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Abstract: Controlled variables selection based on economic objectives using self optimizing
concepts are developed. In this paper, we extend the self optimizing control ideas to find
optimal controlled variables in the regulatory layer. The regulatory layer is designed to facilitate
stable operation, to regulate and to keep the operation in the linear operating range and its
performance is here quantified using the state drift criterion. Quantitative methods are proposed
and evaluated on a distillation column case study with 41 stages that minimize state drift in
composition states to obtain optimal regulatory layer with 1, 2 and more closed loops.

1. INTRODUCTION

The plantwide control system for the overall plant is in
most cases organized in a hierarchical structure (Fig. 1),
based on the time scale separation between the layers. As
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Fig. 1. Control system hierarchy for plantwide control in
chemical plants Skogestad and Postlethwaite [1996]

shown in Fig. 1, the control layer is usually divided in two
parts. The main task of the upper slower “supervisory”
layer is to keep the “economic” or primary controlled
variables CV1 close to their economic optimal set points.

J1 = ‖CV1 − CV1s‖
2 (1)

On the other hand, the task of the lower faster “regu-
latory” layer is to avoid the process drifts too far away

from its desired steady state. More specifically, it should
stabilize any unstable modes, provide for local (fast) dis-
turbance rejection and keep the operation in the linear
operating range.

In this paper, we focus on the selection of controlled
variables CV2 for regulatory control layer, and we will
quantify the regulatory objectives in terms of a scalar
function J2, which is the weighted state drift away from
the desired nominal point,

J2 = ‖Wx‖2 (2)

where W is a weighting matrix, x is the drift in the states
from nominal operating point. Many norms may be used,
but we will consider the 2-norm of the state drift. The
question is then what should we control (CV2) in order to
minimize J2.

Another objective is that the regulatory layer should be
“simple”, and we will quantify this by the number of loops
that need to be closed, that is, by the number of physical
degrees of freedom (usually values) that are used by the
regulatory layer. This can be related to the idea of partial
control [Shinnar, 1981, Arbel et al., 1996, Kothare et al.,
2000]. In partial control system, a few inputs are kept
constant and the remaining inputs are used to control the
process.

One may question the division of the control layer into a
supervisory (economic) and regulatory (stabilizing) layer,
but this paradigm is widely used and is the basis for
this paper. The main justification is that the two tasks
of stabilization and optimal operation are fundamentally
different and that trying to do both at the same time is
much more complex. This is captured, for example, by the
common idiom “you need to learn to walk before you can
run”. Specifically, “learn to walk” means that the process
(the child) first needs to be stabilized before attempting
more high-level tasks like running.

This paper focuses on controlled variables (CV2) selection
in the regulatory layer. Another important decision in
regulatory layer is the pairing of selected outputs (CV2)
with available inputs (valves). However, we do not address
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this issue by making a simplifying assumption of perfect
control of selected controlled variables (CV2).

Generally, the regulatory layer decisions are taken based
on heuristic methods or on the intuition of process en-
gineers (e.g.Luyben [1996] and references therein). These
heuristic based methods may not be optimal and are also
difficult to compare various proposals. Hence, systematic
and good methods are needed to arrive at optimal regula-
tory layer that minimizes the state drift in the presence of
disturbances. To arrive at controlled variables (CV) that
are easy to control, various methods have been proposed
for desirable control system controllability, achievable per-
formance as criteria [van de Wal and de Jager, 2001]. But
these methods are not directly applicable for controlled
variables selection in regulatory layer that minimizes the
state drift.

The rest of the paper is organized as follows: Section 2
describes the problem for optimal regulatory layer selec-
tion. Section 3 extends the SOC concepts to state drift.
Section 4 discusses the regulatory layer selection. Section
5 presents evaluation on a distillation column case study
with 41 stages to find optimal regulatory layer. The con-
clusions are given in Section 6.

