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a  b  s  t  r  a  c  t

In  this  paper  we  extend  the  “nullspace  method”  by [1]  to cover  changes  in  active  set.  The  extension  is
based  on  recent  results  from  explicit  model  predictive  control  by [3]. The  nullspace  method  is  a method
for  selecting  controlled  variables,  assuming  that  the  set  of active  constraints  does  not  change.  With  the
extension  presented  here,  we  show  that  by  applying  the  nullspace  method  for  several  different  regions,
vailable online 12 April 2012
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where  the  regions  are  found  by  a parametric  program,  we can  use  the  value  of  the  controlled  variables
for  each  region  to decide  when  to switch  regions.

The  proposed  method  is  demonstrated  on  a simple  model  of  an  ammonia  production  plant,  and  the
results  are comparable  to  real-time  optimization.

© 2012 Elsevier Ltd. All rights reserved.
. Introduction

In this paper we extend some recent results on implementation
f quadratic programs to cover changes in the active set. The work is
n the field of “self-optimizing control”, where the focus is to select
he right variables c to control, such that acceptable operation under
ll conditions is achieved with constant setpoints for the controlled
ariables [17,8].

A more direct approach for ensuring optimal operation is
eal-time optimization (RTO) [12]. Using RTO, the optimal values
setpoints) for the controlled variables c are computed online based
n online measurements, and a model of the process [2].  In control
f chemical processes, an hierarchal structure [4] is often preferred.
TO is then used to calculate setpoints cs for the controlled variables

 for the supervisory control layer. In the supervisory layer, model
redictive control (MPC) [14,13] is often used.

A typical hierarchical structure is outlined in Fig. 1. In this paper,
e assume that regulatory control is already implemented, and the

ocus is on the interaction between the optimizer and the supervi-
ory control.

In the RTO framework, the degrees of freedom in the mea-
urement selection or combination matrix H is not exploited as

n optimization variable, while for “self-optimizing control” find-
ng a good H is the main focus. The two approaches are therefore
omplementary. In this paper, H is a constant combination matrix.

∗ Corresponding author. Tel.: +47 735 94154; fax: +47 735 94080.
E-mail addresses: henman@statoil.com (H. Manum), skoge@ntnu.no

S.  Skogestad).

959-1524/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
oi:10.1016/j.jprocont.2012.02.015
One can identify at least four ways of choosing the combination
matrix H for the controlled variables c = Hy:

1. Use c = u0, i.e. open loop control. This is not expected to work
very well unless the static optimization is updated frequently.

2. Use c = y0, where y0 are the presently used controlled variables
in the supervisory layer. Also this choice is not expected to give
a good performance unless the static optimization problem is
resolved frequently.

3. Use c = Hy,  where y is all available measurements, including u0
and y0. If H is chosen carefully, this choice is expected to give bet-
ter performance between samples of the RTO than the choices
above. In particular, H should be chosen such that even though
we have large disturbances, the optimal values cs of the con-
trolled variables c does not change much. Such a choice of H may
be beneficial in at least two  ways. First, since RTO is in general a
non-convex problem, the starting values for the optimization are
important, and thus if the optimal values do not change much,
such a choice of c should aid the success of a RTO implementation.
Second, cs can be updated less frequent and the system will work
better if the RTO is out of service. In the ideal “self-optimizing”
case, one identifies controlled variables such that the RTO layer
may  be eliminated. During the last decade several methods for

finding “good” controlled variables have been developed, such
as the maximum gain rule [7],  exact local method [6,2], and the
nullspace method [1].

4.  Even more general; one may  change the controlled variables c
as operating conditions change. This is equivalent to letting the
map  H be a function of the operating conditions.

dx.doi.org/10.1016/j.jprocont.2012.02.015
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
mailto:henman@statoil.com
mailto:skoge@ntnu.no
dx.doi.org/10.1016/j.jprocont.2012.02.015
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n this paper, we  consider the last approach and develop a method
or changing the combination matrix H when changes in the active
et occur. The results are exact for quadratic problems, but an exam-
le of an ammonia production plant shows that the method may
e applicable also to more general processes by local linearization.

The approach we use is to exploit a link between self-
ptimizing control and linear-quadratic explicit MPC  [11]. The link
s exact for quadratic approximations of the self-optimizing con-
rol problem, because then the static optimal operation problem of
elf-optimizing control and explicit MPC  have the same equation
tructure.

Using parametric programming [9] and recent results from
xplicit MPC  [3] on implementation of the optimal solution, we
how that combination matrices Hi, found by using the nullspace
ethod, can be used to track changes in the active set using only

nformation about the measured outputs. In the multivariable case,
 scalar function of the outputs is enough to track changes in the
ctive set. We  have already proposed similar results earlier, see
10,11], where we used controlled variables (invariants) from the
ullspace method to track changes in the optimal active set. How-
ver, we proposed to keep track of the whole vector c = Hy ∈ R

nc ,
here nc is the number of controlled variables. Baoticc̀  et al. [3]

how that this may  be simplified further by tracking the scalar func-
ion w′Hy (where w is a vector that is found by a specific off-line
lgorithm). One of the contributions of this paper is therefore to
ransfer these results to the field of self-optimizing control.

The rest of the paper is organized as follows: First, we review
heory from self-optimizing control and implementation of solu-
ions to quadratic optimization problems using descriptor functions.
hen we show how continuous piecewise-affine (PWA) descrip-
or functions from measurements can be constructed by using
he nullspace method. We  then discuss how to match constraints
etween measured constraints and constraints in the model. This
onstraint matching may  in some cases have a significant effect on
he economical operation of a given plant. Thereafter we collect our
ndings in an algorithm for design of a control structure that han-
les changes in the active set, and finally we show how this method
an be used on an example of an ammonia production plant.

