
Convex Formulations for Optimal Selection of

Controlled Variables and Measurements Using Mixed

Integer Quadratic Programming

Ramprasad Yelchuru, Sigurd Skogestad∗

Department of Chemical Engineering
Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.

Abstract

The appropriate selection of controlled variables is important for operating
a process optimally in the presence of disturbances. Self-optimizing control
provides a mathematical framework for selecting the controlled variables as
combinations of measurements, c = Hy, with the aim to minimize the steady
state loss from optimal operation. In this paper, we present (i) a convex for-
mulation to find the optimal combination matrix H for a given measurement
set, and (ii) a Mixed-Integer Quadratic Programming (MIQP) methodol-
ogy to select optimal measurement subsets that result in minimal loss. The
methods presented in this paper are exact for quadratic problems with linear
measurement relations. The MIQP methods can handle additional structural
constraints compared to the Branch and Bound (BAB) methods reported in
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orator example, a binary distillation column example with 41 stages and a
Kaibel column with 71 stages.
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1. Introduction

Control structure selection deals with the selection of controlled variables
(CVs/outputs) and manipulated variables (MVs/inputs), and the pairings
or interconnections of these variables [1, 2]. A comprehensive review of in-
put/output selection methods was provided by [3]. These input/output se-
lection methods use desirable control system properties, (state, structural,
input-output) controllability, achievable performance as criteria to arrive at
CVs that are easy to control. However, these CV selection criteria fail to
take into account more overall objectives, like economic profitability or cost
(J). The selection of control structure based on economics is stressed by
Narraway and co-workers [4, 5] for the effect of disturbances, but they do not
formulate rules or procedures to select controlled variables.

In this paper, we consider the link between (economic) optimization and
control as illustrated in Figure 1. Self-optimizing control [2] aims at achieving
acceptable operation by maintaining selected CVs (c in Figure 1) at constant
set points. The idea dates back to [6], who stated that “we want to find a
function c of the process variables which when held constant, leads automat-
ically to the optimal adjustments of the manipulated variables, and with it,
the optimal operating condition”. Self-optimizing control makes use of the
degrees of freedom in c = Hy, which link the optimization and control layers.
In this paper, the selection of H is based on steady-state economics, but be-
cause the variables c are controlled in the feedback layer, one gets much faster
updates in the inputs u than with optimization that adjusts cs. The dynamic
performance of control structures obtained from self-optimizing control for
various processes are reported [7, 8, 9]. The idea of self-optimizing control is
to put as much optimization as possible into the control layer. That is, when
there is a disturbance, we want the system “go in the right direction” on the
fast time scale, and not have to wait for optimization layer (RTO) to take
the optimal action, which may take a long time, since RTO needs to estimate
the disturbances (e.g., using data reconciliation) before taking action.

For example, consider the process of cake baking. The (original) phys-
ical degree of freedom is the oven heat input (u = Qh). However, baking
the “optimal” cake is difficult when using the heat input directly for opti-
mization (with the human as the RTO), and would require frequent changes
in Qh. However, we have available other measurements, including the oven
temperature T . Consider the two candidate “measurements”

y = [Qh T ]T
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Clearly, the best variable to keep constant is T , so we choose c = Hy =
h11Qh + h12T = T as the controlled variable, that is, we choose H = [0 1].
With a temperature controller (thermostat), we (the human RTO) may use
the temperature setpoint (cs) as the optimization variable. Clearly, the in-
troduction of the self-optimizing variable c = T , simplifies the real-time
optimization effort and requires less frequent changes than when using Qh.

Instead of the two layer structure in Figure 1, one could combine the
layers and use real time optimization more directly by using a dynamic or
steady state process model online to obtain an optimal input uopt(d) for a
disturbance d. However, such a centralized solution would be costly in terms
of modeling, implementation and maintenance [10] and would normally op-
erate at a slower time scale than the feedback layer in Figure 1. A related
alternative is optimizing controllers where the MVs are updated directly to
maintain the gradient of the Lagrangian function associated with the optimal
process operation at zero [11]. Based on how the gradient is obtained, these
methods are categorized as Necessary conditions of optimality (NCO) track-
ing [11, 12] or extremum seeking approaches [13, 14]. The former approaches
use analytical gradients, whereas the latter use operational data to estimate
gradients. Although these optimizing controllers may be useful, slow speed
of convergence caused by inaccurate gradient information usually make these
difficult to use in practice.

Importantly, self-optimizing control which deals with the selection of H
should not be viewed as an alternative to these other methods, including
real time optimization or model predictive control (MPC), but rather as
a complement, as illustrated in Figure 1. By appropriate selection of the
variables c = Hy, we may reduce or eliminate the need for reoptimizing cs
independently of the approach we use for online optimization.

To quantify “acceptable operation” we introduce a scalar cost function J
which should be minimized for optimal operation. In this paper, we assume
that the (economic) cost mainly depends on the (quasi) steady-state behav-
ior, which is a good assumption for most continuous plants in the process
industry. When selecting c = Hy, the cost function J is further assumed to
be quadratic and the steady-state process model is assumed linear. Almost all
steady-state unconstrained optimal operation problems can be approximated
this way, usually by linearizing at the nominally optimal point. The scope of
this paper is to provide systematic and good methods to select controlled vari-
ables (CVs, c ∈ R

nc) associated with the unconstrained steady state degrees
of freedom (u ∈ R

nu) that minimize the loss, L(u,d) = J(u,d) − Jopt(d),
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Figure 1: Feedback implementation of optimal operation with separate layers for opti-
mization and control [15] [16]. The controller K could be any controller including MPC.
Self-optimizing control deals with selection of the controlled variables c = Hy

.

from economically optimal operation. The number of selected CVs is equal
to the number of steady state degrees of freedom (nc = nu).

More specifically, the objective is to find a linear measurement combina-
tion,

c = Hy (1)

such that control of these indirectly leads to acceptable operation with a
small loss L(u,d) = J(u,d)− Jopt(d), in spite of unknown disturbances, d,
and measurement noise (error), ny. If the original optimization problem is
constrained, then we assume that all optimally active constraints are kept
constant (controlled) and we consider the lower-dimensional unconstrained
subspace. Depending on the disturbance range considered, there may be sev-
eral constrained regions, and the procedure of finding H needs to be repeated
in each constrained region.

In this paper, we consider three problems related to finding optimal con-
trolled variables, c = Hy,

Problem 1 Full H, where the CVs are combinations of all measurements y

Problem 2 Measurements selection problems, where some columns in H
are zero.

Case 2.1 Given subset of measurements
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Case 2.2 Optimal subset of measurements

Case 2.3 Best individual measurements for decentralized control

Compared to previous work [17], some additional restrictions are
allowed for:

Case 2.4 Restriction on number of measurements from specified sections of
the process

Case 2.5 Addition of extra measurements to a given set

Problem 3 Structured H, where specified elements in H are zero; for ex-
ample a block diagonal H.