2. MINIMIZATION OF STATE DRIFT (PROBLEM
DEFINITION)

In this section, we give a brief overview of the problem.
Classification of variables:
u: Set of nu independent variables (inputs). It does not
really matter what these variables are as long as they form
an independent set e.g. one may close loops and instead
introduce the set points as the variables u. In the frequency
domain there is no causality and closing loops will not
change the problem.
u0: Set of physical degrees of freedom (inputs) which we
may want to keep constant in the regulatory layer (often
u0 = u, but this is not a requirement).
ym: Set of (additional) measurements
y = [ym u0]: Combined set of measurements and physi-
cal inputs that we consider as choice for CV2.
CV2 = c = Hy: Selected set of nc = nu controlled
variables in the regulatory layer
H is here assumed to be a constant real matrix (not
frequency dependent).

Linear model is assumed at a nominal operating point and
the models at each frequency ω are described as

x = Gx(jω)u+Gx
d(jω)Wdd (3a)

y = Gy(jω)u+G
y
d(jω)Wdd+Wnn

y (3b)

where Gx(jω),Gx
d(jω) and Gy(jω),Gy

d(jω) are the fre-
quency based gain functions between x to u, x to d and y
to u, y to d, respectively. Wd and Wn are the magnitudes
of disturbances and implementation errors.

Note that the controlled variables can be either individual
measurements or combinations of measurements.

c = Hy (4)

where c are controlled variables, y are candidate measure-
ments and H is a real valued measurements combination
matrix. We include inputs u0 also as candidate measure-
ments.

u
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Fig. 2. General approach

The objective is to find what to control (c = Hy) in
the stabilizing layer, given that we want to minimize
the state drift (2) for the expected disturbances (d) and
implementation error (measurement noise, ny), and that
we want to close k loops, ∀k = 1, 2, . . . , nu.

In order to avoid the need to design controller for each
loop in the regulatory layer we assume that the selected c
is perfectly controlled, i.e. c = 0 as a function of frequency.
In frequency domain, we may assume perfect control, but
closed loop stability needs to be addressed separately.

Problem: In the frequency domain, the problem can
be stated as follows: Assuming perfect control of the
selected c = Hy at a given frequency i.e. c(jω) = 0
(Fig. 2), we want to find optimal H that minimizes
the state drift J2(jω) when there are disturbances. In
our case, minimizing the loss L = J2(c,d) − J2,opt(d)
on an average basis, e.g. using the frobenius norm, is
the same as minimizing the cost J2. Hence, we use the
self-optimizing control concepts [Skogestad, 2000] and we
consider minimization of loss rather than cost as the loss
can be formulated as convex optimization problem in H
[Alstad et al., 2009].

H = [Hy Hu]

c = Hy = Hyym +Huu0

(5)

We want to find the best controlled variables for each of
the possibilities for closing loops
Close 0 loops: in the set c, select nc variables from the set
u0 (Hy = 0,Hu = I)
Close 1 loop: in the set c, select nc − 1 variables from the
set u0 (one row in Hy is nonzero, the rest are zero)
Close 2 loops: in the set c, select nc − 2 variables from the
set u0 (two rows in Hy are nonzero, the rest are zero)
Close k loops: in the set c, select nu−k variables from the
set u0

Close nc loops: in the set c, select 0 variables from the set
u0

In addition, we can have restrictions on the set c such
as selecting only single measurements (each row in H
containing one 1 and the rest 0’s).

In terms of finding the optimal H we consider two ap-
proaches.
1. General approach: To avoid numerical problems with
poles on the jw-axis (including integrators), one may in-
troduce P-controllers to shift (stabilize) these modes, but
then the corresponding set points (e.g, level set points)
should replace the corresponding MV in the set u (Fig. 3).
In Fig. 3, general approach u = {u1 ∪ u2 ∪ Ls}.
2. Steady-state approach. To reduce the dimension of
u (and of H), we remove variables with no steady-state
effect, which in most cases are liquid levels. In practice,
this may be done by choosing an independent base set for
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u = {u1 ∪ u2}, and then using the steady-state model to
obtain the linearized effect of u and the d on the flows uL

(to be included in u0) which are used for level control,

uL = GLu+Gd
Ld (6)

This approach reduces the available steady state degrees
of freedom to nu.

