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Abstract

This chapter summarizes, extends and discusses the plantwide control procedure of Skogestad (2004). An important feature of this procedure is to start with the optimal economic operation of the plant, and then attempt to design a control structure that implements optimal operation, while also considering the more basic requirements of robustness and stability. The procedure is split in a top-down part, based on plant economics, and a bottom-up part. The bottom-up parts aims at finding a simple and robust “stabilizing” or “regulatory” control structure, which can be used under most economic conditions. A key step in the procedure is the selection of appropriate controlled variables (CVs); both for the upper supervisory (economic) control layer and the lower regulatory layer.

1. INTRODUCTION
A chemical plant may have thousands of measurements and control loops. By the term plantwide control it is not meant the tuning and behavior of each of these loops, but rather the control philosophy of the overall plant with emphasis on the structural decisions. In practice, the control system is usually divided into several layers, separated by time scale (see Figure 1).
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Figure 1: Typical control hierarchy in a chemical plant.
In this introduction, I will temporarily switch to a less formal tone and try to tell the reader how I personally got involved in the plantwide control field.  My interest dates back to 1983 when I started my PhD work at Caltech working with Professor Manfred Morari as my supervisor. My main theme was robust control, but as an application, I worked on distillation column control, which is excellent example of a plantwide control problem. I was inspired by Greg Shinskey’s book on Distillation Control, which came out with a second edition in 1984 (Shinskey, 1984). In particular, I liked his systematic procedure, which involved computing the steady-state relative gain array (RGA) for 12 different control structures (“configurations”); the DV-configuration, LV-configuration, ratio configuration, and so on.  However, when I looked in more detail on the procedure I discovered that its theoretical basis was weak. First, it did not actually include all structures, and it even eliminated the DB-configuration as “impossible” even through it is workable in practise (Luyben, 1989). Second, controllability theory tells that the steady-state RGA by itself is actually not useful, except that one should avoid pairing on negative gains (Skogestad and Postlethwaite, 2005). Third, the procedure focused on dual composition control, while one in practise uses only single end control, for example, because it may be optimal economically to use maximum heating to maximize the recovery of the valuable product (Skogestad, 2007).

 Furthermore, when I studied the distillation column control problem in more detail, I discovered that there were several control objectives, which often were conflicting. First, there was the issue of “stabilizing control” which involved closing the level and pressure loops, and maybe also a temperature loop, so that the column did not drift and could be controlled manually which too much effort. Second, there was the issue of “economic control” (advanced and supervisory control) which involves keeping the column close to its economically optimal operation. In many cases, “economic control” was the same as “dual composition control” but not always. 

In fact, depending on marked conditions and disturbances, the best economic mode of operation changes. For a distillation column, it is always optimal to control the valuable product at its spec. to avoid product “give-away” (however, if the valuable product is recycled then there may be no spec). For the “low-value” product it is often optimal to overpurify in order to minimize the loss of valuable product and if product prices are sufficiently high (compared to energy prices) then it is optimal to use maximum energy (boilup) to get “maximum overpurification”. The important conclusion from this is that the optimal configuration will change depending on marked conditions, so there is no single “best” control configuration, even for a given column (Skogestad, 2007).  


Enough about distillation. Another heavy influence on my work was the famous critique article on process control by Alan Foss (1973).  He writes:

· The central issue to be resolved ... is the determination of control system structure. Which variables should be measured, which inputs should be manipulated and which links should be made between the two sets? There is more than a suspicion that the work of a genius is needed here, for without it the control configuration problem will likely remain in a primitive, hazily stated and wholly unmanageable form. The gap is present indeed, but contrary to the views of many, it is the theoretician who must close it.

Here, he states that determination of control system structure, which for process control is the same as what I call “plantwide control”, is “the central issue to be resolved in control”. This statement should inspire people to work on the plantwide control. Then, he adds that this most likely will require “the work of a genius”. I am not sure if this addition is entirely correct, and I am unsure if it was so smart to make this addition if he wanted to inspire people to work on plantwide control. Nevertheless, it did inspire me and I have worked on the problem since then. Now, after 25 years, I am finally approaching a situation where I have a reasonably clear picture on how to approach the problem. This paper provides the main conclusions. 

2. CONTROL LAYERS AND TIME SCALE SEPARATION

The term “plantwide control” can be defined as “control structure design applied to chemical plants”. Here, “control structure design” is not the tuning and behavior of each control loop, but rather the control philosophy of the overall plant with emphasis on the structural decisions:

· Selection of controlled variables  (CVs, “outputs”) 

· Selection of manipulated variables (MVs, “inputs”) 

· Selection of (extra)  measurements

· Selection of control configuration (structure of overall controller that interconnects the controlled, manipulated and measured variables)

· Selection of controller type (PID, decoupler, MPC, LQG, ratio, etc.).

Control structure design (= plantwide control) thus involves all the decisions necessary to make a block diagram (used by control engineers) or process & instrumentation diagram (used by process engineers) for the entire plant. This includes thestructural decisions, but it does not involve the actual design of each invidual controller block.

In any mathematical sense, the plantwide control problem is a formidable and almost hopeless combinatorial problem involving a large number of discrete decision variables, and this is probably why the progress in the area has been relatively slow. In addition, the problem has been poorly defined in terms of its objective. Usually, in control, the objective is that the CV (output ) should remain close to its setpoint. However, what should we control? What are the controlled variables (CVs)? The answer lies in considering the overall plant objective, which is to minimize cost (=maximize profit) while satisfying operational constraints imposed by the equipment, marked demands, product quality, safety, environment and so on. We will get back to this.