The problem of finding CVs as optimal measurement combinations (Prob-
lem 1) in the presence of disturbances and measurement noise was originally
believed to be non convex and thus difficult to solve numerically [18], but later
it has been shown that this problem may be reformulated as a quadratic opti-
mization problem with linear constraints [19]. The same problem was solved
using generalized singular value decomposition method [20, 21]. However,
the problems of selecting individual measurements or linear combinations of
a subset of measurements as controlled variables (Problem 2 and 3) are more
difficult because of their combinatorial nature.

To solve Problem 2, effective partial bidirectional branch and bound
(PB3) methods have been developed [22] that exploit the monotonicity prop-
erties. However, these methods are cannot be used directly in the presence of
the restrictions in Cases 2.4 and 2.5 as the monotonicity is not guaranteed.
In this paper, we propose a different method to solve Problem 2 by refor-
mulating the minimum loss method problem as a Mixed-Integer Quadratic
Programming (MIQP) problem. The MIQP formulations are simple and in-
tuitive. The proposed MIQP formulations solve a convex quadratic optimiza-
tion problem at each node in the search tree. These form a subclass of MIQP
that are convex and hence these methods give globally optimal H that result
in measurement combinations as CVs. The additional restrictions Cases 2.4
and 2.5 can easily be handled with the MIQP based methods, whereas the
branch and bound methods [22] would require further customization. Prob-
lem 3 is non-convex and cannot be solved by the methods presented in this
paper and will be the topic of future work.

This paper is organized as follows: A self-contained summary of the min-
imum loss method formulation for SOC is presented in section 2. The trans-
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formation of non-convex SOC problem to convex QP problem is discussed
in section 3 (Problem 1). The MIQP formulation for CV selection in SOC
is presented in section 4 (Problem 2).The evaluation of developed methods
is performed on a toy problem, on an evaporator example, on a binary dis-
tillation column example with 41 stages and on a 4-product Kaibel column
with 71 stages and are discussed in section 5. A discussion on Problem 3
is presented in section 6. The conclusions from this work are discussed in
section 7.

2. Minimum Loss Method

The key idea in the self-optimizing framework of Skogestad and coworkers
[23] is to minimize the loss (L = J − Jopt(d)) from optimal operation when
there are disturbances.

To find the minimum cost for a given disturbance Jopt(d), we first find
an expression for uopt(d). We then evaluate the steady-state loss from this
policy when u is adjusted in a feedback fashion such that c = Hy is kept
constant.

2.1. Problem formulation

2.1.1. Classification of variables

• u - unconstrained steady state degrees of freedom (inputs) for opti-
mization (it does not actually matter what they are as long as they
form an independent set)

• d - disturbances, including parameter changes

• y - all available measurements. The manipulated variables (MVs, often
the same as the inputs u) are generally included in the measurement
set y. This will allow, for example, for simple control policies where
the inputs are kept constant. Of course, the set y can also include
measured disturbances (dm, a subset of d).

• ny - measurement noise (error) for y, ym = y + ny.

• c ∈ R
nc where nc = nu - selected controlled variables c = Hy
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2.1.2. Cost function

We consider an unconstrained optimization problem, where the objective
is to adjust the input u to minimize a quadratic steady-state cost function

J(u,d) = J(u∗,d∗) +
[
J∗

u J∗

d

]
[
∆u
∆d

]

+
1

2

[
∆u
∆d

]T [
J∗

uu J∗

ud

J∗
T

ud J∗

dd

] [
∆u
∆d

]

(2)

Here ∆u = u−u∗ and ∆d = d−d∗ represent deviations from the nominal
optimal point (u∗,d∗). J∗

u and J∗

d are first derivatives of J with respect to
u and d, J∗

uu, J
∗

ud and J∗

dd are second derivatives of J with respect to u, u
and d, and d, respectively at (u∗,d∗). The nominal point is assumed to be
optimal, which implies that J∗

u = 0. To further simplify notation, we assume
that the variables have been shifted so that the nominal optimal point is
zero (u∗,d∗) = (0, 0) and also y∗ = 0, then we have u = ∆u, d = ∆d and
y = ∆y. From the derivation below, we find that the values of J∗

d and J∗

dd are
not needed for finding the optimal H, because they do not affect the optimal
input u.

A special case of (2) is indirect control, which is further studied for a
distillation column in Example 4, where y1 are the primary variables. Here,
the cost function is

J = (y1 − y1s)
TWT

1W1(y − y1s) (3a)

where W1 is a weighting matrix, y1s are set points for y1, and with a linear
model for y1

y1 = Gy
1u+Gy

d1
d (3b)

where Gy
1 and Gy

d1
are steady state gains, further we get

Juu = Gy
1
TWT

1W1G
y
1, Jud = Gy

1
TWT

1 W1G
y
d1

(3c)

2.1.3. Measurement model

A linear steady-state model is assumed for the effect of u and d on the
measurements y

y = Gyu+Gy
dd = G̃y

[
u
d

]

(4)

In Figure 1, Gy and Gy
d are transfer functions, but in this paper only steady-

state gains in (4) are used for selecting H.
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2.1.4. Further assumptions

• Any active constraints are controlled and u spans the remaining un-
constrained subspace.

• We want to find as many controlled variables c as there are degrees of
freedom, that is, nc = dim(c) = dim (u) = nu. Then HGy is a square
nu × nu matrix.

• We need at least as many independent measurements y as there are
degrees of freedom u (rank(Gy) = nu) to get offset free control of all
CVs (c). This requires ny ≥ nu = nc.

• We write d = Wd d
′ whereWd is a diagonal matrix giving the expected

magnitude of each disturbance and d′ is of unit magnitude (see below
for further definition of “unit magnitude”).

• Similarly, ny = Wny ny′ where Wny is a diagonal matrix with the
magnitude of the noise for each measurement, and the vector ny′ is of
unit magnitude (see below).

2.1.5. Problem

For any disturbance d, having inputs u other than uopt(d) will result in
a loss. For example, keeping the inputs u constant at uopt(d

∗) when there
is a disturbance d will result in a loss as illustrated in Figure 2. In this
paper, we use a sub-optimal policy, which is to adjust inputs u in a feedback
fashion (see Figures 1 and 3) to keep the measured controlled variables cm
at a constant set point cs = 0. Mathematically, we have

cm = H (y + ny)
︸ ︷︷ ︸

ym

= cs = 0 (5)

With this policy, there are two problems of interest. First, to find the “mag-
nitude” of the loss, L = J(u,d) − Jopt(d), for a given H (see solution in
section 2.2.5) and second to find the optimal H with a minimum loss (see
theorem 1 in section 2.2.7) for the expected d′ and ny′ , when u is adjusted
such that cm = 0 in (5) is satisfied.

The “magnitude” of the loss and the “unit magnitude” of the expected
d′ and ny′ still needs to be defined. Two possibilities are considered.
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• Worst-case loss, Lwc, when the combined normalization vectors for dis-
turbances and measurement noise have 2-norm less than 1,

‖

[
d′

ny′

]

‖2 ≤ 1 (6)

• Average or expected loss, Lavg = E(L), for a normal distributed set

[
d′

ny′

]

∈ N (0, 1) (7)

E(.) is expectation operator.