. Background

.1. Quadratic approximation to RTO

We consider the steady-state optimal operation problem

min
x,u0

J0(x, u0, d0)

s.t. f0(x, u0, d0) = 0
g0(x, u0, d0) ≥ 0

(1)

here x ∈ R
nx are states, u0 ∈ R

nu0 are steady state degrees of free-
om and d0 ∈ R

nd0 are disturbances. Using the model equations f0(x,
0, d0) = 0 to formally eliminate the internal state x, we  can rewrite
roblem (1) on the form

min
u0

J(u0, d0)

s.t. g(u0, d0) ≥ 0
(2)

.2. Unconstrained case

Assume that for the nominal disturbance d0, the optimal input
∗ is such that none of the inequality constraints g(u∗ , d0) ≥ 0 are
0 0
xactly equal to zero (i.e., they are not active). Further, introduce
he following substitutions:

 = u0 − u∗0 (3)
Fig. 1. Interconnection between RTO and supervisory control layer. Self-optimizing
control focuses on the measurement selection or combination matrix H.

d = d0 − d0 (4)

Mu = −∇u0 g|
u∗

0
,d0

(5)

Md = ∇d0
g|

u∗
0

,d0
(6)

M = g(u∗0, d0) (7)

By a quadratic expansion of the objective function around the nomi-
nal optimum (∇J(u∗0, d0) = 0) we can obtain the following quadratic
approximation to problem (2),  which we will use throughout the
paper:

min
u

1
2

[
u
d

]′ [
Juu Jud

J′
ud

Jdd

] [
u
d

]
s.t. Muu ≤ M + Mdd

(8)

Here, the notation Juu means the second derivative of the function
J with respect to the inputs u, and so on.

2.3. Extension to constrained case

The case of a nominally constrained optimum can also be posed
on the form of problem (8),  which we will now demonstrate. The
only difference from the unconstrained case is that we do a change
of variables to “eliminate” the effect of a non-zero first derivative
Ju at the optimum.

First, we define a Lagrangian as:

L(u0, d0, �) = J(u0, d0) − �′g(u0, d0) (9)

where � are the Lagrange multipliers. Then, we make a quadratic
approximation of the nonlinear program (2) around the optimal
point (u∗0, �∗) as [15,20]:

min
u0
∇u0 J|

u∗
0

,d0︸ ︷︷  ︸
Ju

(u0 − u∗0)+1
2

[
u0 − u∗0

d0 − d0

]′ [Lu0u0 Lu0d0

L′u0d0
Ld0d0

]  [
u0 − u∗0

d0 − d0

]

s.t. g(u∗0, d0) + ∇[
u0

d0

]g|
u∗

0
,d0

[
u0 − u∗0

d0 − d0

]
≥ 0

(10)
where we  have cancelled the term ∇Jd0
(d0 − d0) which cannot be

affected by the degrees of freedom u0. All first and second deriva-
tives are evaluated at the nominal optimum, (u∗, d0). Under the
assumption that Lu0u0 is positive definite (second-order optimality
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onditions) we introduce the following change of variables for the
egrees of freedom u0:

 = u0 − u∗0 + L−1
u0u0

Ju (11)

ote that this definition of u is not in conflict with definition (3)
sed for the unconstrained case, because for an unconstrained min-

mum Ju = 0 and the two definitions coincide. Now, by defining Juu,
ud and Jdd as

Juu Jud

Jud Jdd

Luu Lud

Lud Ldd

,

(12)

he nominally constrained case can be written exactly on the
orm of problem (8).  Note again the analogy to the unconstrained
ase: for the unconstrained optimum the Hessian of the quadratic
pproximation is equal to the Hessian of the objective function at
he nominal operating point, while for the constrained case the
essian of the quadratic approximation is equal to the Hessian of

he Lagrange function of the original problem at the nominal point.
urther, note that the unconstrained case is a special case of the
onstrained case and is included here only to ease the presentation
f the material, and because in the example we  consider in this
aper, the nominal optimum happens to be unconstrained.

emark 1. The matrix Jdd is not needed and may  be set to zero.

.4. Nullspace method

The nullspace method by [1] deals with the optimal selection of
inear measurement combinations as controlled variables, c = Hy.
n a recent paper by the same authors [2],  their results are inter-
reted more generally as deriving linear invariants for quadratic
ptimization problems. More specifically, a key result is the fol-
owing theorem:

heorem 1 (Linear invariants for quadratic optimization problems
2]). Consider an unconstrained quadratic optimization problem in
he variables u ∈ R

nu , parameterized in d ∈ R
nd :

∗(d) = min
u

{
J(u, d) =

[
u

d

]′ [
Juu Jud

J′
ud

Jdd

]  [
u

d

]}
. (13)

n addition, there are “measurement” variables y = Gyu + Gy
d
d. If there

xists ny ≥ nu + nd independent measurements (where “independent”
eans that the matrix G̃y = [Gy Gy

d
] has full column rank), then the

ptimal solution to (13) has the property that there exists nc = nu linear
ariable combinations (constraints) c = Hy that are invariant to the
isturbances d, meaning that their optimal value (c = 0) is independent
f d. Here, H may be found from the nullspace method using H = null(F′),
here

 = −(GyJ−1
uu Jud − Gy

d
). (14)

.5. Implementation of solution to parametric quadratic
rograms

In this section, we follow [3] unless otherwise noted. This

mplies that all theorems, lemmas, algorithms and definitions are
aken from the reference unless otherwise noted. For the reader
amiliar with the results of [3],  this section may  be skipped.

efinition 1. Two polyhedra Pi, Pj ∈ R
nx are called neighboring

olyhedra if their interiors are disjoint and Pi ∩ Pj is (nx− 1)-
imensional (i.e. is a common facet).
parameter x1 2

Fig. 2. A scalar descriptor function over three polyhedra.

Let {Pi}Np
i=1 be a polyhedral partition. For each polyhedron Pi,

denote Ci as the list of all its neighbors,

Ci :=
{

j

∣∣∣∣∣ Pj is a neighbor of Pi,

j  = 1, . . . , Np, j /= i

}
(15)

Throughout the paper we assume that every facet is shared by
only two neighboring polyhedral partitions, i.e. that the facet-to-
facet property [19] holds.

Definition 2 (PWA descriptor function). A scalar continuous real-
valued PWA  function f : Xf 	→ R,

f (x) := fi(x) = A′ix + Bi if x ∈ Pi, (16)

with Ai ∈ R
nx , Bi ∈ R, is called a descriptor function if

Ai /= Aj, ∀j ∈ Ci, i = 1, . . . , Np, (17)

where ∪iPi = Xf ⊂ R
nx , and Ci is the list of neighbors of Pi.