Actually, the overall mathematical problem is in principle not so difficult to formulate and with today’s computing power it may even be solvable for some restrictive cases. It would involve obtaining a detailed dynamic and steady-state model of the complete plant, defining all the operational constraints, defining all available measurements and manipulations, defining all expected disturbances, defining expected, allowed or desirable ranges for all variables, and then designing a nonlinear controller that keeps all the controlled variables close to the setpoints or constraints, while using the possible remaining degrees of freedom to minimize the cost. This would involve a single centralized controller which at each time step collects all the information and computes the optimal changes in the manipulated variables (MVs). Although such a single centralized solution is foreseeable on some very simple processes, it seems to be safe to assume that it will never be applied to any normal-size chemical plant. There are many reasons for this, and one is that in most cases acceptable control can be achieved with simple structures where each controller block only involves a few variables. Such simple control systems can be designed and tuned with much less effort, especially when it comes to the modelling and tuning effort. After all, most real plants operate well with simple control structures. A related example is control of biological systems. These are extremely complex and there is little computing power available (the brain has many good features but exact computations is not one of its strong sides) to do the optimal centralized control task, so one has to rely on very simple, but still effective, control strategies.

So how are real systems controlled in practise? The main simplification is to decompose the overall control problem in to many simple control problems. This decomposition involves two main principles:
· Decentralized (local) control. This “horizontal decomposition” of the control layer is mainly based on separation in space, for example, by using local control if individual process units.

· Hierarchical control. This “vertical decomposition” is mainly based on time scale separation, and in a process one typically has the following layers (see  Figure 1) 

· scheduling (weeks) 

· site-wide optimization (day) 

· local optimization (hour) 

· supervisory (predictive, advanced) control (minutes)

· regulatory control (seconds)

We generally have more multivariable coordination as we move upwards in the hierarchy. Such a hierarchical (cascade) decomposition with layers operating on different time scale is used in the control of all real (complex) systems including  biological systems and airplanes, so the issues raised in this paper (section) are of general interest and not limited to process control. 
The upper three layers in Figure 1 deal explicitly with economic optimization and are not considered in this chapter. We are concerned with the two lower control layers, the supervisory (”advanced”) and regulatory control layers, where the main objective is to track the setpoints given by the layer above. A very important structural decision, probably more important than the controller design itself, is then the choice of  the controlled variables (CVs) , for which the setpoints are given.  In the upper supervisory control layer. we want to select CVs that are favorable from an economic point of view.

Typically, PID controllers are used in the lower regulatory control layer where “stabilization” of the plant is the main issue. In the upper supervisory control layer, one has traditionally used manual single-loop PID control, complemented by “advanced” elements such as static decouplers, feedforward elements, selectors, split-range controller and various logic elements. Over the last 25 years, model predictive control (MPC) has gradually taken over as a unifying tool to replace most of these elements. In the (local) optimization layer, the decisions are usually performed manually, although real-time optimization (RTO) is used for a few applications, especially in the refining industry. 

No matter what procedure we choose to use, the following decisions must be made when designing a plantwide control strategy:

Decision 1. Select ”economic” (primary) controlled variables (CV1) for the supervisory control layer (the setpoints CV1s link the optimization layer with the control layers).

Decision 2. Select  ”stabilizing” (secondary) controlled variables (CV2) for the regulatory control layer (the setpoints CV2s link the two control layers). 

Decision 3. Locate  the throughput manipulator (TPM).

Decision 4. Select pairings for the stabilizing layer, that is, pair inputs (valves) and controlled variables (CV2). By “valves” is here meant the original dynamic manipulated variables. 

Decisions 1 and 2 are illustrated in Figure 2, where the matrices H and H2 represent a selection, or in some cases a combination, of the available measurements y.  
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Figure 2: Block diagram of control hierarchy illustrating the selection of controlled variables (H  and H2) for optimal operation  (CV1 = H y) and stabilization (CV2 = H2 y), respectively. 

This paper deals with continuous operation of chemical processes, although many of the arguments hold also for batch processes.

3. PLANTWIDE CONTROL PROCEDURE
Over the years, going back to the early work of Buckley (1964) from the DuPont company, several approaches have been proposed for dealing with plantwide control issues. Nevertheless, taking into account the practical importance of the problem, the literature is relatively scarce. Larsson and Skogestad (2000) provide a good review and divide into two main approaches. First, there is the process-oriented (engineering or simulation-based) approaches of Buckley (1964)), Shinskey (1984), Douglas (1988), Downs, (1992), Luyben et al. (1997, 1998) and Konda et al. (2005). One problem here is the lack of a really systematic procedure and that there is little consideration of economics. Second, there is the optimization or mathematically oriented (academic) approaches of  Narraway and Perkins (1993), Hansen et al. (1998), Kookos and Perkins (2002), Chen and McAvoy (2003) and Engell (2007). The problem here is that the resulting optimization problems are intractable for a plantwide application. Therefore, a hybrid between the two approaches is more promising; Larsson and Skogestad (2000), Zheng, Mahajanam and Douglas (1999), Vasbinder and Ho (2003), Skogestad (2004), Ward et al. (2006). 

The stepwise plantwide control procedure of Luyben (Luyben et al, 1997; Luyben et al., 1998) has been applied in a number of simulation studies. In this chapter, we mainly discuss the seven-step plantwide control procedure of Skogestad (Larsson and Skogestad, 2000; Skogestad 2004). It was inspired by the Luyben procedure, but it has been clearly divided into a top-down part, mainly concerned with steady-state economics, and a bottom-up part, mainly concerned with stabilization and pairing of loops. Skogestad’s procedure consists of the following steps:
I. Top-down part (focus on steady-state optimal operation)
Step S1. Define operational objectives (economic cost function J and constraints) 

Step S2. Identify steady-state degrees of freedom (u) and determine the optimal steady-state optimal operation conditions, including active constraints.
Step S3. Identify candidate  measurements (y) and select primary controlled variables CV1 = Hy (Decision 1).