It is sometimes argued that the worst-case loss is not likely to occur,
but this is not really true in this case since we use the combined 2-norm for
disturbances and noise in (6). This means that the “unlikely” combination
with all d′s and ny′s being 1 at the same time will not occur. This is discussed
in more detail in the Appendix of [18].

2.2. Solution to Minimum Loss Problem

The objective is to derive the solution to the above problem. This solution
has previously been called the “exact local method” [18].

2.2.1. Expression for uopt(d)

We first want to find the optimal input u for a given disturbance d.
Expanding the gradient Ju around the nominal optimal point (u∗,d∗) = (0, 0)
gives

Ju(u,d) = J∗

u(u
∗,d∗)

︸ ︷︷ ︸

=0

+J∗

uuu+ J∗

udd (8)

where Ju(u
∗,d∗) = 0 because the nominal point is assumed to be optimal.

We assume that we change the input to remain optimal, i.e. we have u =
uopt(d) and Ju(u,d) = 0, and we get

uopt = −J∗
−1

uu J∗

udd (9)

Note that we are considering a quadratic problem (2), where the Hessian
matrices are assumed constant, i.e. Juu = J∗

uu and Jud = J∗

ud.
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2.2.2. Expression for the loss L in terms of u− uopt(d)

Consider a given disturbance d and a non-optimal input u. A second
order Taylor’s expansion of the cost J around the “moving” optimum point,
uopt(d), gives

J(u,d) = J(uopt(d),d)
︸ ︷︷ ︸

Jopt(d)

+Ju,opt
︸ ︷︷ ︸

=0

(u−uopt(d))+
1

2
(u−uopt(d))

TJuu,opt(u−uopt(d))

(10)
Note that for a truly quadratic problem, this is an exact expression and
Juu,opt = J∗

uu = Juu. Because we are expanding around an optimal point
Ju,opt = 0 and we get the following expression for the loss

L(u,d) = J(u,d)− Jopt(d) =
1

2
zTz =

1

2
‖z‖22 (11)

where we have introduced

z , J1/2
uu (u− uopt(d)) (12)

This simple expression for the loss is a key result that allows us to end up
with a convex optimization problem.

2.2.3. Optimal sensitivities

Note from (9) that we can write uopt = Fud where Fu = −J−1
uuJud. More

generally, we can write
yopt = Fd (13)

where F is the optimal sensitivity of the outputs (measurements) with respect
to the disturbances. Here, F can be obtained using (4) and (9),

yopt = Gyuopt +Gy
dd = (−GyJ−1

uuJud +Gy
d)d

that is,
F = (−GyJ−1

uuJud +Gy
d) (14)

However, (14) is not generally a robust way to obtain F, for example Juu,Jud

can be difficult to obtain numerically, and taking the difference in (14) can
also be unreliable numerically. Thus, for practical use it is usually better
to obtain F directly from its definition, F = dyopt

dd
. This typically involves

numerical reoptimization for each disturbance.
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2.2.4. The loss L as a function of disturbances and noise

We are now ready to derive the main result. We start from the loss
expression in (11), L = 1

2
‖z‖22 where z = J

1/2
uu (u − uopt). We want to write

z as a function of d and ny, given that the input u should be adjusted to
satisfy (5). We start by writing u− uopt as a function of c− copt. We have
c = Hy, so

c = Hy = HGyu+HGy
dd

copt = Hyopt = HGyuopt +HGy
dd

Thus, c− copt = HGy(u− uopt), or

(u− uopt) = (HGy)−1(c− copt) (15a)

where HGy is the square gain matrix from the inputs u to the selected
controlled variables c.

The next step is to express (c − copt) as a function of d and ny. From
(13) we have that

copt = HFd (15b)

From (5) we have that H(y + ny) = cs (constant), or

c = Hy = −Hny + cs (15c)

Here, cs = 0, since we assume the nominal point is optimal. Since the signs
for ny and d do not matter for the expressions we derive below (from (6) we
can have both positive and negative changes), we can write

u− uopt = (HGy)−1H(Fd+ ny)

= (HGy)−1H(FWdd
′ +Wnyny′)

= (HGy)−1HY

[
d′

ny′

] (15d)

where we have introduced

Y = [FWd Wny ] (16)

Note that Wd and Wny are usually diagonal matrices, representing the mag-
nitude of the disturbances and measurement noises, respectively.

12



In summary, we have derived that for the given normalized disturbances
d′ and for the given normalized measurement noises ny′ the loss is given by
[18]

L =
1

2
zTz (17)

where

z = J1/2
uu (u− uopt) = J1/2

uu (HGy)−1HY
︸ ︷︷ ︸

M(H)

[
d′

ny′

]

(18)

2.2.5. Worst-case and average loss for a given H (analysis using loss method)

The above expressions give the loss for a given d′ and ny′ , but the goal
is the find the “magnitude” of the loss L for the expected set for example as
given in (6). Here “magnitude” can be defined in different ways, see (6) and
(7), and for a given H the worst-case loss [18] and average loss [24] are given
by

Lwc(H) =
1

2
σ̄(M)2 (19)

Lavg(H) = E(L) =
1

2
‖M‖2F (20)

where
M(H) = J1/2

uu (HGy)−1HY (21)

Here σ̄(M) denotes the maximum singular value (induced 2-norm) of the

matrix M(H), and ‖M‖F =
√∑

i,j M
2
ij denotes the Frobenius norm of the

matrix M. Use of the norm of M to analyze the loss is known as the “exact
local method” [18]. Note that these loss expressions are for a given matrix
H.

2.2.6. Null space method and maximum gain rule

Two special methods for analyzing or finding H can be derived from
the expression for H in (21). First, the null space method of selecting H
such that HF = 0 [25] follows if we neglect measurement noise such that
Y = [FWd 0], where 0 is zero matrix of ny × ny size, and assume that
we have enough measurements to make HF = 0. Second, the approximate
maximum gain rule [23] of maximizing the norm of S1HGyS2 follows from

(21) if we select the scaling factors as S2 = J
−1/2
uu and the appropriate S1 as

a diagonal matrix with the elements of S−1
1 equal to the expected optimal

variation in each c variable (the norm of the corresponding rows in HY).
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2.2.7. Loss method for finding optimal H

The objective of this paper is to find methods for obtaining the optimal
H by minimizing either the worst-case loss (19) or the average loss (20).
Fortunately, [24] prove that theH that minimizes the average loss in equation
(20) is super optimal, in the sense that the same H minimizes the worst case
loss in (19). Hence, only minimization of the Frobenius norm in (20) is
considered in the rest of the paper. Note that square does not effect the
optimal solution and can be omitted. In summary, the problem is to find the
combination matrix H that minimizes ‖M‖F :

Theorem 1. Minimum loss method [19]. To minimize the average and
worst case loss, Lavg(H) and Lwc(H), for expected combined disturbances and
noise, find the H that solves the problem

min
H

∥
∥J1/2

uu (HGy)−1HY
∥
∥
F

(22)

where Y = [FWd Wny ].