See Fig. 2 for an example of a scalar PWA  descriptor function.
This kind of function can be used to track changes in the optimal
active set. We can do this because the sign of fi(x) − fj(x) changes
only when the point x crosses the separating hyperplane between
Pi and Pj . Thus for all x ∈ Pi, the difference fi(x) − fj(x) has the same
sign.

2.6. Example

In the figure, let f1 = − 2x + 5, f2 = 3, and f3 = 0.5x + 2, where we
note that f1(1) = 3 and f3(2) = 3. Assume that the parameter or dis-
turbance x is in P2 and we want to detect when x crosses into either
P1 or P3 without measuring x itself (but we have measurements
available of f1, f2, f3). We  can do this using the descriptor function

f := fi if x ∈ Pi, i = 1, 2, 3.

For x ∈ P2 we  have that sign(f2− f1) = 1 and sign(f2− f3) = 1. Now, if
either sign(f2− f1) or sign(f2− f3) changes value, we deduce that x
has moved to P1 or P3, respectively.

Definition 3 (Ordering function). Let f(x) be a PWA  descriptor func-
tion on the polyhedral partition {Pi}Np

i=1. An ordering function Oi(x)
is defined as

Oi(x) := [Oi,j(x)]j∈Ci
(18)

where

Oi,j =
{
+1 if fi(x) ≥ fj(x)

−1 if fi(x) < fj(x)
(19)

with i ∈ {1, . . .,  N }, j ∈ C .
p i

Note that for each polyhedral region, the length of the binary
vector-function Oi(x) corresponds to the number of neighbours to
the region.
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heorem 2. Let f(x) be a PWA  descriptor function on the polyhedral
artition {Pi}Np

i=1. Let �i ∈ R
nx be any point in the interior of Pi, and

efine

Si,j := Oi,j(�i)

Si := Oi(�i),
(20)

ith i = 1, . . .,  Np, j ∈ Ci. Then the following holds:

x ∈ int(Pi) ⇔ Oi,j(x) = Si,j ∀j ∈ Ci

⇔ Oi(x) = Si

(21)

Theorem 2 states that the ordering function Oi(x) and the vector
i uniquely characterize Pi. Therefore, to check on-line if the poly-
edral region Pi contains the state x, it is sufficient to compute the
inary vector Oi(x) and compare it to Si.

Vectors Si are calculated off-line for i = 1, . . .,  Np, by comparing
he values of fi(x) and fj(x), ∀j ∈ Ci, in a point that belongs to int(Pi),
or instance, the Chebysev center of Pi.

.7. Locating the current state

lgorithm 1 (Global (Used for initialization and recovery)).
: I = {1, . . . , Np}
: i ← I
: I  = I\{i}, C = Ci

: while C /= ∅ do
: j ← C, C = C\{j}
: Compute Oi,j(x)
: if Oi,j(x) /= Si,j then
: if j /∈ I then
:  goto step 2
0: else
1: i = j and goto step 3
2: end if
3: end if
4: end while

lgorithm 2 (Local).
equire Current region i

1: C = Ci and NotLost = true
2: while NotLost do
3: Compute vector Oi(x)
4: if Oi(x) /= Si then
5: if the difference is at element corresponding to j only then
6:  Set i = j and goto step 1.
7: else
8: Set NotLost = false.
9:  end if
10: end if
11: end while

lgorithm 3 (Main program).
: Run Algorithm 1 Global to find current region i.
:  while System is operational do
: Run Algorithm 2 Local.
: if NotLost = false then
: Run Algorithm 1 Global to find current region i.
:  end if
: end while

Algorithm 1 was proposed by [3] to find the current state x(t) for
xplicit MPC. Here, we extend this method by adding Algorithm 2 as

 “local” algorithm that for the current polyhedral region only mon-

tors the corresponding ordering function (and thus only “looks” at
he neighboring regions). If one element of this vector changes sign,
he algorithm updates the current region to the region correspond-
ng to the element of the vector that changed sign. However, if more
lements changed sign we  deduce that the process did not change
o a neighboring region and we must run Algorithm 1 again. This
ogic is covered in the main program in Algorithm 3.
cess Control 22 (2012) 873– 883

2.8. Finding a scalar PWA  descriptor function

A vector-valued PWA  descriptor function is defined as:

Definition 4 (Vector-valued PWA  descriptor function). A continuous
vector-valued piece-wise affine (PWA) function

m(x) := Aix + Bi if x ∈ Pi (22)

is called a vector-valued PWA  descriptor function if

Ai /= Aj ∀j ∈ Ci, i = 1, . . . , Np, (23)

where Ai ∈ R
s×nx , Bi ∈ R

s, s ∈ N, s ≥ 2, and Ci is the list of neighbors
of Pi.

Next, the following Theorem gives a method for constructing a
scalar PWA  descriptor function from a vector-valued one.

Theorem 3 ([3]). Let m : R
nx 	→ R

s be a vector valued PWA descriptor
function defined over a polyhedral partition {Pi}Np

i=1. Then there exists
a w ∈ R

s such that f (x) := w′m(x) is a PWA  descriptor function over
the same polyhedral partition.

2.9. Algorithm for finding w

For a given vector-valued PWA  descriptor function, we write a
set of vectors ak ∈ R

s, ‖ak ‖ = 1, k = 1, . . .,  Na, by taking one (and only
one) nonzero column from each matrix (Ai − Aj), ∀j ∈ Ci, i = 1, . . .,  Np.
Here, Na : =

∑
i|Ci|/2, and |Ci| denotes the cardinality of set Ci. The

vector w ∈ R
s satisfying the set of equations w′ak /= 0, k = 1, . . .,  Na,

can be constructed using Algorithm 4.