Step S4. Select the location of throughput manipulator (TPM) (Decision 3)
II.  Bottom-up part (focus on the control layer structure)

Step S5. Select the structure of regulatory (stabilizing) control layer) 
· Select “stabilizing” controlled variables CV2=H2 y (Decision 2) 

· Select inputs (valves) and  “pairings” for controlling CV2 (Decision 4) 

Step S6. Select the structure of supervisory control layer
Step S7. Select structure of (or need for) optimization layer (RTO)
The top-down part (steps S1-S4) is mainly concerned with economics, and steady-state considerations are often sufficient.  Dynamic considerations are more important for steps S4 to S6, although steady-state considerations are important also here. This means that it is important in plantwide control to involve engineers with a good steady-state understanding of the plant. A detailed analysis in step S2 and step S3 requires that one has available a steady-state model and that one performs optimizations for the given plant design (“rating mode”) for various disturbances.  

4. Degrees of freedom for operation
The issue of degrees of freedom for operation is often confusing and not as simple as one would expect. First, note that we are talking about operation, so the equipment is assumed to be fixed. Second, note that the degrees of freedom (in control often referred to as manipulated variables, MVs, or inputs, u) change depending on where we are in the control hierarchy. This is illustrated in Figures 1 and 2, where we see that the degrees of freedom in the optimization and supervisory control layers are not the physical degrees of freedom (valves), but rather setpoints for the controlled variables in the layer below. We have:
· Degrees of freedom for optimization (steady-state DOFs, u),  MVopt = CV1s
· Degrees of freedom for supervisory control, MV1=CV2s + unused valves

· (Physical) degrees of freedom for stabilizing control, MV2 =  valves (dynamic process inputs)

In process control applications, the economics of the plant are primarily determined by the (pseudo) steady-state behavior (Morari et al., 1980), so the steady-state degrees of freedom are usually the same as the economic degrees of freedom. 

We call the physical degrees of freedom (dynamic process inputs) for “valves”, because this is usually what they are in process control. The stabilizing control system may not use all of the valves. Some valves may not be used dynamically because they are optimally constant, for example, a bypass valve may always be closed (and should then be included in the set CV1). Other valves may not be needed for stabilizing control, and these “unused” valves can be used by the supervisory control system to improve dynamic control performance (see Figure 2).

Table 1. Potential number of steady-state degrees of freedom (DOFs) for some units

-----------------------------------------------------------------------------------------------

· each external feedstream: 1 (feedrate)

· splitter: n-1 (split fractions) where n is the number of exit streams

· mixer: 0

· compressor, turbine, pump: 1 (work/speed)

· adiabatic flash tank: 0*  

· liquid phase reactor: 1 (holdup reactant)

· gas phase reactor: 0*

· heat exchanger: 1 (bypass or flow)

· column (e.g. distillation) excluding heat exchangers: 0* + no. of sidestreams 

· pressure* : add 1 DOF at each extra place you set pressure (using an extra valve, compressor or pump), e.g. in adiabatic flash tank, gas phase reactor or column

-------------------------------------------------------------------------------------------------------------

*Pressure is normally assumed to be given by the surrounding process and is then not a degree of freedom.
Ref: Skogestad (2004), Araujo et al. (2007). Extension to closed cycles: Jensen and Skogestad (2009)
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Figure 3. The six dynamic degrees of freedom (valves) for a typical distillation column

Steady-state DOFs. Identifying the physical degrees of freedom (valves) is relatively straightforward, but it more difficult to identify the steady state degrees of freedom (called u in the following).. Actually, it is the number of economic (steady-state) degrees of freedom (nu), and not the variables themselves, which is most important to establish, because it gives the number of controlled variables (CV1) that one needs to select in step S3. 
Of course, as one starts formulating the model and trying to optimize the process, one will eventually find out how many degrees of freedom (nu) there are, but it is very useful to have independent and simpler method for finding the number of economic (steady-state) degrees of freedom. First, it is useful for checking. Second, there are cases where we do not have a good mathematical model or do not want to spend the time on optimizing the process. Two approaches are described next; valve counting and potential degrees of freedom.
Valve counting. One approach is to first identify all the physical (dynamic) degrees of freedom (valves). However, because the economics usually depend mainly on the steady-state, we should not include variables that have no or negligible effect on the economics (steady-state), such as inputs with only a dynamic effect.  We then have:
   # steady-state degrees of freedom (nu) = #valves - #variables with no steady-state effect

For example, even though a heat exchanger may have a valve on the cooling water and in addition have bypass valves on both the hot and cold side, it usually has only one degree of freedom at steady-state, namely the amount of heat transferred, so two of these three valves only have a dynamic effect from a control point of view. In addition, we need to exclude valves that are used to control variables with no steady-state effect (usually, liquid levels). For example, liquid levels in the reboiler and condenser in a distillation column need to be controlled but their actual value has no steady-state effect. (On the other hand, the liquid levels in reactors do have a steady-state effect unless the reaction is in equilibrium). 

Example. DOFs by valve-counting. A simple distillation column has 6 dynamic degrees of freedom (valves) as seen in Figure 1: feed F, bottom product B, distillate product D,  cooling, reflux L and heat input. However, two degrees of freedom (e.g., B and D) must be used to control the condenser and reboiler levels (M1 and M2) which have no steady-state effect. This leaves 4 degrees of freedom at steady-state. For the common case with a given feed flow and given column pressure, only 2 steady-state degrees of freedom remain, and in step S3 we need to identify controller variables (CV1) associated with these, for example, top and bottom composition (xD and xB). 

Potential steady-state degrees of freedom. An alternative simple method is to find the potential number of degrees of freedom from the flowsheet as given in Table 1. The reason for the word “potential” is that there may not always a valve to actually adjust the degree of freedom, for example, a process-process heat exchanger has 1 potential degree of freedom, but if  there is no bypass then it cannot be used in practise.  

Example. Potential DOFs from flow sheet. Consider again the distillation column in Figure 1. According to Table 1, the column shell itself has zero steady-state degrees of freedoms, but there are other contributions, and from Table 1 there are in total 4  potential number of steady-state degrees of freedom:



Distillation column shell: 0

Heat exchangers (reboiler and condenser): 2

Spitter (reflux): 1

Feedrate: 1

This is the same number as we found with the “valve counting” approach. Note that the 4 degrees of freedom include also the column pressure. The column pressure is given by the amount of vapor inside the column, which is indirectly set by the heat exchanger duties (the surrounding process). If there were noncondensable gases (inerts), then one would need to add a “bleed valve” to control pressure, which would add one more degree of freedom.  