The objective in (22) is to find the non-square nc × ny matrix H.
Here, H may have a specified structure and we consider the three prob-

lems mentioned in the introduction. For the full H case (Problem 1), it may
be recast as a convex optimization problem as discussed in Section 3. For
the measurement selection problem (Problem 2), where some columns in H
are zero, convex formulations in each MIQP node are derived in Section 4 .

3. Convex formulations of minimum loss method (Problem 1)

We here consider the standard “full” H case with no restriction on the
structure of the matrix H (Problem 1), that is we want to find optimal
combination of all the measurements.

Theorem 2. Convex reformulation for full H case [19]. The problem
in equation (22) may seem non-convex, but for the standard case where H is
a “full” matrix (with no structural constraints), it can be reformulated as a
convex constrained quadratic programming problem

min
H

‖HY‖F

s.t. HGy = J1/2
uu

(23)
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Proof. From the original problem in equation (22), we have that the
optimal solution H is non-unique because if H is a solution then H1 = DH
is also a solution for any non-singular matrix D of size nc × nc. This follows
because

J1/2
uu (HGy)−1HY = J1/2

uu (HGy)−1D−1DHY = J1/2
uu (H1G

y)−1H1Y

One implication is that we can freely choose G = HGy, which is a nc × nc

matrix representing the effect of u on c (c = Gu). Thus, in (22) we may use
the non-uniqueness of H to set the first part of the expression equal to the
identity matrix, which is equivalent to setting HGy = J

1/2
uu . This must be

added as a constraint in the optimization as shown in (23). �

Theorem 3. Analytical solution [19]
For a “full” H in (22) and (23), the analytical solution is

HT =
(
YYT

)
−1

Gy
(

GyT
(
YYT

)
−1

Gy
)
−1

J1/2
uu (24)

Theorem 4. Simplified analytical solution (new result)
For a full H, another analytical solution to (22) is

HT =
(
YYT

)
−1

GyQ1 (25)

where Q1 is any non-singular matrix of nc × nc, for example Q1 = I.
Proof. This follows trivially from Theorems 2 and 3, since if HT is a

solution then so is
HT

1 = HTDT and we simply select

DT = J−1/2
uu (GyT (YYT )−1Gy)Q1

which is a nc × nc matrix. �

Corollary 1. Important insight (new result) Theorem 4 gives the very
important insight that Juu is not needed for finding the optimal full H in (22)
and (23).

This means that in (22) we can replace J
1/2
uu by any non-singular matrix

Q, and still get an optimal H (see Theorem 5 below). This can simplify
practical calculations, because Juu may be difficult to obtain numerically
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because it involves the second derivative and because Q may be in some
cases be selected for numerical reasons. On the other hand, we have that
F, which enters in Y, is relatively straightforward to obtain numerically
[7, 9], because it only needs first derivative, F = dyopt

dd
, as mentioned earlier.

Although Juu is not needed for finding the optimal H, it would be required
for finding a numerical value for the loss, and it is needed if H is structured
(Problem 2 and 3) as discussed below.

Theorem 5. Generalized convex formulation (new result)
For a full H, an optimal H for the problem (22) can be written as

min
H

‖HY‖F

s.t. HGy = Q
(26)

where Q is any non-singular matrix of nc × nc.

Proof. The result follows from Corollary 1, but can more generally be derived

as follows. The problem in (22) is to minimize

∥
∥
∥
∥
∥
∥

J1/2
uu (HGy)−1

︸ ︷︷ ︸

Θ

HY

∥
∥
∥
∥
∥
∥
F

. The

reason why we can omit the nc × nc matrix Θ, is that if H is an optimal
solution then so is H1 = DH where D is any nonsingular nc × nc (see Proof
of Theorem 2). However, note that the matrix Θ, or equivalently the matrix
Q, must be fixed during the optimization, so it needs to be added as a
constraint. �
Vectorized QP formulation: As the numerical software packages, such as
Matlab, cannot deal with the matrix formulations, the problems (23) or (26)
are vectorized (see Appendix A). First, the decision matrix

H =








h11 h12 . . . h1ny

h21 h22 . . . h2ny

...
...

. . .
...

hnu1 hnu2 . . . hnuny








is vectorized along the rows of H to form a long vector

hδ =
[
h11 . . . h1ny

h21 . . . h2ny
. . . hnu1 . . . hnuny

]T
∈ R

nuny×1

16



The equivalent QP is then formulated as

min
hδ

hT
δ Fδhδ

s.t. GyT

δ hδ = jδ

(27)

where hδ ∈ R
nuny×1, jδ ∈ R

nunu×1,GyT

δ ∈ R
nunu×nynu ,Fδ ∈ R

nuny×nuny .

4. Globally optimal MIQP formulations (Problem 2)

We here consider the optimal measurement selection of finding the opti-
mal H with some zero columns (Problem 2). To address the measurement
selection, we introduce a binary variable σj ∈ {0, 1} to complement jth mea-
surement (jth column H). If measurement j is present in the selected mea-
surements, then σj = 1 and jth column in H may have non-zero elements,
otherwise σj = 0 and jth column in H has only zero elements. The bi-
nary variables column vector for ny candidate measurements is denoted as

σδ =
[
σ1 σ2 . . . σny

]T
. The restrictions on elements in H based on the

the presence or not of the jth candidate measurement are incorporated as
mixed integer constraints. Overall, the idea in optimal measurement selec-
tion is to use the quadratic programming formulation in Theorems 2 and 5,
and add additional mixed integer constraints to deal with the measurement
selection.

4.1. Optimal measurement selection

The mixed integer constraints on the columns in H are formulated using
the standard big-m approach used in MIQP formulations (28c) [26] and are
added to (27). The constraints on the binary variables can be written in the
form

Pσδ = s

For example, in order to select n optimal measurements out of ny mea-
surements, we have

∑ny

j σj = n, which can be written in this form with

P = 1T 1×ny
, and s = n, where 1 is a column vector of ones.

Starting from the vectorized formulation in (27), we then have the im-
portant result that the generalized MIQP problem in the decision variables
hδ and σδ with big-m constraints becomes

min
hδ,σδ

hT
δ Fδhδ

s.t. GyT

δ hδ = jδ

(28a)
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Pσδ = s (28b)







−m
−m
...

−m







σj ≤








h1j

h2j
...

hnuj







≤








m
m
...
m







σj , ∀j ∈ 1, 2, · · · , ny (28c)

where hδ =
[
h11 . . . h1ny

h21 . . . h2ny
. . . hnu1 . . . hnuny

]T
∈

R
nuny×1; σδ =

[
σ1 σ2 . . . σny

]T
; σj ∈ {0, 1}. The constraints in (28c)

is the standard big-m approach that we used to make the jth column of H
zero when σj = 0 and at the same time to bound the decision variables
in H. The m value should be chosen small to reduce the computational
time, but it should be sufficiently large to avoid that it becomes an active
constraint. Another alternative could be to use indicator constraints to set
the columns in H directly to zero, when σj = 0. The dimension of matrix P
varies based on the integer constraints we impose, if we impose k number of
integer constraints then P will have a dimension of k × ny.