Algorithm 4 (Construct the vector w).
1: w ← [1,  . . . , 1]′ , R ← 1
2: while k ≤ Na do
3: d ← w′ak

4: if 0 ≤ d ≤ R then
5: w ← w + 1

2 (R − d)ak , R ← 1
2 (R + d)

6: else if −R ≤ d ≤ 0 then
7: w ← w − 1

2 (R + d)ak , R ← 1
2 (R − d)

8: end if
9: end while

2.10. Properties of the solution of a parametric QP

Consider again the quadratic problem (8):

min
u

1
2

[
u
d

]′ [
Juu Jud

J′
ud

Jdd

] [
u
d

]
s.t. Muu ≤ M + Mdd

From [3] we have the following properties of the solution to this
problem:

Theorem 4. Consider the parametric QP in (8) and let Juu > 0. Then
the set D of feasible parameters d is convex and the optimal input
u∗ : D  	→ R

nu is continuous and piecewise affine.

In addition the following Lemma  is provided:

Lemma  1. Let the optimal solution (“optimizer”) be written on the
form

u = Ki
dd + ki

d if d ∈ Pi (24)

Then, for two neighboring polyhedra Pi, Pj the gains Ki
d

/= Kj
d
.

3. Measurement based descriptor function

From now on, the results are new unless otherwise noted.
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Lemma  1 states that the optimizer to problem (8) can be written
n the form

 = Ki
dd + ki

d if d ∈ Pi. (25)

e now want to eliminate the need of information about the dis-
urbances d, but rather rely on plant output ym.

Assuming a parametric solution exists, we  form the following
roblem for a given set of active inequality constraints:

min
u1

u2

]J(u1, u2, d) = 1
2

⎡
⎣ u1

u2

d

⎤
⎦
′
⎡
⎢⎢⎣

Ju1u1 Ju1u2 Ju1d

J′u1u2
Ju2u2 Ju2d

J′
u1d

J′
u2d

Jdd

⎤
⎥⎥⎦

⎡
⎢⎣

u1

u2

d

⎤
⎥⎦ subject

here we choose u1 (as a subset of the input vector u) such that
u1 is invertible. This implies that we can write

1 = −Mu1
−1Mu2︸  ︷︷  ︸

Ku2

u2 + Mu1
−1Md︸  ︷︷  ︸
Kd

d + Mu1
−1M︸  ︷︷  ︸
K

. (27)

e do the following manipulations to get the problem in a form
uitable for Theorem 1: First, we define z = u2 + J−1

zz Jz and

zz =
′

Ku2 Ju1u1 Ku2 + Ju2u2 + 2
′

Ku2 Ju1u2 (28)

zd =
′

Ku2 Ju1u1 Kd + Ju1u2
′Kd +

′
Ku2 Ju1d + Ju2d (29)

z = K ′Ju1u1 Ku2 + K ′Ju1u2 (30)

ith these definitions it can be shown that the objective function
ith the active equality constraints substituted into the objective

an be written as

(z, d) = 1
2

z′Jzzz + z′Jzdd. (31)

n addition, we write the linear model as

u1

u2

ym

⎤
⎥⎦ =

⎡
⎢⎣

I 0

0 I

Gym
u1

Gym
u2

⎤
⎥⎦

[
u1

u2

]
+

⎡
⎢⎣

0

0

Gym
d

⎤
⎥⎦d (32)

sing (27), we find that

u1

u2

ym

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Ku2

I

Gym
u1

Ku2 + Gym
u2︸  ︷︷  ︸

=G̃ym
u2

⎤
⎥⎥⎥⎥⎦u2 +

⎡
⎢⎢⎢⎢⎢⎣

Kd

0

Gym
u1

Kd + Gym
d︸  ︷︷  ︸

=G̃ym
d

⎤
⎥⎥⎥⎥⎥⎦d +

⎡
⎢⎣

K

0

Gym
u1

K

⎤
⎥⎦(33

⎡
⎢⎣

Ku2

I

G̃ym
u2

⎤
⎥⎦

︸  ︷︷  ︸
Gy

(z − J−1
zz J′z) +

⎡
⎢⎣

Kd

0

G̃ym
d

⎤
⎥⎦

︸  ︷︷  ︸
Gy

d

d +

⎡
⎢⎣

K

0

Gym
u1

K

⎤
⎥⎦

︸  ︷︷  ︸
K̃

(34)

 Gyz + Gy
d
d + K̃ − GyJ−1

zz J′z︸  ︷︷  ︸
�

. (35)

ow, let y = y − � , where y = [u′1 u′2 y′m]′, and let F = −(GyJ−1
zz Jzd −

y
d
). Further, let H̃ be a full rank matrix that fulfills H̃F = 0. Due to
heorem 1, H̃ can be chosen such that H̃y = H̃(y − �) = 0, hence
he invariants are c = H̃y with cs = H̃� . Due to the “extra” degrees
f freedom in H̃ we can write the combination matrix on the form

˜
 =

[
I Hym

]
. The extra degrees of freedom in H̃ arise from the fact
cess Control 22 (2012) 873– 883 877

u1 u1 + Mu2 u2 = M + Mdd, (26)

that if H̃F = 0, then also DH̃F = 0, for a non-singular square matrix
D. The matrix D can be used to scale the entries in H̃,  or as above to
introduce an identity matrix. This is further discussed in [2].  Finally,
we can show that the invariant can be written in the form:

u = −Hym ym +
[

(K − Ku2 )

−I

]
J−1
zz J′z + Hym [Gym

u1
(K − Ku2 )

+Gym
u2

]J−1
zz J′z. (36)

We  observe that for a given set of active constraints, there is an
affine optimal relationship between the input u and the measure-
ment ym. For several regions we can therefore pose the following
optimal relationship:

u = Ki
ym

ym + ci
s, if d ∈ Pi, (37)

where Ki
ym

and ci
s can be found by using the procedure above. The

following Lemma shows that the functional relationship between
measurement ym and input u can be used as a vector-valued PWA
descriptor function.