5. SKOGESTAD’S PLANTWIDE CONTROL PROCEDURE

We here go through the Skogestad (2004) procedure in more detail. We consider an existing plant and assume that we have available a steady-state model of the process.

I.  TOP-DOWN PART
The top-down part is mainly concerned with the plant economics, which are usually determined primarily by the steady-state behavior. Therefore, although we are concerned about control, steady-state models are usually sufficient for the top-down part. 

Step S1. Define operational objectives (cost J and constraints). 
A systematic approach to plantwide control requires that we first quantify the operational objectives in terms of a scalar cost function J [$/s] that is should be minimized (or equivalently, a scalar profit function, P = -J, that should be maximized). This is usually not very difficult, and typically we have 
J = cost feed + cost utilities (energy) – value products  [$/s]
Note that fixed costs and capital costs are not included, because they are not affected by plant operation on the time scale we consider (around 1 hour). The goal of operation (and of control) is to minimize the cost J, subject to satisfying the operational constraints (g ≤ 0), including safety and environmental constraints. Typical operational constraints are minimum and maximum values on flows, pressures, temperatures and compositions. For example, all flows, pressures and compositions must be non-negative.
Step S2.
 Determine the steady-state optimal operation 
What is the optimal way of operating the process? We should answer this question before designing the control system. For example, we may find that a valve (for example a bypass) should always be closed (active constraint). This valve should then not be used for (stabilizing) control unless we are willing to accept the loss implied by “backing off” from the optimal operating conditions.

To determine the steady-state optimal operation, we first need to obtain a steady-state model. Then we need to identify degrees of freedom and expected disturbances, and perform optimizations for the expected disturbances:

(a) Identify steady-state degrees of freedom (u). To optimize the process, we first need to identify the of steady-state degrees of freedom (u) as has already been discussed. Actually, it is the number of u’s which is important, because it is does not really matter which variables we include in u, as long as they make up an independent set.
(b) Identify important disturbances (d) and their expected range. Next, we must identify the important disturbances (d) and their expected range for future operation. The most important disturbances are usually related to the feedrate (throughput) and feed composition, and external variables such as temperature and pressure of the surroundings. We should also include as disturbances possible changes in specifications and active constraints (such as purity specifications or capacity constraints) and changes in parameters (such as equilibrium constants, rate constants and efficiencies). Finally, we need to include as “disturbances”, the expected changes in prices of products, feeds and energy.

(c) Optimize the operation for the expected disturbances.  Here we specify the disturbances (d) and vary the degrees of freedom (uopt(d)) in order to minimize the cost (J), while satisfying the constraints. The main objective is to find the constraints regions (sets of active constraints) and the optimal nominal setpoints in each region.

Mathematically, the steady-state optimization problem can be formulated as

minu  J(u,x,d)

subject to:


Model equations: 
f(u,x,d) = 0


Operational constraints: 
g(u,x,d) ≤ 0

Here u are the steady-state degrees of freedom, d are the disturbances, x are internal variables (states), f=0 represent the mathematical model equations and possible equality constraints (like a given feed flow), and g≤ 0 represent the operational constraints (like a maximum or nonnegative flow, or a product composition constraint). The process model, f=0, is often represented indirectly in terms of a commercial software package (process simulator), such as Aspen or Hysis/Unisim. This usually results in a large, nonlinear equation set which often has poor numerical properties for optimization.  

A major objective of the optimization is to find the expected regions of active constraints. Together with obtaining the model, the optimization step S2 is often the most time consuming step in the entire plantwide control procedure. In many cases, the model may not be available or one does not have time to perform the optimization. In such case a good engineer can often perform a simplified version of step S1-S3 by using process insight to identify the expected active constraints and possible “self-optimizing” controlled variables (CV1) for the remaining unconstrained degrees of freedom. 


An important point is that one cannot expect to find a single control structure that it is optimal because the set of active constraints will change depending on disturbances and economic conditions (prices). However, one should prepare the control system for the future, by using offline analysis and optimization to identify regions of active constraints. The optimally active constraints will vary depending on disturbances (feed composition, outdoor temperature, product specifications) and market conditions (prices). 

Note here that there generally are two main modes of operation depending on market conditions (Rijnsdorp, 1991):

Mode I. Given throughput (buyers market). This is usually the “nominal” mode for which the control system is originally set up to handle. Usually, it corresponds to a “maximize efficiency” situation where there is some “trade-off” between utility (energy) consumption and recovery of valuable product, corresponding to an unconstrained optimum. 

Mode II. Maximum throughput (sellers market). When the product prices are sufficiently high compared to the prices on raw materials (feeds) and utilities (energy), it is optimal to increase the throughput as much as possible, although the efficiency will usually drop. However, as one increases the federate, one will usually encounter constraints in various units, until eventually we reach the bottleneck where a further increase is infeasible.   
Step S3.
Select “economic” (primary) controlled variables, CV1 (Decision 1):
We are here concerned with implementing the optimal operation points found in Step S2 in a robust and simple manner. To make use of all the economic degrees of freedom (inputs u), we need to identify as many economic controlled variables (CV1) as we have inputs (u). In short, the issue is: What should we control?  

For economic optimal operation, the rules for selecting primary controlled variables (CV1) are  


CV1-rule 1. Control active constraints

CV1-rule 2. For the remaining unconstrained degrees of freedom: Control “self-optimizing” variables.

One needs to find one CV1 for each steady-state degree of freedom (u). Here “self-optimizing” variables are defined as variables for which one can achieve close-to-optimal operation with constant setpoints, even when there are disturbances (Skogestad, 2000). Active constraints may be viewed as “self-optimizing” variables, because operation is optimized by keeping their values constant, but normally we refer to the unconstrained self-optimizing variables because they are much harder to find.