For the solution of the MIQP problem (28), Theorem 2 applies but not
Theorem 5 and we do need Juu. This statement is proved as follows : At each
node in the MIQP search tree, we could use either Theorem 2 or Theorem
5. However, only Theorem 2 will preserve the loss ordering between different
nodes in the MIQP search tree. This is because in Theorem 2, meeting the
constraint HGy = J

1/2
uu implies J

1/2
uu (HGy)−1 = I and the loss value in (22)

is equal to ‖HY‖F . On the other hand, if we used Theorem 5, for example
with Q = I, then minimizing ‖HY‖F will not be equivalent to minimizing
the loss. Hence Theorem 5 does not apply as it does not preserve the loss
ordering.

4.2. Specific Cases

We consider five specific cases of Problem 2 and show how they can be
solved using the MIQP formulation in (28). The integer constraint in (28b)
is modified for each case. Note that Cases 2.1,2.2 and 2.3 can alternatively
be solved using the branch and bound approaches [17]. However, Cases 2.4
and 2.5 can only be solved using our MIQP formulation.

Case 2.1 Given subset of measurements. For example, assume we have
two inputs and 5 measurements of which we will not use measurements

18



1 and 3, then H =

[
0 h12 0 h14 h15

0 h22 0 h24 h25

]

. The resulting constraints

can be written in the form in (28b) with

P =





0 1 0 0 0
0 0 0 1 0
0 0 0 0 1



 , s =





1
1
1





This is a very simple case, and we may use both Theorems 2 and 5,
which implies that Juu is not needed. The fact that both Theorems
2 and 5 hold is quite obvious since it corresponds to simply deleting
some measurements (deleting rows in Gy and Y), and keeping H full
for the remaining measurements.

Case 2.2 Optimal subset of measurements. Here the objective is to
select a certain number (n) of measurements (i.e. ny −n columns in H
are zero). The constraint in the binary variables is

ny∑

j=1

σj = n (29)

which can be written in the form in (28b) with

P = 1T 1×ny
, s = n

where 1 is a column vector of ones. In this case, Theorem 2, applies
(but not Theorem 5) at each node in the MIQP.

Case 2.3 Best individual measurements for decentralized control.
This is the case where we want to select n = nc measurements, which
is the minimum feasible number of measurements, if we want offset free
control of c = Hy. For example, one candidate H is

H =

[
h11 0 0 0 0
0 0 0 h24 0

]

(30)

The constraints to be used in (28b) are
∑ny

j=1 σj = nu = nc and in
addition the off diagonal elements for the selected nc measurements
should be zero (for this candidate H the selected measurements are 1,4
and the off-diagonal elements h21 and h14 are zero).
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Fortunately, Theorem 2 may be used at each node in the MIQP, because
the last restriction (off-diagonal elements are zero) may be omitted.
The reason is that we can first find the optimal measurement subset for

this selected nc measurements, for example, H =

[
h11 0 0 h14 0
h21 0 0 h24 0

]

,

and we can then use the extra degrees of freedom D to make the off
diagonal elements in H zero.

To prove this, let Hnc be the optimal solution for the best nc mea-

surements combination matrix, for example, Hnc =

[
h11 h14

h21 h24

]

. The

objective function is unaffected by D, so as in the proof of Theorem 2
we choose D = H−1

nc , to arrive at a diagonal H as in (30).

Case 2.4 Restriction on measurements from different process sec-
tions. For example, consider a process with ns sections with nyk mea-
surements in section k (i.e. the total number of available measurements
is ny =

∑ns

k=1 nyk). If we want to select rk measurements from each sec-
tion k, the constraints (28b) become

nyk∑

j=1

σ(
∑k−1

p=1 nyp+j) = rk, ∀k ∈ 1, 2, . . . , ns (31)

and Theorem 2 applies for the MIQP formulation.

Case 2.5 Adding extra measurements to a given set of measure-
ments. This case may be very important in practice. For example,
consider a process with ny = 5 measurements, where we have decided
to use the measurements {2, 3}, and in addition want 2 other measure-
ments (total 4 measurements). These constraints can be written

σj = 1, ∀j = 2, 3
ny∑

j=1

σj = 4
(32)

which can be written in the form (28b) with

P =





0 1 0 0 0
0 0 1 0 0
1 1 1 1 1



 , s =





1
1
4




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and Theorem 2 applies at each MIQP node.
All of the above five cases belong to the optimal measurement selection

(Problem 2) and can be easily solved using MIQP formulations. This is
discussed in more details for the examples below. Note that the Cases 2.4
and 2.5 cannot be dealt by BAB methods [17], at least not without changing
the algorithms.

5. Examples (Problem 2)

5.1. Example 1: Measurement selection for toy problem (Case 2.2)

To illustrate the problem formulation for (28) for Case 2.2, consider the
“toy problem” from [18] which has two inputs u = [u1 u2]

T , one disturbance
d and two measured outputs z = [z1 z2]

T . The cost function is

J = (z1 − z2)
2 + (z1 − d)2

where the outputs depend linearly on u, d as

z = Gzu+Gz
dd

with Gz =

[
11 10
10 9

]

; Gz
d =

[
10
9

]

. The disturbances are of magnitude 1

and the measurements noise is at magnitude 0.01.
At the optimal point we have z1 = z2 = d and Jopt(d) = 0. Both the

inputs and outputs are included in the candidate set of measurements

y =







z1
z2
u1

u2







and we have ny = 4, nu = 2. This gives

Gy =







11 10
10 9
1 0
0 1






, Gy

d =







10
9
0
0







Furthermore,

Juu =

[
244 222
222 202

]

, Jud =

[
198
180

]
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Wd = 1, Wny = 0.01







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







and J
1/2
uu =

[
11.59 10.46
10.46 9.62

]

. The resulting sensitivity matrix is

Y = [FWd Wny ] =







−1 0.01 0 0 0
−1 0 0.01 0 0
9 0 0 0.01 0
−9 0 0 0 0.01







After vectorization (see Appendix A) we generate the matrices in (27). The
resulting matrices to be used in MIQP problem (28) are

Fδ =















2 2 −18 18 0 0 0 0
2 2 −18 18 0 0 0 0

−18 −18 162 −162 0 0 0 0
18 18 −162 162 0 0 0 0
0 0 0 0 2 2 −18 18
0 0 0 0 2 2 −18 18
0 0 0 0 −18 −18 162 −162
0 0 0 0 18 18 −162 162















∈ R
8×8

GyT

δ =







11 10 1 0 0 0 0 0
10 9 0 1 0 0 0 0
0 0 0 0 11 10 1 0
0 0 0 0 10 9 0 1






∈ R

4×8, jδ =







11.59
10.46
10.46
9.62






∈ R

4×1.