Lemma  2. The invariants defined by invi := Hiy − ci
s can be used as

a vector-valued descriptor function

Proof. Theorem 2 states that the optimizer for problem (8) can
be written in the form of Eq. (25). According to Lemma 1, for two
neighboring polyhedra Pi, Pj , Ki

d
/= Kj

d
, and hence the disturbance

feedback law (25) is a vector-valued descriptor function.
We now consider the invariants invi := Hiy − ci

s, and we assume
that we have a perfect measurement of the input vector included
in y:

y =
[

u
ym

]
=

[
I
Gym

]
u +

[
0
Gym

d

]
d (38)

With this partition of y we accordingly write Hi = [Hu,i Hym ,i]. By
assumption Juu is positive definite (second-order optimality condi-
tions), and hence the optimal input u must by Theorem 2 be unique
and continuous. This has the following implications: First, we can
form an equivalent invariant by

invi
fb = u − (Hu,i)−1Hym,i︸  ︷︷  ︸

Ki
ym

ym + (Hu,i)−1ci
s︸ ︷︷  ︸

ki
ym

. (39)

For optimality, by Theorem 1, this invariant should be controlled to
zero, hence we  have the measurement feedback form

u = Ki
ym

ym + ki
ym

if d ∈ Pi, ∀i = 1, . . . , Np (40)

Inserting the linear plant model (38), we have that

u = Ki
ym

(Gym u + Gym
d

d) + ki
ym

,

= Ki
ym

Gym u + Kym Gym
d

d + ki
ym

,

⇒ (I − Ki
ym

Gym )u = Ki
ym

Gym
d

d + ki
ym

,

⇒ u = (I − Ki
ym

Gym )−1Ki
ym

Gym
d

d + (I − Kym Gym )−1ki
ym

.

(41)
Second, due to the uniqueness of the optimal input u, we have that
the inverse of (I − Ki

ym
Gym ) must exist and further that

(I − Ki
ym

Gym )−1Ki
ym

Gym
d = Ki

d i = 1, . . . , Np (42)
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⎠

⎛
⎝u0

d0

⎞
⎠
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ig. 3. Additional disturbance dy
c to match the model with the measured constraint.

ince both (I − Ki
ym

Gym )−1 and Gym
d

have full rank, we must have

hat if Ki
d

/= Kj
d
, then Ki

ym
/= Kj

ym
. Finally, since u is continuous we

onclude that the function Ki
ym

ym + ki
ym

can be used as a vector-
alued PWA  descriptor function. �

emark 2. To use the nullspace method, we do not need to include
 perfect measurement of u in y; it is sufficient that we  have enough
ndependent measurements ny ≥ nu + nd. Here we include u because
t is then easier to prove that the resulting set of invariants can
e used as a vector-valued PWA  descriptor function. This means
hat we can use the method described in this paper to construct a
escriptor function as a function of measurements ym, and include
ther measurements in the controlled variable selection problem.
he only requirement is that the controlled variables gives zero loss
rom optimality when controlled to constant setpoints ci

s.

. Constraint matching

The linear approximation of the constraints as used in prob-
em (8) may, as for any model-based scheme, lead to infeasibility

hen used on a real plant. However, this can to some extent be
ccounted for if the constraints are measured. We  can then simply
stimate a disturbance dc as illustrated in Fig. 3 and treat this as

 measured disturbance in the problem formulation (Problem (8)).
or an output constraint we then have

ymin ≤ ymeasured ≤ ymax

�
ymin ≤ y + dc ≤ ymax

�
ymin − dc ≤ y ≤ ymax − dc

One should realize that this method can (and should) also be
sed on important manipulated variables u, where important here
eans inputs that have a strong economic effect, for example

nputs that are affecting the throughput of a plant. Say, that for some
alues of the disturbances it is optimal to implement a certain input
t its maximum value, but that there is some mismatch between
he model and the reality, as illustrated in Fig. 4. If a measurement
f the actual value of u is available, then can this be corrected for
y adding an extra disturbance du

c as indicated in the figure, and
y using the procedure outlined above for the inputs to effectively

hange the value of umax in the internal model of the controller.

emark 3. The purpose of this section is to use extra measure-
ents of active constraints in a systematic manner, to optimize the

losed-loop plant performance. If there are no extra measurements
vailable, one must rely on the model.
Fig. 4. Matching of an input constraint by additional disturbance du
c .

5. Design procedure

We  summarize our findings in the following procedure that may
be used to find controlled variables for an economic problem that
can be approximated as a quadratic program:

1. Define the steady-state optimal operation problem, consisting
of objective function J0(x, u, d), process model f0(x, u, d) = 0, and
operational constraints g0(x, u, d).

2. Approximate this problem around the nominal optimum as a QP
by the method outlined in Section 2.1:
(a) Formally eliminate the internal states x from the problem.
(b) Solve the resulting optimization problem for nominal dis-

turbance d0 to get optimal inputs u* and optimal Lagrange
multipliers �*.

(c) Approximate this problem as a QP around (u*, �*).
3. Add extra disturbances dc as illustrated in Section 4 for important

constraints.
4. Solve the resulting problem as a parametric QP with disturbances

d as parameters. The solution will consist of a set of polyhedral
regions Pi in the disturbance space and a list of active constraints
for each region.

5. Identify available measurements and linearize to get

ym = Gy
mu + Gym

d d.

6. In each region (in the disturbance space), use the nullspace
method of Theorem 1 to find invariants invi := Hiy − ci

s.
7. Use Lemma  2 to make vector-valued PWA  descriptor function.
8. Use Algorithm 4 to construct a scalar PWA  descriptor function

to be used for region detection.
9. Use Algorithm 3 for region detection.

The whole method may  be automated, e.g. using the Multi-
Parametric Toolbox [9].

Remark 4. (Complexity) Computation of Hessians and gradients
may  be cumbersome, but not fatal for implementation, as the com-
putations are performed off-line. The on-line complexity of the
method is very low, as it is based on results for explicit MPC [3].
For details regarding number of flops and memory requirement,
the reader is referred to [3].

6.  Example: ammonia production plant

We now develop a simple model of an ammonia synthesis loop
to be used as a case study. A process flow sheet is shown in Fig. 5. The
main objective is to maximize the produced ammonia in stream 4,
while at the same time minimizing the compressor work. The cost

function is

profit = PWfeed
Wfeed + PWrecycle

Wrecycle + PWcooling
Wcooling

+ PNH3 nNH3
4 , (43)
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Fig. 5. Sketch of an ammonia synthesis loop.

Table 1
Prices for ammonia example.