3. STATE DRIFT FOR A GIVEN FREQUENCY

By the term “state drift” we refer to the dynamic drift
which is not taken care of by the actions of the slower
supervisory control layer. Since disturbances often are
sinusoidal with varying frequency it may be useful to
consider the state drift as a function of frequency

J2(w) = ‖W(jω)x(jω)‖2 (7)

We have here included the possibility for a frequency-
dependent weight matrix W(jω), but in most cases we
will assume it is constant diagonal matrix.

3.1 Previous work

Skogestad and Postlethwaite [1996] use minimization of
weighted state drift from nominal point at steady state
and suggest controlled variables, c = Hy, with H =

(WGx)T [WGx WGx
d ] [G

y G
y
d]

†
, where † represents

pseudo inverse of the matrix, when the number of mea-
surements ny ≥ nu + nd.

3.2 Loss as a function of d,ny and control policy H

We extend the methods of self-optimizing control [Skoges-
tad, 2000, Kariwala et al., 2008] for state drift criterion
J2 as a functional of u and d for a given frequency, where
J2 = ‖Wx‖2, x is the deviation of states from the desired
operating point, W is the square diagonal state weighting
matrix. The selection of appropriate weighting matrix W
allows the user to easily study the state drift in certain
states only.

The linear model (3) of the process around the nominal
operating point for the states and output as a function of
frequency w is assumed. For a given frequency the gain
matrices from u to x, d to x are Gx,Gx

d and u to y,
d to y are Gy,G

y
d, respectively. Then the second order

derivatives can easily be found analytically based on the
linear model obtained at the nominal operating point.

J2uu
,

∂2J2

∂u2
= 2GxTWTWGx

J2ud
,

∂2J2

∂u∂d
= 2GxTWTWGx

d

(8)

For any disturbance d, the input must be changed to
uopt(d) to have optimal state drift. Any input u that is
different from uopt(d) will result in the loss in state drift
(i.e. the deviation from the optimum state drift), that can
be defined as

L = J2(u,d)− J2,opt(uopt(d),d) (9)

The loss with self-optimizing control by keeping (4) at
constant set point is denoted by Lc. The worst case loss,
average loss Lc,wc, Lc,av in terms of state drift are obtained
by considering various realizations of d ∈ D and nc ∈ E .

Lc,wc(d,n
c) = max

d∈D,nc∈E

Lc(d,n
c) (10)

Lc,av(d,n
c) = E [Lc(d,n

c)] ∀d ∈ D , ∀nc ∈ E (11)

Subsequently the worst case loss in state drift Lwc for the

bounded set ‖

[

d′

ny′

]

‖ ≤ 1 [Halvorsen et al., 2003], average

loss in state drift Lav for normally distributed random
variables d′,ny′

with unit variance in the local methods
are obtained [Kariwala et al., 2008] as

Lc,wc =
1

2
‖J

1/2
2uu

(HGy)−1HYx‖
2
2 (12)

Lc,av = E(L) =
1

2
‖J

1/2
2uu

(HGy)−1HYx‖
2
F (13)

where Yx = [FxWd Wn];Fx =
∂yopt

∂d = GyJ−1
2uu

J2ud
−

G
y
d, J2uu

, ∂2J2

∂u2 , J2ud
, ∂2J2

∂u∂d . We use only the average
loss in state drift (13) involving the frobenius norm (F ).