To obtain the optimal n < 4 measurement subset the constraint (28b) is

ny∑

j=1

σj = n

We used m = 120 for the big-m in (28) and with n = 3 we find by solving

MIQP problem that the optimal solution is H =

[
1.02 0 0.40 0.28
0.76 0 2.06 1.98

]

,

that is measurement 2 is not used. We can always choose the degrees of
freedom in the matrix D, for example, to have identity in measurements 1
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Figure 4: The loss vs the number of included measurements (n) for “toy problem”

.

and 3 to get, for example, H =

[
1 0 0 −0.11
0 0 1 1

]

. The minimized loss

(20) as a function of the number of measurements n is shown in Figure 4. As
expected, the loss is reduced as we use more measurements, but the reduction
in loss is very small when we increase the number of measurements from 3
to 4. Based on Figure 4, we conclude that using CVs as a combinations of 3
measurement subset is the best for this toy problem.

5.2. Example 2: Measurement selection for evaporator process (Case 2.2)

The main purpose of this example is to evaluate the MIQP method (28)
for Case 2.2 on a simple but realistic process. We consider the evaporator
example of [27] (Figure 5) as modified by [24]. The process has 2 steady-state
degrees of freedom (inputs), 10 candidate measurements and 3 disturbances.

u = [F200 F1]
T

y = [P2 T2 T3 F2 F100 T201 F3 F5 F200 F1]
T

d = [X1 T1 T200]
T
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Note that we as usual have included the inputs in the candidate measure-
ments. The economic objective is to maximize the operating profit [$/h],
formulated as minimization of the negative profit [24].

J = 600F100 + 0.6F200 + 1.009(F2 + F3) + 0.2F1 − 4800F2 (33)

The objective in self-optimizing control is to find optimal CVs that minimize
the loss, L = J − Jopt(d), in presence of disturbances and implementation
errors. We formulated the problem (28) for this evaporator example and
solved the MIQP to find the optimal CVs as the combinations of the best
measurement subset size from 2 to 10. The YALMIP toolbox [28] is used
to solve the MIQP problem with m = 200 in the big-m constraints in (28).
To compare, the same problem was also solved by the downwards branch
and bound (Downwards BAB) method and the partial bidirectional branch
bound (PB3) method [22]. The three methods gave the same results and
the loss as a function of the number of measurements (n) used is shown in
Figure 6. The corresponding optimal measurements sets for the 9 subsets
are given in Table 1. We note that F200 is included in all cases. From Figure
6, we see that the loss decreases rapidly when the number of measurements
is increased from 2 to 3, but from 3 measurements and on the loss decrease
is smaller. Based on Figure 6, Table 1 and acceptable loss CVs can be found
as combinations of optimal measurement subsets for this 10-measurement
evaporator example.

The average computational times (CPU time) using a Windows XP SP2
notebook with Intel R©CoreTM Duo Processor T7250 (2.00 GHz, 2M Cache,
800 MHz FSB) using MATLAB R©R2009a for the MIQP, Downwards BAB,
PB3 methods and in addition the exhaustive search method are also tabulated
in Table 1. Note that the exhaustive search was not actually performed
and the given CPU time is an estimate based on assuming 0.001 s for each
evaluation.

From Table 1, it can be seen that the MIQP method finds the optimal
solution about one order of magnitude faster than the exhaustive search
method, whereas the PB3 and Downwards BAB methods are even one or-
der of magnitude faster than MIQP. In conclusion, even though the MIQP
method is not as fast as that of Downwards BAB and PB3 methods; it is still
acceptable as the optimal CVs selection is performed off-line. The advan-
tage of MIQP method is that the method is simple, intuitive and can easily
incorporate structural constraints which cannot be included with the BAB
methods. This is considered in the next example.
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Figure 5: Evaporator process
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Figure 6: Evaporator: Loss vs the number of included measurements (n)
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5.3. Example 3: Evaporator process with structural constraints (Case 2.4)

This example considers optimal measurement selection using MIQP for-
mulations with the additional restrictions (31). As above, there are 3 tem-
perature measurements, 6 flow measurements and 1 pressure measurement.
The task is to use only 5 out of 10 measurements, more specifically, we want
to use 1 pressure (among 1), 2 temperatures (among 3) and 2 flows (among
6). These constraints can easily be incorporated in the MIQP formulations,
whereas these can not be incorporated directly in the Downwards BAB and
PB3 methods. For the constraint (28b) we have

P =





1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0
0 0 0 1 1 0 1 1 1 1



 , s =





1
2
2





The optimal loss with these structural constraints is 12.9096 and the optimal
measurement set is [F2 F100 T201 T2 P2]. To compare the loss with five
measurements without any structural requirements is 8.0960 and the optimal
measurements are [F2 F100 F3 F200 T201].

5.4. Example 4: Measurement selection for distillation column (Case 2.2)

This example is included to apply the MIQP (28) formulations on a case
with a large number of measurements and to highlight the computational ef-
fectiveness of the developed methods over the exhaustive search methods. We
consider indirect composition control of a binary distillation column with 41
stages [29, 30] and reflux (L) and boil-up (V) as the remaining unconstrained
steady state degrees of freedom (u). The considered disturbances are in feed
flow rate (F ), feed composition (zF ) and liquid fraction (qF ), which can vary
between 1 ± 0.2, 0.5 ± 0.1 and 1 ± 0.1, respectively. As online composition
measurements are assumed unavailable, we use stage temperatures inside the
column to control the compositions indirectly. The boiling points difference
between light key component (L) and heavy key component (H) is 10 oC.
We assume constant relative volatility of the components, constant pressure,
no vapour hold up, equilibrium on each stage and constant molar flow rate.
Under these assumptions only mass and component balances are included
in this binary distillation column model and temperatures are approximated
as linear functions of mole fractions. The temperature Ti (

oC) on stage i is
calculated as a simple linear function of the liquid composition xi on each
stage [29].

Ti = 0xi + 10(1− xi) (34)
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T1, T2, T3,…, T41

Tray temperatures
qF

Figure 7: Distillation column using LV-configuration

The candidate measurements are the 41 stage temperatures which are mea-
sured with an accuracy of ±0.5oC. Note that we do not include the inputs
(flows L and V) in the candidate measurements for this example because we
would like to use only temperature combinations for control. The cost func-
tion J for the indirect composition control problem is the relative steady-state
composition deviation,

J =

(

xH
top − xH

top,s

xH
top,s

)2

+

(

xL
btm − xL

btm,s

xL
btm,s

)2

(35)

where xH
top and xL

btm denote the heavy key component (H) composition in
top product and light key component (L) composition in bottom product
and xH

top = xL
btm = 0.01(99% purity). The specification or set point value is

denoted with subscript ‘s’ [30]. This cost can be written in the general form
in (3).

