4 87.6 56.3
Qa < 92230 m3/d 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Qr < 36892 m3/d 22922.0 24910.9 36892.0 23552.7 36892.0 22704.0 28157.0 14424.1
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