Price variable Value [D /unit]

PWfeed −0.4
PWrecycle −10

w
t

l
o

c
fl

d

6

•
•

•
•

n
v
T

a

T
C

PWcooling −0.5
PNH3 104

ith prices given in Table 1. The reactor temperature is fixed, but
he cooling affects the separation properties in the flash tank.

In addition there are operational constraints, namely a lower
imit on the possible cooling temperature (Tflash) and a high limit
n the recycle flow (R) in the loop.

There are three steady state degrees of freedom, which can be
hosen to be the pressure P, the split factor f (recycle ratio), and the
ash temperature Tflash.

The feed consists of a mix  of H2 and N2, and the considered
isturbances are feed rate and feed composition.

.1. Model

The main properties of the model are:

Equilibrium reactor.
Henry’s law (H2, N2) and Raoult’s law (NH3) describe the flash-
tank.
Ideal compressor works.
Cooling work efficiency given by a Carnot factor.

The variables are the mole vector for each stream, ni, i = 1, . . .,
7 and the extent of reaction �. In addition we use as secondary
ariable xj

i
to indicate the mole fraction of component j in stream i.

he components are ordered by H2, N2, NH3 .

Table 2 shows a list of constants used in the model. All constants

re found in the book by Skogestad [18].
The mathematical model is given below.

able 2
onstants for the ammonia plant example.

Variable Value Unit

Keq 6.36 · 10−5

HH2
0 210688

HH2
T

−656
HN2

0 110816
HN2

T
−342

A  4.4854
B 926.132
C −32.98
d0

1 5.1 mole/time
d0

2 0.8 mole fraction
cess Control 22 (2012) 873– 883 879

6.1.1. Reactor feed
Mass balance over the feed point:

n2 = n1 + n6 (44)

6.1.2. Equilibrium reactor
Let Pi = Px3 be the partial pressures in stream 3. The equilibrium

relation is then

P2
NH3

P3
H2

PN2

= Keq. (45)

Further, by using the extent of reaction �, we  have that

n3 = n2 + S�, (46)

where the stoichiometric matrix S = [−3 − 1 2]′.

6.1.3. Flash tank
We here assume Henry’s law for H2 and N2 and Rault’s law for

NH3. The K-values are given by

kH2 =
HH2

0 + HH2
T Tflash

P
(47)

kN2 =
HN2

0 + HN2
T Tflash

P
(48)

kNH3 =
10

A− B
Tflash+C

P
(49)

Let K = diag(kH2 , kN2 , kNH3 ) and we  have that

x5 = Kx4. (50)

In addition we use the Rachford–Rice equation to find the ratio
r = (

∑
n5)/(

∑
n3):∑

i={H2,N2,NH3}

xi
3(ki − 1)

1 + r(ki − 1)
= 0. (51)

Now,

e′n5 = re′n3 (52)

e′n4 = (1 − r)e′n3, (53)

where e′ =
[

1 1 1
]
.

6.1.4. Split
The mass balance around the split is

n5 = n6 + n7 (54)

In addition we have that

n6 = fn5. (55)

For the compressors we  have the following models:

6.1.5. Feed compressor
The feed compressor increases the pressure in the feed from the

nominal pressure P0 to the reactor pressure P by

Wfeed =
∑

(n2)RT ln
P

P0
(56)

6.1.6. Recycle compressor

This compressor should counteract pressure drop in the system

by

Wrecycle =
∑

(n6)RTflashln
P

P − �P
(57)
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Table 3
Nominal optimal inputs.

Steady state degree of freedom Nominal optimal value

6.4.3. Measurements for region detection
We  have three disturbances, but one of them is assumed to be

measured (the constraint matching for maximum recycle), hence
we need to identify two  measurements that we can use for region

Table 4
Nominal optimal stream data.
80 H. Manum, S. Skogestad / Journal

.1.7. Cooling water
We  assume that there is cooling water free of charge that can

ool the product stream down to T0 = 15 ◦C = 288 K. For further cool-
ng, we have to use a cooling unit with the following associated

ork:

sub cool =
∑

n3CP(T0 − T)(
T0

Tc
− 1),  (58)

here Tc = T0 − T

ln(T0/T)
.  (59)

his means that the overall energy usage for cooling is

cooling =
{

0 if Tflash > T0 = 288 K
Wsub cool otherwise

(60)

.2. Disturbances

The only disturbances acting on the system are the feed rate
d1) and composition (d2). The feed stream n1 can therefore be
xpressed as

1 = (d0
1 + d1)

⎡
⎢⎣

d0
2 + d2

(1 − d0
2) − d2

0

⎤
⎥⎦ , (61)

ith d0
1 = 5.1 mole/time as the nominal feed flow and d0

2 = 0.8 as
he nominal mole fraction of hydrogen in the feed. The disturbances
re assumed to be in the set

 = {d ∈ R
2
∣∣|d1| < 1, |d2| < 0.02}. (62)

his corresponds to a maximum relative change in the feed rate of
bout 20% and a change in the composition of about 4%.

.3. Operational constraints

There are two  operational constraints that we need to address.
irst, the cooling unit can only cool the reactor product to
flash,min = − 7 ◦C = 266 K, therefore

flash ≥ 266 K. (63)

e assume that this constraint can be implemented exactly, i.e.
hat an unbiased measurement of this temperature exists.

In addition, there is an upper bound on the maximum flow of
ecycle. For this constraint, we include an extra disturbance (d3 = dc)
s explained in Section 4 to make sure that we satisfy the upper limit
n recycle at all times. (Note that this maximum recycle constraint
s motivated by the fact that the recycle compressor has a high limit
n the amount of fluid it can process.) We  include this correction
y the following procedure: First, we find a linear model from (u,
) to n6 on the form

6 ≈ n6,0 + Gn6 u + Gn6
d d, (64)

sing for instance finite differences. Then we add the “constraint
atching” disturbance d3 = dc to get the following inequality that

ounds the maximum recycle in the plant:

measured ≤ Rmax ⇔ e′Gn6 u + e′Gn6
d d + 1′n6,0 + d3 ≤ rmax.

ence,

′ n ′ [ ′ n
][

d
]

G 6 u ≤ (rmax − e n6,0) + −e G 6
d
−1

d3
, (65)

here d are the “economic” disturbances (d1, d2), and d3 is the
constraint matching” disturbance.
u1: Split-factor (recycle ratio) 0.6875
u2: Pressure P in reactor 342.17 bar
u3: Temperature Tflash in flash-tank 266.53 K

6.4. Control structure selection

6.4.1. Nominal operating point
We used TomlabTM under MatlabTM to find the nominal operat-

ing point, reported in Tables 3 and 4. The inputs u used in the sequel
are deviation variables from this nominal operating point.