The MIQP formulation described in Case 2.2 in section 4 is used to find
2 CVs as the optimal subset combinations of 2 to 41 stage temperatures.
An MIQP is set up for this distillation column with the choice m = 2 for
the big-m constraints in equation (28). The constraint in (28b) becomes
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∑ny

j=1 σj = n, where n varies from 2 to 41. The IBM ILOG Optimizer CPLEX
solver is used to solve the MIQP problem. The minimized loss function with
the number of measurements is shown in Figure 8.

The optimal controlled variables (measurement combination matrix H)
for the cases with 2, 3, 4 and 41 measurements are shown in Table 2. For the
case with 2 measurements, we just give the measurement, and not the com-
bination, because we can always choose the D matrix to make, for example,
H = I (identity). For the case with 3 and 4 measurements, we choose to use
the degrees of freedom in D to make selected elements in H equal to 1.

The same problem was also solved by the downwards branch and bound
and partial bidirectional branch bound methods [22]. The computational
times (CPU time) taken by MIQP, Downward BAB and PB3 methods and
also the exhaustive search method are compared in Figure 9. Note that ex-
haustive search is not performed and instead we give an estimate assuming
0.01 s for each evaluation. From Figure 9, it can be seen that the MIQP
finds the optimal solution 6 orders of magnitude faster than the exhaustive
search methods. On average, the MIQP methods are about 1 order of magni-
tude slower than PB3 and Downwards BAB methods. The MIQP method is
relatively quick for measurement subset sizes between 25 and 41, but slower
for subset sizes from 10 to 19. This is reasonable because subset sizes (10
to 19) have very high number of possibilities (

(
41
10

)
to
(
41
19

)
). In conclusion,

even though the MIQP methods are not as computationally attractive as
Downwards BAB and PB3 methods, the differences are not excessive.

5.5. Example 5: Measurement selection for Kaibel column (Cases 2.4 and
2.5)

The Kaibel column example is included to show the optimal measurement
selection using MIQP formulations with additional restrictions as given in
(31) and (32). The 4-product Kaibel column shown in Figure 10 has high
energy saving potential [31], but presents a difficult control problem. The
given 4-product Kaibel column arrangement separates a mixture of methanol
(A), ethanol (B), proponal (C), butanol (D) into almost pure components.
The economic objective function J is to minimize the impurities in the prod-
ucts.

J = D(1− xA,D) + S1(1− xB,S1
) + S2(1− xC,S2

) +B(1− xD,B) (36)

where D,S1, S2 and B are the distillate, side product 1, side product 2 and
bottom flow rates (mol/min) respectively. xi,j is mole fraction of component
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Figure 8: Distillation column: Loss vs the number of included measurements (n)
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T71

T51 – T60

T41 – T50

T61 – T70

T11 – T20

T21 – T30

T31 – T40

T1 – T10

L

Figure 10: The 4-product Kaibel Column

i in product j.
The Kaibel column has 4 inputs (L, S1, S2, RL) and 71 temperature mea-

surements (7 sections with each section having 10 tray temperatures plus 1
temperature for reboiler), which we included as the candidate measurements
(y) and are measured with an accuracy of ±1oC. The considered distur-
bances are in vapor boil up (V), vapor split (RV ), feed flow rate (F), mole frac-
tion of A in feed stream (zA), mole fraction of B in feed stream (zB), mole frac-
tion of C in feed stream (zC), liquid fraction of the feed stream qF , which vary
between 3±0.25, 0.4±0.1, 1±0.25, 0.25±0.05, 0.25±0.05, 0.25±0.05, 0.9±0.05,
respectively. The reader is referred to [32] for further details on this example.
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We consider the selection of the control variables as individual measure-
ments or combinations of a measurement subset with measurements from
specified sections of the column as structural constraints. Such structural
constraints may be important for dynamic reasons, for example, at least one
temperature in the prefractionator should be used in the regulatory layer
[32]. The 4-product Kaibel column is divided into 4 segments with 20, 20, 10
and 21 measurements, respectively. The measurements in the four segments
are T1 − T20, T21 − T40, T61 − T70 and T41 − T60 plus T71, respectively (Figure
10). Note that segment 4 includes reboiler temperature T71. The candidate
measurements y and given inputs u are

y = [T1 T2 T3 · · · T71]
T

u = [L S1 S2 RL]
T

We formulate an MIQP using (28) to find four CVs for the following three
cases

(i) Optimal combinations of 4,5,6 and 71 measurements with no constraint
on sections (Case 2.2)

(ii) Single measurements from each of the four segments (Case 2.4)

(iii) Including extra measurements to a given set of measurements (Case
2.5). In this case, {T12, T25, T45, T62} are taken as the given set of mea-
surements, which could have been selected based on considerations for
stabilizing the column profiles.

The constraint for (i) is
ny∑

j=1

σj = n

for n = 4, 5, 6 and 71. This can alternatively be written in the general form
in (28b) with

P = 1T 1×ny
, s = n

where 1 is a column vector of ones and n is 4,5,6 and 71.
The constraints for (ii) can be written in the general form (28b) with

P =







1T 1×20 0T 1×20 0T 1×20 0T 1×10 0
0T 1×20 1T 1×20 0T 1×20 0T 1×10 0
0T 1×20 0T 1×20 1T 1×20 0T 1×10 1
0T 1×20 0T 1×20 0T 1×20 1T 1×10 0






, s =







1
1
1
1






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where 1 is a column vector of ones and 0 is a column vector of zeros.
(iii) We consider including 1,2 and 3 extra measurements to the given set

{T12, T25, T45, T62}. The constraints for this case are

σj = 1, ∀j = 12, 25, 45, 62
71∑

j=1

σj = n

where n = 5, 6 or 7.
The optimal measurements sets for cases (i),(ii),(iii) together with the

loss and computational times are reported in Table 3. Note that for case (i)
with 5,6 measurements, the reported solutions are not optimal solutions as
the computational time required for these cases exceeded the set maximum
computational time limit of 120 min. The measurements sets for n = 4 are
the are same for (i) and (ii) because it happens that the optimal measure-
ments in case (i) have the desired distribution. However, the computational
time is about 30 times higher for case (i) as the number of possibilities is
higher in (i) than in (ii). For case (iii), the loss decreases as we add 1,2, and
3 extra measurements to the given set.

6. Discussion

6.1. Structured H with specified zero elements (Problem 3)

Unfortunately, the convex formulation in Theorem 2 used in the above
Examples, does not generally apply when specified elements in H are zero.
Some examples are

(I) Decentralized structure. This is the case, where we want to com-
bine measurements from a individual unit/section alone in a plant, so
the measurement sets are disjoint. This can be viewed as selecting CVs
for individual units/sections in the plant. As an example, consider a
process with 2 inputs (degrees of freedom) and 5 measurements with
2 disjoint measurement sets {1,2,3},{4,5}; the structure is

HI =

[
h11 h12 h13 0 0
0 0 0 h24 h25

]
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(II) Triangular structure. More generally, H may have a triangular
structure. As an example, consider a process with 2 degrees of free-
dom and 5 measurements with partially disjoint measurement sets as
{1, 2, 3, 4, 5} for one CV and {4, 5} for another CV, the structure is

HII =

[
h11 h12 h13 h14 h15

0 0 0 h34 h35

]

Since Theorem 2 does not hold for these cases with specified structures, we
need to solve non-convex problems. This is outside the scope of this paper,
where convex formulations are considered.