The two rules are discussed in detail below, but let us first mention the main steps involved for selecting the unconstrained “self-optimizing” variables (CV1-rule 2):  

(a) Identify candidate  measurements (y) and their expected measurement error (ny).               We must first identify all the candidate measurements (y) together with their expected static measurement error (ny) . In general, we should in the set y also include the inputs (e.g., flowrates), including the ones used to control active constraints.

(b) Select primary (economic) controlled variables CV1 = Hy (Decision 1) (see Figure 2). If possible, we want to control single measurements, because it is simpler, and in this case H is a selection matrix. More generally, we may control measurement combinations, and in this case H is “full” matrix.  In general, step (b) must be repeated for each constraint region. To reduce the need for switching between regions one may consider using the same CV1s in several regions, but this is nonoptimal and may even lead to infeasibility.   

CV1-rule 1. Control active constraints.  
In general, the obvious controlled variables to keep constant are the active constraints. The active constraints come out of the analysis in step S2 or may in some cases be identified based on physical insight. The active constraints could be input constraints (in the set u) or output constraints.
Input constraints are usually trivial to implement; we just set the input at its optimal minimum or maximum, so no control is really needed. For example, if we are operating a very old car then optimal operation (defined as minimum driving time, J=T) may be achieved with the gas pedal at its maximum position.
For output constraints, we need a controller, and a simple single-loop feedback controller is often sufficient. For example, if we have a better car then the maximum speed limit (say 80 km/h) is likely an active constraint and should be selected as the controlled variable (CV1). To control this, we may use a “cruise controller” (automatic control) which adjusts the engine power to keep the car close a given setpoint. In this case, the speed limit is a hard constraint and we need to back off from the speed limit (say to a setpoint of 75 km/h) to guarantee feasibility if there is a steady-state measurement error (ny) or a dynamic control error. In general, we want to minimize the backoff because any backoff results in a loss (i.e., a larger J=T) which can never be recovered.

The backoff is the “safety margin” from the active constraint and is defined as the difference between the constraint value and the chosen setpoint 

Backoff = |Constraint – Setpoint|

In the car driving example, backoff = 5 km/h. 

The active constraints should be selected as CVs because the optimum is not “flat” with respect to these variables.  Thus, there is often a significant economic penalty if we “back off” from an active constraint, so tight control of the active constraints is usually desired. If a constrained optimization method is used for the optimization, then we can quantify the loss by using the Lagrange multiplier λ associated with the constraint. We have that

Loss = λ ∙ backoff

We see that variables with a large Lagrange multiplier | λ| should have a small backoff to reduce the economic loss.

How large backoff is required? For input (valve) constraints, we usually need no backoff, unless we choose to use the input for stabilization in the lower regulatory (stabilizing) layer because then we need some range to use it for control. For output constraints, we have two cases
· Soft output constraints (only average value matters): Backoff = measurement error (bias ny) 

· Hard output constraints (must be satisfied at all times): Backoff = measurement error (bias ny) + control error (dynamic)

To reduce the backoff, we need accurate measurements of the output constraints, and for hard output constraints we also need tight control with a small dynamic control error. For hard output constraints, we have the “squeeze and shift rule”: By squeezing the output variation, we can shift the setpoint closer to its limit (i.e., reduce the backoff). For soft output constraints, only the steady-state control error matters, which will be zero if the controller has integral action. 

CV1-rule 2. Control “self-optimizing” variable which when held constant keep the operation close to the optimum in spite of disturbances. 
It is usually simple to identify and control the active constraints. The more difficult question is: For what we should use the remaining unconstrained degrees of freedom? Does it even make a difference what we control? The answer is “yes”! 
As an example, consider optimal operation of a marathon runner where the objective is adjust the power (u) to minimize the time (J=T). This is an unconstrained problem; one cannot simply run at maximum (u=umax) as for a sprinter (100 m runner). A simple policy is constant speed (c1=speed), but it not optimal if there are “disturbances” (d) caused by wind or hilly terrain.  A better choice is to run with constant heart rate (c2=pulse), which is easy to measure with a pulse clock. With a constant heart rate (c2=pulse=constant), the speed (c1) will automatically increase when we run downhill, as one would expect for optimal operation, so heart rate (c2) is clearly a better “self-optimizing” variable than speed (c1). One problem with the feedback is that it also introduces a measurement error (noise) ny which may also contribute to the loss, see Figure 2.
In the following let CV1= c. There are two main possibilities for selecting self-optimizing c = Hy:
1. Select single measurements as CV1’s (H is a selection matrix with a single 1 in each row/column and the rest of the elements 0). 
2. Use measurements combinations as CV1’s. Here, methods exist to find optimal linear combinations c =H y, where H is a “full” combination matrix. 
. 
In summary, the problem at hand is to choose the matrix H such that keeping the controlled variables c=Hy constant (at a given setpoint  cs) gives close-to-optimal operation in spite of the presence of disturbances d (which shift the optimum), and measurement errors ny (which gives an offset from the optimum).

Qualitative approaches. Mainly for the case where we select to control single measurements (c=y),  the following four requirements (Skogestad, 2000) are useful for identifying a “good” c:

Requirement 1.  The optimal value of c is insensitive to disturbances

· Comment: This means that dcopt/dd should be small. Note that this is not saying that the sensitivity of c to disturbances (dc/dd) should be small. Of course, dc/dd should not be too large, but otherwise control of c is difficult, but on the other hand, dc/dd should not be too small (e.g., dc/dd = 0) because then the disturbance cannot be detected and corrected fore by controlling the variables c. In summary, we are not really concerned about dc/dd, but we do want dcopt/dd to be small.

Requirement 2.  The variable c t is easy to measure and control accurately 

Requirement 3.  The value of c is sensitive to changes in the manipulated variable, u; that is, the gain, G, from u to c is large (so that even a large error in controlled variable, c, results in only a small variation in u.)  Equivalently, the optimum should be ‘flat’ with respect to the variable, c.
Requirement 4.  For cases with two or more controlled variables c, the selected variables should not be closely correlated.