6.4.2. Approximation to a QP
At the nominal optimum, no constraints are active, so we can

use the Hessian of the nonlinear problem (rather than using the
Lagrangian) to find Juu and Jud. The resulting matrices are:

⎡
⎣ Juu Jud

Jud Jdd

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

55720 .17 −8.01 2.62 59 .53 340268 .50

−7.95 0.08 −0.08 0.02 75 .11

2.61 −0.08 1.31 −0.00 7.70

59.52 0.02 −0.00 0.04 15695 .24

340081.83 74.33 7.73 15575 .95 1702546 .66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(66)

This Hessian is found by finite differences. We  observe that the
matrix is not fully symmetric because of numerical inaccuracy, but
it is close enough to symmetric for our purposes. We  used the upper
right part as Jud in the calculations. The linearized constraints are:

[max R:]

[min Tflash:]

[
9.6295 −0.0033 0.0015

0 0 −1.0000

]
︸ ︷︷  ︸

Mu

⎡
⎢⎣

u1

u2

u3

⎤
⎥⎦ ≤

[
0.51

0.53

]
︸ ︷︷  ︸

M

+
[
−0.59 −23.76 −1.00

0 0 0

]
︸ ︷︷  ︸

Md

⎡
⎢⎣

d1

d2

d3

⎤
⎥⎦ (67)

In addition, there are non-negative constraints on all the compo-
sitions and a lower limit on the pressure in the system, but these
constraints are not active for the disturbance space we chose to
study, so we  do not add them explicitly to the problem formulation.
n2 n3 n4 n5 n6 n6[
6.8473
1.2163
0.0314

] [
4.0455
0.2837
1.8995

] [
0.0176
0.0011
1.8589

] [
4.0279
0.2826
0.0427

] [
2.7683
0.1953
0.0304

] [
1.2586
0.0883
0.0133

]
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Fig. 6. Calculated steady-state degrees for freedom for the ammonia example for various disturbances. In addition we have plotted the resulting recycle R. The blue line
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Remark 5. The invariants “inv” are usually denoted controlled
variables “c” in the self-optimizing control terminology. Note how-
ever that one may  choose a different matrix H = [Hu Hym ] for actual

Table 5
Regions of the parametric solution to the QP-approximation.
epresents the RTO, the red dashed line is the approach of this paper, and the blac
xis  represent traversing the disturbance space from dstart = (− 1, 0.02) to dend = (1, −
he  reader is referred to the web version of this article.)

etection (see Theorem 1). Since we have no measurement noise
nd the goal here is to demonstrate how to use this methodology,
e simply chose the two first entries of the stream-vector n2 as
easurements, that is the flow of H2 and N2 in the reactor feed.

his gives the following “measurements” y (in deviation variables)
hat we use for region detection:

 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

nH2
2

nN2
2

d3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

9.6773 −0.0024 0.0002

−0.1411 −0.0008 0.0002

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷  ︸
Gy

⎡
⎢⎣

u1

u2

u3

⎤
⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

1.3468 33.8399 0

0.2371 −10.3119 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷  ︸
Gy

d

⎡
⎢⎣

d1

d2

d3

⎤
⎥⎦ (68)

here the matrices Gy and Gy
d

come from linearization around the
ominal optimal point.
.4.4. Parametric solution
Using the “Multi-Parametric Toolbox” (MPT) [9],  we identify

hree regions for the solution of the QP-approximation, which are
ed line is the approach of this paper without constraint matching. The disturbance
in a straight line. (For interpretation of the references to colour in this figure legend,

described in Table 5. We  used three parameters in the optimization;
(d1, d2) with search space defined in equation (62), and in addition
−0.5 < d3 < 0.5.

6.4.5. Invariants and vector-valued PWA  descriptor function
Using the nullspace method in each region (as described in

Lemma  2), we get the following invariants:

inv = −u +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣−0.28 1.60 0

−76.19 427.31 0

−4.51 25.31 0

⎤
⎦[

ym

d3

]
if d ∈ P1

⎡
⎣−0.15 0.23 −0.24

−54.97 210.37 −39.94

−3.10 10.98 −2.61

⎤
⎦[

ym

d3

]
+

⎡
⎣ 0.12

20.21

1.32

⎤
⎦ if d ∈ P2

⎡
⎣−0.28 1.58 0

−70.74 396.73 0

−0.00 0.00 0

⎤
⎦[

ym

d3

]
+

⎡
⎣−0.0004

−0.6408

−0.5305

⎤
⎦ if d ∈ P3

(69)

In order to check the calculations the reader is referred to Section
3.
Region Description

1 Unconstrained “nominal” region.
2 R = Rmax (maximum throughput of the recycle compressor.)
3 Tflash = Tflash,min (cooling unit cannot decrease temperature further.)
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Table  6
Neighbors and correct signs for the scalar PWA  descriptor f(ym) as defined in Eq.
(70).

Region Neighbor(s) sign(fi − fj)

1 (2, 3) (− 1, 1)
2  1 −1
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e
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0
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0

0.02

0.04

d
1

d
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ca
lc
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at

ed
 d

3

3  1 1

ontrol; the main focus of this work is to show how the invariants
ay  be used to develop a law for region switching.

Next, using Algorithm 4, we identify the following function
hich can be used for tracking changes in the active set:

 (ym) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 =
[
−81.0 454.2 0

][
ym

d

]
if d ∈ P1

f2 =
[
−58.2 221.6 −42.8

][
ym

d

]
+ 21.7 if d ∈ P2

f3 =
[
−71.0 398.3 0

][
ym

d

]
− 1.18 if d ∈ P3

(70)

able 6 shows neighbors and correct signs for the functions fi in
quation (70).