4. REGULATORY LAYER SELECTION

The regulatory layer with 1, 2 and more closed loops can
be viewed as partially controlled systems and optimal reg-
ulatory layer selection as the selection of the best partially
controlled system with 1, 2, . . . , nu closed loops that mini-
mize the state drift loss in (13). For each partial controlled
system we solve (13) with an MIQP to find best CVs
[Yelchuru et al., 2010]. Based on the loss from the partially
controlled systems and the acceptable steady state drift
loss defined by the user, the minimum regulatory layer
can be obtained.

4.1 Optimal H with CV2 as individual measurements

The optimal H with CV2 as individual measurements, e.g.

H =

[

0 1 0 0 0 0
0 0 0 0 1 0

]

, gives an MIQP that requires us to

solve a convex QP at each node. For a process with i
closed loops require to solve (13) as an MIQP [Yelchuru
et al., 2010] that gives a globally optimal H to obtain i
CV2. Overall we need to solve nu + 1 MIQP problems to
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find optimal regulatory layer with 0, 1, . . . , nu closed loops.
The computational requirement of these methods increase
as the number of MIQP problems increase with nu, but
these are tractable as these are offline methods.

4.2 Optimal H with CV2 as measurement combination

We consider partial control problem where we allow for
measurement combination for the controlled variables
CV2. This can be viewed as solving (13) with a particular
structure in H, which is generally a non-convex problem.
For example, a partially controlled system with 3 process
measurements and 2 inputs, resulting in 5 candidate mea-
surements in y, is

H =

[

h11 h12 h13 0 0
0 0 0 0 1

]

orH =

[

h11 h12 h13 0 0
0 0 0 1 0

]

(14)

To solve the (13) with this particular structure (14), we
propose a two step approach which may not be optimal but
which is convex. The first step is to partition the system
inputs to 2 sets u1 and u2 (u = {u1 ∪ u2}) as we keep
the inputs in input set u2 ∈ u0 as constants. The matrix
for such a partial control system Gy,partial ∈ R

ny×nu1 is
obtained by picking the columns associated to input set u1

and Jpartial
uu,x ∈ R

nu1
×nu1 ,Jpartial

ud,x ∈ R
nu1

×nd has elements
associated to the inputs in the input set u1. The distur-
bance gain matrix G

y
d ∈ R

ny×nd , disturbance magnitude
matrix Wd ∈ R

nd×nd and measurement noise magnitude
matrix Wn ∈ R

ny×ny will remain the same. The second
step is to solve (13) with the matrices obtained in the first
step as a convex optimization problem [Yelchuru et al.,
2010] to obtain Hpartial as a full matrix for the partially
controlled system.

As u2 ∈ u0 varies in each partial controlled system, we
cannot directly compare losses obtained from different
partial control systems. Hence, in order to compare the
losses on an equivalent basis, the loss value is calculated
for the full system with the optimal controlled variables

CV
partial
2 obtained for the partially controlled system and

the constant inputs in u2 as the other CV2. The number
of partial controlled systems and the number of MIQP
problems that need to be solved are 2nu−2. Thus based on
the acceptable steady state drift loss defined by the user,
the minimum regulatory layer with CV2 as combination of
n measurements can be obtained.

5. DISTILLATION COLUMN CASE STUDY

The proposed methods are evaluated on binary distillation
column case study with 41 stages in LV-configuration [Sko-
gestad, 1997, Hori and Skogestad, 2008], where distillate
flow (D) and bottoms flow (B) are used to control the
integrating hold ups and reflux (L) and boil up (V) are
the remaining steady-state degrees of freedom (u) (Fig.
5). The main disturbances are in feed flow rate (F ), feed
composition (zF ) and vapor fraction (qF ), which can vary
between 1± 0.2, 0.5± 0.1 and 1± 0.1, respectively. As the
composition measurements assumed not to be available
online, we use the tray temperatures to control the com-
positions indirectly. The boiling points difference between
light key component (L) and heavy key component (H)
is 13.5 oC. Then temperature Ti(

oC) on each stage i is

calculated as a linear function of the liquid composition xi

on each stage [Skogestad, 1997]