All four requirements should be satisfied.  For example, for the operation of a marathon runner, the heart rate may be a good “self-optimizing” controlled variable (to keep at constant setpoint).  Let us check this against the four requirements.  The optimal heart rate is weakly dependent on the disturbances (requirement 1) and the heart rate is easy to measure (requirement 2).  The heart rate is relatively sensitive to changes in power input (requirement 3).  Requirement 4 does not apply since this is a problem with only one unconstrained input (the power).

Quantitative approaches. Are there any systematic methods for finding the matrix H, that is, to identify self-optimizing CV1’s associated with the unconstrained degrees of freedom? Yes, and there are two main approaches
1. “Brute force” approach. Given a set of controlled variables CV1=c=Hy, one computes the cost J(c,d) when we keep c constant (c = cs + Hny) for various disturbances (d) and measurement errors (ny). In practise, this is done by running a large number of steady-state simulations to try to cover the expected future operation. Typically, expected extreme values in the parameter space (for d and ny) are used to compute the cost for alternative choice for the controlled variables (matrix H).  The advantage with this method is simple to understand and apply and it works also for nonlinear plants and even for changes in active constraint. Only one nominal optimization is required to find the setpoints. The main disadvantage with the method is that the analysis for each H is generally time consuming and one cannot guarantee that all important cases are covered. In addition, there exist an infinite number of choices for H so one can never guarantee that the best c’s are found.

2. “Local” approaches based on a quadratic approximation of the cost. This is discussed in more detail in Alstad et al. (2009) and references therein. The main local approaches are:
2A. Maximum gain rule. In words, the  maximum gain rule, which essentially is a quantitative version of Requirements 1 and 3 given above, says that one should control  “sensitive” variables, with a large scaled gain from the inputs (u) to c=Hy. This rule is good for pre-screening and also yields good insight

2B. Nullspace method. This method yields optimal measurement combinations for the case with no noise, ny=0. By simulations one must first obtain the optimal measurement sensitivity, 

F = dyopt/dd. 
Each column in F expresses the optimal change in the y’s when the independent variable (u) is adjusted so that the system remains optimal with respect to the disturbance d. If we have a model of the process, then it is in principle straightforward to obtain F numerically. Then, assuming that we have at least as many (independent) measurements y as the sum of the number of (independent) inputs (u) and disturbances (d), the optimal is to select c=Hy such that 

HF=0 
Note that H is a nonsquare matrix, so HF=0 does not require that H=0 (which is a trivial uninteresting solution), but rather that H is in the nullspace of FT.

2C. Exact local method (loss method). This extends the nullspace method to the case with noise and to any number of measurements, for details see Alstad et al. (2009). 
The use of these methods is discussed in many papers by Skogestad and coworkers, for example, see Downs and Skogestad (2011) for some practical applications of the nullspace method.

Regions and switching. Note that new self-optimizing variables must be identified (offline) for each region, and that switching of controlled variables is required as one encounters a new region (online). In practise, it is easy to identify when to switch when one encounters a constraint. It seems less obvious when to switch out of a constraint, but actually one simply has to monitor the value of the unconstrained CVs from the neighbouring regions and switch out of the constraint region when the unconstrained CV reaches its setpoint.  

Example. As an example, consider a recycle process where it is optimal to keep the inert fraction in the purge at 5% using the purge flow as a degree of freedom (unconstrained optimum). However, during operation there may be a disturbance (e.g. increase in feed rate) so that the recycle compressor reaches its maximum capacity. The recycle compressor was used to control pressure, and since it is still optimal to control pressure, the purge flow has to take over this task, This means that one has to give up controlling the inert fraction, which will drop below 5%. In summary, we have gone from an unconstrained operating region (I) where we control the inert fraction to a constrained region (II) where the compressor is at maximum load. In region II, we keep the recycle flow at its maximum. How do we know when to switch back from region II to region I? It is simple: We monitor the inert fraction, and when it reaches 5% we switch back to controlling it (region I). 

In general, one would like to simplify the control structure and reduce need for switching. This may require using a suboptimal CV1 in some regions of active constraints. In this case the setpoint for CV1 may not be its nominally optimal value (which is the normal choice), but rather a “robust setpoint” which reduces the loss when we are outside the nominal constraint region. 
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Figure 3. Radiation rule: Local-consistency requires a radiating inventory control around a fixed flow (TPM). (Price and Georgakis, 1993). (Aske and Skogestad, 2009).

Step S4.  Select the location of throughput manipulator  (TPM) (Decision 3)
The main purpose of a process plant is to transform feedstocks into more valuable products and this involves moving mass through the plant. The amount of mass moved through the plant, as expressed by the feedrate or product rate, is determined by specifying one degree of freedom, which we call the throughput manipulator (TPM). The TPM or process “gas pedal” is usually a flow but not always, and it is usually set by the operator (manual control).  
Definition (Aske and Skogestad, 2009). A TPM is a degree of freedom that affects the network ﬂow and which is not directly or indirectly determined by the control of the individual units, including their inventory control. 
Some plants, e.g., with parallel units, may have more than one TPM. The TPM has traditionally been placed at the feed to the plant. One important reason is that most of the control structure decisions are done at the design stage (before the plant is build) where the feed rate is considered fixed, and there is little thought about the future operation of the plant where it is likely that one wants to maximize the feed (throughput). However, as discussed in the following, the location of the TPM is an important decision that links the top-down and bottom-up part if the procedure.
Where should we locate the TPM (“gas pedal”) for the process? In principle, the TPM may be located anywhere in the plant, although the operators often prefer to have it at the feed, so this will be the default choice. Note that from a purely steady-state point of view, the location of the TPM does not matter, but it is important dynamically. First, it may affect the control performance (backoff  from active constraints), and second, as soon as the TPM has been placed, the radiation rule (Figure 3) determines the structure of the regulatory layer. 