.5. Simulation results

Fig. 6 shows the result of simulating the proposed con-
rol structure for a range of disturbances corresponding to the
earch-space of the parametric program, that is −1 ≤ d1 ≤ 1 and
0.02 ≤ d2 ≤ 0.02. The figure shows a traversal of the disturbance

pace from dstart = (− 1, 0.02) to dend = (1, − 0.02) by following a
traight line. We  chose this representation because this direction
as the direction where the methods differed the most. For com-
arison we have solved the original nonlinear program for the same
isturbances.

From Fig. 6 we observe that the two methods give similar results,
specially around the nominal disturbance. Fig. 7 shows the differ-
nce in cost functions scaled with the absolute value of the optimal
ost. We observe that the difference in this metric is quite small, and
ess than 1% for the cases studied. Probably this will be an “accept-
ble loss” and we therefore have an implementation that is close to

ptimal but simple, which is exactly in the spirit of “self-optimizing
ontrol.”

Fig. 8 shows the estimated nonlinear correction d3. At satura-
ion of the recycle the actual value is 3.5 mole/time, so the error in
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ig. 7. Relative difference in cost functions with constraint matching implemented.
Fig. 8. Constraint matching term d3.

predicted recycle by the linear model is about 1.4% at maximum.
We also simulated the system without this disturbance included
as a measurement, and then the constraint on maximum recycle
was violated with about 1%. This can be observed from Fig. 6, by
observing that the black dotted line is slightly above the red line.

7. Discussion

In this paper, we use the descriptor function defined by [3] to
implement the solution of a parametric quadratic program. Our
main contribution is to relate descriptor functions to implemen-
tation of static optimization problems. In particular for quadratic
problems, we show that we  can identify descriptor functions based
on “linear measurements” y = Gyu + Gy

d
d by using the nullspace

method in each active constraint region. As a result, we can make
a list of constant setpoint policies, one for each region of the prob-
lem at hand, and a simple method for how to change between these
policies, based on the outputs only.

We  have only considered steady state, and in fact the region
detection scheme assumes that the system is at steady state at all
times. This assumption will of course not be valid for real processes,
and therefore dynamic studies of control policies with dynamic
controller should be conducted before application.

7.1. Measurement noise

Similar to the standard results for explicit MPC, which is the
basis for this paper, measurement noise is not directly included.
However, since we here deal with the steady-state control layer,
sensitivity to noise may  be reduced by using i.e. a Kalman
filter.

In order to reduce sensitivity of noise further, note that we
should choose measurements y such that the gain from u to y is
large [2].

As for the implementation of active constraints, one needs to
include back-off in order to ensure feasibility if measurement noise
is expected to degrade the performance of the control system [5].

As a future research problem, one may  consider to use
the exact local method [2],  which handles measurement noise
explicitly, in conjunction with the method developed in this
paper.

7.2. Static part of MPC
Model predictive control (MPC) is usually implemented with a
static optimization problem that adjusts the setpoints of the con-
trolled variables such that feasibility of the dynamic problem is



H. Manum, S. Skogestad / Journal of Pro

Economic
Opti mizati on

MPC
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mall loss from optimality between RTO updates when disturbances occur. Note
hat “Process”, as defined in Fig. 1, consists of both the physical process and the
egulatory control layer.

uaranteed. The problem is often referred to as “target calculation”,
nd may  have the following structure [16]:

min
xs,us,�

1
2

(�′Ws� + (us − u)Rs(us − u)) + q′s�

s.t.[
I − A −B 0
C 0 I
C 0 −I

]  [
xs

us

�

]  {=
≥
≤

} [
Bd
y − p
y − p

]
� ≥ 0
umin ≤ Dus ≤ umax

ymin ≤ Cxs + p ≤ ymax

ere y and u are desired (assumed economically optimal) values
or the measurements and inputs, while � is a slack variable.

However, our method may  also guarantee feasibility if we  can
stimate (by using “constraint matching”) the deviation from pre-
icted and actual value of the output constraints. This is because
he controlled variables c = Hy are by construction feasible at their
etpoints cs (also for the actual plant when “constraint matching” is
sed). Hence, the method presented in this paper may  be used as
n alternative to the steady-state part of the MPC, with the benefit
f improved economic performance of the plant.

A similar idea is presented in [20], but the authors do not con-
ider “feedback implementations” on the form of controlling c = Hy
o a setpoint cs, rather they consider an open-loop implementation
f the static problem. Similar to what we do in this paper, Ying
nd Joseph also suggest to use the Hessian of the Lagrangian of a
uadratic approximation of the RTO as a quadratic weight in the
easibility problem of the MPC.

.3. Using self-optimizing control with RTO

In the example we assumed that the feed composition could
hange with about 4%. Optimal economic operation of the plant
as found to be a strong function of this disturbance, which is also
lear from e.g. Fig. 6 where one observes that one has to change the
nputs considerably when the feed composition changes. For larger
isturbances in the feed composition, say 10%, the self-optimizing
ontrol scheme will generate inputs that are quite far away from

[

[

cess Control 22 (2012) 873– 883 883

the optimal inputs, and there will be a significant loss. In these
situations it would be fruitful to update the self-optimizing control
policy by using an RTO layer (economic optimization) above the
self-optimizing layer. A flow-sheet of a possible implementation is
shown in Fig. 9.

In the figure we show both a typical scheme where an economic
optimization layer sends a desired target value to the control layer,
and a situation where one implements the scheme presented in this
paper. The scheme on the right hand side of the figure would typi-
cally be interesting if the economic optimization is updated every
now and then (assuming that a fast update is too difficult). Such
a scheme should be able to handle larger disturbances in the feed
composition and still have an acceptably small loss from optimality.

8. Conclusion

Based on a recent contribution by [3] we  have presented a gen-
eralization of the nullspace method [1] to include changes in the
optimal active set. The method has been demonstrated on a model
of an ammonia production facility. We  identified three different
regions of operation, and the method was comparable in perfor-
mance to real-time optimization of the same plant.
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