6.2. Use of average loss 1
2
‖M‖2F

For the measurement selection problem, using an uniform distribution

for d′ and ny′ with ‖

[
d′

ny′

]

‖2 ≤ 1 results in the average loss L̂avg =

1
6(ny+nd)

‖M‖2F [24]. Although this loss expression is mathematically correct,

the dependency of the loss on (ny+nd) is not meaningful from an engineering
point of view. To illustrate this, note that we can add dummy measurements
and thus set ny to any number, and then choose to not use the dummy
measurements when selecting c = Hy, simply by setting the corresponding
columns in H to zero. So ‖M‖F will be unchanged, but ny increases and

the loss L̂avg decreases. Since the loss should not change by adding dummy
measurements that we do not use, the use of uniform distribution of the two-
norm is not physically meaningful. Hence, in this paper, we choose to use
the more common normal distribution for d′ and ny′ which gives the average
loss (expected loss) Lavg =

1
2
‖M‖2F in (20).

7. Conclusions

The problem of finding optimal CV measurement combinations that min-
imize the loss from optimal operation is solved. The optimal CV selection
problem from self optimizing control framework is reformulated as a QP and
the optimal CV selection for measurement subsets is formulated as an MIQP
problem. The developed MIQP based method allows for additional struc-
tural constraints compared to the bidirectional branch and bound methods
reported in literature. The MIQP based method was found to use about 10
times more CPU time than the bidirectional branch and bound methods,
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but this is acceptable as the optimal CV selection problem is done offline. In
addition, the MIQP method can be used on some problems where the branch
and bound methods do not apply, as shown for the Kaibel column example.

Appendix A.

The vectorization procedure of convex optimization problem in decision
matrix H to convex optimization problem in hδ is described [19]. We write

H =








h11 h12 . . . h1ny

h21 h22 . . . h2ny

...
...

. . .
...

hnu1 hnu2 . . . hnuny







=
[
h1 h2 . . . hny

]
=








h̃T
1

h̃T
2
...

h̃T
nu








where

hj = jthcolumn of H, hj ∈ R
nu×1

h̃j = jthrow of H, h̃j ∈ R
ny×1

The transpose must be included because all vectors including h̃i are column
vectors.

Similarly, let J
1/2
uu = [j1 j2 . . . jnu

].
We further introduce the long vectors hδ and jδ,

hδ =







h̃1

h̃2

. . .

h̃nu






=

























h11

h12
...

h1ny

h21

h22
...

h2ny

hnu1

hnu2
...

hnuny

























∈ R
nuny×1

jTδ =
[
jT1 jT2 . . . jTnu

]
∈ R

nunu×1
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and the large matrices

GT
δ =








GyT 0 0 · · ·

0 GyT 0 · · ·
...

...
...

. . .

0 0 . . . GyT







, Yδ =








Y 0 0 · · ·
0 Y 0 · · ·
...

...
...

. . .

0 0 . . . Y








Then, HY =







h̃T
1Y

h̃T
2Y
. . .

h̃T
nu
Y






and for the frobenius norm the following equal-

ities apply.

‖HY‖2F = ‖

h̃T
1Y

h̃T
2Y
...

h̃T
nu
Y

‖F = ‖ h̃T
1Y h̃T

2Y . . . h̃T
nu
Y ‖F

= ‖hT
δ Yδ‖F = ‖hδY

T
δ ‖F = hT

δ YδY
T
δ

︸ ︷︷ ︸

Fδ

hδ = hT
δ Fδhδ

Because HGy = J
1/2
uu where J

1/2
uu is symmetric matrix, we have HGy =

GyTHT = J
1/2
uu and

[

GyT h̃1 GyT h̃2 . . . GyT h̃nu

]

= [j1 j2 . . . jnu
] =⇒ GT

δ hδ = jδ
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Table 1: Evaporator example: Optimal measurement sets as a function of the number of
measurements with associated losses and computational times

No. Meas Optimal Measurements Loss* CPU time (sec)
n 1

2
‖M‖2F MIQP Downwards BAB PB3 Exhaustive

2 [F3 F200] 56.0260 0.0235 0.0028 0.0023 0.045
3 [F2 F100 F200] 11.7014 0.0350 0.0013 0.0028 0.12
4 [F2 T201 F3 F200] 9.4807 0.0400 0.0016 0.0025 0.21
5 [F2 F100 T201 F3 F200] 8.0960 0.0219 0.0011 0.0014 0.252
6 [F2 F100 T201 F3 F5 F200] 7.7127 0.0204 0.0016 0.0017 0.21
7 [P2 F2 F100 T201 F3 F5 F200] 7.5971 0.0289 0.0009 0.0016 0.12
8 [P2 T2 F2 F100 T201 F3 F5 F200] 7.5756 0.0147 0.0005 0.0009 0.045
9 [P2 T2 F2 F100 T201 F3 F5 F200 F1] 7.5617 0.0110 0.0008 0.0009 0.01
10 [P2 T2 T3 F2 F100 T201 F3 F5 F200 F1] 7.5499 0.0008 0.0011 0.0009 0.001

*The results are the same as in [24], but the loss given in [24] is a factor
(n+ nd) smaller, see section 6.2.

Table 2: Distillation Column example: Optimal measurements and optimal controlled
variables with loss

No. Meas c′s as combinations of measurements Loss
n 1

2
‖M‖2F

2
c1 = T12

c2 = T30
0.5477

3
c1 = T12 + 0.0446T31

c2 = T30 + 1.0216T31
0.4425

4
c1 = 1.0316T11 + T12 + 0.0993T31

c2 = 0.0891T11 + T30 + 1.0263T31
0.3436

41
c1 = f(T1, T2, . . . , T41)
c2 = f(T1, T2, . . . , T41)

0.0813
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Table 3: Kaibel Column: Optimal measurement sets and loss using optimal combination
of these measurements

Case No. Meas Optimal measurements Loss CPU time
n 1

2
‖M‖2F (min)

(i) 4 [T12 T40 T51 T66] 11.6589 34.23
(i) 5 [T12 T51 T62 T65 T66] 2.9700 120
(i) 6 [T12 T20 T23 T57 T60 T64] 1.0140 120
(i) 71 [T1 T2 . . . T71] 0.0101 0.0007
(ii) 4* [T12 T40 T51 T66] 11.6589 1.19

(iii) 4† [T12 T25 T45 T62] 1328.6691 0.0005
(iii) 5** [T12 T25 T45 T62 T69] 65.7180 0.096

(iii) 6** [T12 T25 T45 T55 T62 T71] 3.5646 0.19
(iii) 7** [T12 T25 T45 T51 T62 T65 T67] 0.9450 2.21

* (ii) Case 2.4; **(iii) Case 2.5 ; †given non-optimal measurement set
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