There are two main concerns when placing the throughput manipulator (TPM):

1. Economics. The location has an important effect of economics because of the possible backoff if active constraints are not tightly controlled. In particular, the economic loss may be large for the maximum throughput case if the bottleneck unit is not tightly controlled. In this case, the TPM should be located close to the bottleneck to reduce the backoff from the active constraint that has the largest effect on the production rate.

2. Structure of regulatory control system. Because of the radiation rule (Price and Georgakis, 1993), the location of the throughput manipulator has a profound influence on the structure of the regulatory control structure of the entire plant, see Figure 3. 
An underlying assumption for the radiation rule, is that we want “local consistency” of the inventory control system (Aske and Skogestad, 2009). In theory, one may not follow the radiation rule by allowing for “long” inventory loops, but this is not common for obvious operational reasons, including risk of emptying or overfilling tanks, startup and tuning and increased complexity. 
Most plants have one “gas pedal” (TPM), but there may be more than one TPM for plants with parallel units, splits and multiple alternative feeds or products.  Note that the feeds usually need to be set in a fixed ratio, so adding a feed usually does not give an additional TPM. For example, for the reaction A+B→ C, we need to have the molar ratio FA/FB close to 1 to have good operation with small loss of reactants, so there is only one TPM even if there are two feeds, FA and FB.
If we only consider a part of the process, then this part may have no TPM.  Instead, there will be a given flow, typically a feed or product, that acts as a disturbance on this part process, and the control system must be set up to handle this disturbance. One may also view this as having the TPM at a fixed location. For example, for a utility plant the product rate may be given and in an effluent treatment plant the feed rate may be given. On the other hand, note that a closed recycle system, like the amine recycle in a CO2 gas treatment plant, introduces an extra TPM.
 Moving the TPM during operation. Preferably, the TPM should be in a fixed location. First, it makes it simpler for the operators, who usually are the ones who adjust the TPM, and, second, it avoids switching of the inventory structure, which should be “radiating” around the TPM (Figure 3). However, since the TPM in principle may be located anywhere, it is tempting to use its location as a degree of freedom and move it to improve control performance and reduce backoff as disturbances cause the optimal constraints to change. The following rule is proposed (Skogestad, 2004):

· To get tight control of the new active constraint and achieve simple switching, locate the TPM "close" to the next active constraint (such that the TPM can be used achieve tight control of the constraint when it becomes active).

The rule is based on economic considerations with the aim of simplifying the required switching when the next capacity constraint becomes active. However, moving the TPM may require switching regulatory loops, which is usually not desirable. 
Step S5. Select the structure of regulatory (stabilizing) control layer 
The main purpose of the regulatory layer is to “stabilize” the plant, preferably using a simple control structure with single-loop PID controllers.  “Stabilize” here means that the process does not “drift” too far away from acceptable operation when there are disturbances.  Think about learning to ride a bicycle; before attempting to do more high-level tasks such as following the road from A to B, one needs to stabilize the bicycle.

The regulatory layer is the fastest control layer, and is therefore also used to control variables that require fast and tight control, like economically important active constraints. In addition, the regulatory layer should follow the setpoints given by the “supervisory layer”. 
As discussed in more detail below, the main decisions is Step S5 are to (a) select controlled variables (CV2) (Decision 2) and (b) to select select inputs (valves) and “pairings” for controlling CV2 (Decision 4). Interestingly, decision (a) on selecting CV2 can often be based mostly on steady-state arguments, whereas dynamic issues are the primary concern when selecting inputs (valves) and pairings.

Note that we do not ”use up” any degrees of freedom in the regulatory control layer because the setpoints CV2s are left as manipulated variables (MVs) for the supervisory layer, see Figure 2. Thus, by allowing for a cascade loops, the stabilization layer may in theory be designed independently of the supervisory (economic) control layer. However, when closing a stabilizing loop, we do “use up” some of the time window as given by the close-loop response time (bandwidth) of the stabilizing loop. In addition, cascade loops add complexity. Therefore, we would like simplify and reduce the need for cascade loops.     

Step S5(a) Select “stabilizing” controlled variables CV2 (Decision 2). First of all, we should “stabilize” the process by controlling “drifting” variables such as inventories (level and pressure), reactor temperature, and temperature profile in distillation column. This simplifies the supervisory (economic) control tasks, by providing for local /fast disturbance rejection and reducing nonlinearity in the model. Secondly, we should in CV2 for the regulatory layer include active constraints (CV1) that require tight control, typically, hard output constraints. This will reduce the required backoff (recall the “squeeze and shift” rule). On the other hand, it is usually not necessary with tight control of unconstrained CV1 variables because the optimum is usually relatively flat, so tight control is not required. 
To select systematically the stabilizing CV2 = H2 y, one should consider the behavior of the “stabilized” or “partially controlled” plant with the variables CV2 being controlled (see Figure 2), taking into account the two main objectives of the regulatory layer:
· Local disturbance rejection (Indirect control of primary variables CV1): With the variables CV2 controlled, the effect of the disturbances on the primary variables CV1 should be small. This is to get “fast” control of the variables CV1, which may be important to the reduce the control error (and thus the backoff) for some variables, like active output constraints.

· Stabilization (Minimize state drift): More generally, the objective is to minimize the effect of the disturbances on the internal variables (states) x. One reason is to keep the process in the “linear region” close to the nominal steady-state and avoid that the process drifts into a region of operation where it is difficult to recover. The advantage of considering some measure of all the states x is the regulatory control system is then not tied to a particular control objective (CV1) which may change with time, depending on disturbances and prices.
When considering disturbance rejection and stabilization in the regulatory layer, it is the behavior at the closed-loop time constant of the above supervisory layer which of main interest. Since the supervisor layer is usually relatively slow, it is again (as with the selection of CV1) often sufficient to consider the steady-state behavior when selecting CV2 (however, when selecting the corresponding valves/pairings in Step 5b, dynamics are the key issue).  