Ti = 0xi + 13.5(1− xi) (15)

To be consistent with the notation u1 = L,u2 = V and
uL = {D,B}. As we have integrating modes (condenser
and reboiler levels), we use steady state approach with

u0 =







L
V
D
B






, u =

(

L
V

)

Note that we have steady state degrees of freedom nu = 2.
For this distillation column in LV-configuration [Häggblom

and Waller, 1990], the base variables, u =

(

L
V

)

and

uL =

(

D
B

)

are used for level control and we need

to obtain from mass balances for the steady-state flow

relationships (6) with u and d =

(

F
zF
qF

)

. Mass balances

assuming perfect level control

dMd

dt
= 0 = Vtop − L−D

dMb

dt
= 0 = Lbtm − V −B

Note: These two equations can now be used to eliminate

D and B from the original u0 =







L
V
D
B






, to get the reduced

u =

(

L
V

)

. Here, at steady state and assuming constant

molar flows
Vtop = V + (1− qF )F

Lbtm = L+ qFF

So we find at steady state

D = V − L+ (1− qF )F

B = L+ qFF − V

Note that there is no effect of zF in this case. We linearize
(6) to get GL and Gd

L as

GL =

[

−1 1
1 −1

]

, Gd
L =

[

(1− qF )
∗ 0 −F ∗

q∗F 0 F ∗

]

At a steady state operating point L = 2.706, V = 3.206,
F = 1, zF = 0.5, qF = 1, xD = 0.99, xB = 0.01 based on
steady state conservation laws

GL =

[

−1 1
1 −1

]

, Gd
L =

[

0 0 −1
1 0 1

]

The 41 stage temperatures and the manipulated input
flows {L, V,D,B} are taken as candidate measurements.
The implementation error for temperatures is ±0.5oC and
it is ±10% for the flows. The total state drift JT for the
compositions on each of the 41 trays is

J2 = ‖Wx‖2 (16)

The W ∈ I
41×41 (identity matrix) to have equal weights

on compositions on each tray. where x denote the drift in
composition states from nominal operating point.

To find the frequency where the state drift has a peak, we
consider linear models around a nominal operating point
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Fig. 6. State drift J2 for various frequencies with 1 tem-
perature loop closed with varying proportional control
gains (in addition to level control with proportional
control (kL = 10)

for the effect of u and d on the states x and measurements
y (3). For this case, we have nu = 2 inputs and 2 × 2
system. In the presence of disturbances (d), the state drift
(i.e. J2(jω) = ‖Wx(jω‖2) is derived as functions of H and
d with their associated gains at each frequency. We assume
proportional controllers for level control with kL = 10,
disturbances as normally distributed random variables and
only single loop control for a chosen H with boilup (V)
for varying proportional gains for various frequencies is
shown in Fig. 6. In Fig. 6, proportional controller gain
k = 0 correspond to an open loop policy and k = 10
correspond to perfect control. From Fig. 6, it is clear that
for a chosen H the state drift and the loss (not shown)
are almost constant over a frequency band [0.0001 0.02]
for a single loop control. Hence performing a steady state
analysis for state drift alone is sufficient and we focus only
on the loss from optimal state drift (13) for the steady
state for this case study.

The distillation column case study has nu = 2 number
of steady state degrees of freedom with ny = 45 number
of candidate measurements, there are totally nu + 1 = 3
MIQPs to be solved to find CV2 as individual measure-
ments. The loss with 0 loops closed, 1 loop closed (other
input is kept constant), 2 loops closed are tabulated in
Table 1. From Table 1, best 0 loops closed is to keep

Table 1. Distillation Column case study: The
self optimizing variables c′s as individual mea-
surements for the partially controlled systems

No. of
loops closed† c

′s Loss

0 [V B] 109.6695

1 [T18 L] 0.1884

2 [T15 T27] 0.0265

† In addition to two closed level loops

1 2
0
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Fig. 7. Distillation case study: The optimal total state drift
vs number of loops closed (in addition to level control)
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Fig. 8. Distillation case study: The reduction in loss in
total state drift vs number of used measurements,
Top: Loss with one loop closed, Bottom : Loss with
two loops closed

.

{V,B} constant, best single closed loop policy is to keep
L constant and to control tray temperature T18, best 2
loops closed policy is to control the tray temperatures T15

and T27 to minimize the compositions state drift. The loss
reduction ratio by closing 1 loop and 2 loops increased at
least by 2.7 and 3.6 orders of magnitude, respectively.

To find optimal H with CV2 as measurement combination
we used partial control ideas. The number of partial
controlled systems and the number of MIQP problems
that need to be solved for this case study with nu = 2 are
2nu−2 = 2. The optimal CV2 as measurement combination
for the partially controlled systems with 3, 4, 5 and 45
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Table 2. Distillation Column case study: The
self optimizing variables c′s as combinations
of 3, 4, 5, 45 measurements with their associ-
ated losses (total state drift) for the partially

controlled systems

No. of No. of Optimal c
′s Loss

loops closed † meas. used meas.

1 3 [T15 T26 L]
c1 = L

c2 = 1.072T15 + T26

0.1294

2 3 [T15 T26 T28]
c1 = T15 − 0.1352T28

c2 = T26 + 1.0008T28

0.0198

1 4 [T15 T16 T27 L]
c1 = L

c2 = 0.6441T15 + 0.6803T16 + T27

0.1256

2 4 [T14 T16 T26 T28]
c1 = T14 − 6.1395T26 − 6.3356T28

c2 = T16 + 6.2462T26 + 6.2744T28

0.0137

1 5 [T15 T16 T26 T27 L]
c1 = L

c2 = 1.1926T15 + 1.1522T16 + 0.9836T26 + T27

0.1231

2 5 [T14 T16 T26 T27 T28]
c1 = T14 − 4.9975T26 − 5.0717T27 − 4.9813T28

c2 = T16 + 5.1013T26 + 5.0847T27 + 4.9166T28

0.0114

1 45 [T1, T2, . . . , T41, L, V,D,B]
c1 = L

c2 = f(T1, T2, . . . , T41, L, V,D,B)
0.1181

2 45 [T1, T2, . . . , T41, L, V,D,B]
c1 = f(T1, T2, . . . , T41, L, V,D,B)
c2 = f(T1, T2, . . . , T41, L, V,D,B)

0.0026

† In addition to two closed level loops

measurements while closing 0, 1, 2 loops are shown in Fig.
7 and are also tabulated in Table 2. From Fig. 7, using
more number of measurements reduce the loss in state
drift. From Fig. 7, the state drift loss ratio increase as
we use more number of measurements to obtain optimal
CV2. The reduction of loss with number of measurements,
when one loop, two loops are closed is shown as a bar chart
in Fig. 8. From Table 2, the best single loop control CV2

with 3 measurements is to combine 1.072T15 + T26 and
L constant. Thus based on the acceptable steady state
drift loss from the optimal state drift defined by the user
for the considered disturbances, the minimum regulatory
layer can be obtained.

6. CONCLUSIONS

The self optimizing control concepts are extended to select
optimal controlled variables that minimize the state drift
in the presence of disturbances. We chose a frequency that
has peak in state drift and we minimized the state drift for
that frequency. The reduction in loss from optimal state
drift by closing the loops in the presence of disturbances
is quantified. We used self-optimizing control minimum
loss method to minimize the state drift to arrive at
regulatory layer with 1, 2 and more closed loops. We
described on how to use the proposed methods to find both
optimal individual and combinations of measurements as
controlled variables and are evaluated on a distillation
column case study with 41 stages.
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