Step S5(b) Select inputs (valve) for controlling CV2 (Decision 4). Next, we need to find the inputs (valves) that should be used to control CV2. Normally, single-loop (decentralized) controllers are used in the regulatory layer, so the objective is to identify pairings. The main rule is to “pair close” so that the dynamic controllability is good with a small effective delay and so that the interactions between the loops are small. In addition, the following should be taken into account:

· We want “local consistency” for the inventory control (Aske and Skogestad, 2009). This implies that the inventory control system is radiating around the given flow (Figure 3).
· We want tight control of important active constraints (to avoid backoff). 

· We should avoid selecting as MVs in the regulatory layer, variables that may optimally saturate (steady state), because this would require either reassignment of regulatory loop (complication penalty), or backoff for the MV variable (economic penalty)
· Reassignments (logic) in the regulatory layer should be avoided.
In practise, in order to make the regulatory selection (step S5) more manageable, one may divide it into Step S5.1: Structure of inventory control layer (closely related to Step S4), followed by Step S5.2: Structure of remaining regulatory control system..
Preferably, the regulatory layer should be independent of the economic control objectives (regions of steady-state active constraints), which may change depending on disturbances, prices and market conditions. Thus, in principle, the choices for CV1 (Decision 1) and CV2 (Decision 2) are independent of each other, although, in order to simplify and reduce the need for cascade loops, it is an advantage if we have CV1=CV2, at least for some variables.
Step 6. Select structure of supervisory control layer. 
The supervisory or ”advanced” control layer has three main tasks:
Task 1. Control the primary (economic) controlled variables (CV1) using as MVs the setpoints to the regulatory layer plus any remaining (“unused”) valves (see Figure 2). 

· Interactions may be quite significant at this time scale, so multivariable control (typically, MPC) should be considered (see below).

· The supervisory layer may use additional “dynamic” degrees of freedom, including level setpoints, to improve the dynamic response (at steady state these extra variables may be “reset” to their ideal resting values). 

· The supervisory layer may also make use of measured disturbances (feedforward control).

· Estimators: If the primary controlled variables (CV1) are not measured, typically compositions or other quality variables, then “soft sensors” based on other available measurements may be used for their estimation. The “soft sensors” are usually static, although dynamic state estimators (Kalman Filter, Moving horizon estimation) may be used to improve the performance. However, these are not common in process control, because the supervisory layer is usually rather slow. 

Task 2. Supervise the performance of the regulatory layer. The supervisory layer should take action to avoid saturation of MVs used for regulatory control. If an MV in the regulatory layer saturates, then one looses control of the corresponding CV2, resulting in a large “drift” away from the desired operating point. 

Task 3. Switch controlled variables and control strategies when disturbances or price changes cause the process to enter a new region of active constraints. 

Implementation. There are two main alternatives in terms of the controller used in the supervisory layer: 

Alternative 1. “Advanced single loop control” = PID control with additional “fixes” such as feedforward (ratio), decouplers, logic, selectors and split range control (in many cases some of these tasks are moved down to the regulatory layer). With single-loop control an important decision is to select pairings. Note that the issue of finding the right pairings is more difficult for the supervisory layer because the interactions are usually much stronger at slower time scales, so measures such as the relative gain array (RGA) may be helpful.

Alternative 2. Multivariable control (usually MPC). Although switching and logic can be reduced when using MPC, it cannot generally be completely avoided. In general, it may be necessary to change the performance objective of the MPC controllers as we switch regions. 

Step 7.
Structure of (and need for) optimization layer (RTO) ( Related to Decision 1):

The task of the RTO layer is to update the setpoints for CV1, and to detect changes in the active constraint regions that require switching set set of controlled varieables (CV1).
In most cases, with a “self-optimizing” choice for the primary controlled variables, the benefits of the RTO layer are too low to justify the costs of creating and sustaining the detailed steady-state model which is usually required for RTO. In addition, the numerical issues related to optimization are very hard, and even offline optimization is difficult.

5. DISCUSSION

The chapter has outlined the plantwide control procedure of Skogestad (2004). It is reasonable systematic, but still far from the level where it can be automated. In general, the involvement of the engineer is a key and iteration in the procedure is required. One reason why a completely automated (algorithmic) procedure is not suggested, and probably not desirable, is that this would require a much more detailed specification of the problem. First, the objectives of the regulatory layer would need to clearly defined. In practise, such specifications are usually established in an iterative fashion, as needed. In addition, an automated procedure would require a detailed steady-state and dynamic model. Furthermore, since “simplicity of the control layer” is an objective, it would require a formal def ignition of what is meant by simplicity. This does not mean that one should not continue working towards a more automated or detailed procedure, but just that one should be aware of its “costs” in terms of the problem definition.

The plantwide procedure has been applied to many case studies, mostly simulation studies, but they have not been included in this chapter to save space. Some relevant studies are found in Skogestad (2000) (distillation),  Larsson et al. (2001) (Tennessee Eastman process),  Larsson et al. (2003) (recycle process), Jensen and Skogestad (2007) (refrigeration process), Arujo et al.  (2007 a,b) (HDA process), Araujo and Skogestad (2008) (ammonia plant), Downs and Skogestad (2011) (Eastman extraction plant with recycle, parallel units), Panahi and Skogestad (2011) (CO2 capture plant), and Jagtap et al. (2011) (recycle process). 
A discussion of and comparison with the plantwide control procedure of Luyben (1988?) is given in Skogestad (2011). 

6. CONCLUSION

Control structure design deals with the structural decisions of the control system, including what to control and how to pair the variables to form control loops. Although these are very important issues, these decisions are in most cases made in an ad hoc fashion, based on experience and engineering insight, without considering the details of each problem. In the paper, a systematic

procedure for control structure design for complete chemical plants (plantwide control) is presented. It starts with carefully defining the operational and economic objectives, and the degrees of freedom available to fulfil them. Then the operation is optimized for expected future disturbances to identify constraint regions. In each region, one should control the active constraints and identify “self-optimizing” variables for the remaining unconstrained degrees of freedom. Following the decision on where to locate the throughput manipulator (TPM), one needs to perform a bottom-up analysis to determine secondary controlled variables and structure of control system (pairing).
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