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Abstract

We present a method for finding optimal controlled variables, which are poly-
nomial combinations of measurements. Controlling these variables gives opti-
mal steady state operation. Our work extends the concept of self-optimizing
control; starting from the first-order necessary optimality conditions, any
unknown variables are eliminated using elimination theory for polynomial
systems to obtain invariant variable combinations, which contain only known
variables (measurements). If a disturbance causes the active constraints to
change, the invariants may be used to identify, and switch to the right region.
This makes the method applicable over a wide disturbance range with chang-
ing active sets. The procedure is applied to two case studies of continuous
stirred tank reactors.

Keywords: Self-optimizing control, Optimal operation, Optimization,
Polynomial systems, Sparse resultants, Elimination theory

1. Introduction

For continuous processes which are operated in steady-state most of the
time, an established method to achieve optimal operation in spite of varying
disturbances is real-time optimization (RTO) [1]. The real-time optimizer
generally uses a nonlinear steady-state model, which is updated at intervals
based on measurements. This updated model is used to on-line recompute
optimal setpoints for the controlled variables in the control layer below. The
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concept has gained acceptance in industry and is increasingly used for im-
proving plant performance. However, installing an RTO system and main-
taining it generally entails large costs.

An alternative approach to optimizing plant performance is to use a pro-
cess model off-line to find a “self-optimizing control” structure. The basic
concept of self-optimizing control was conceived by [2], who wrote that we
“want to find a function c of the process variables which when held con-
stant leads automatically to the optimal adjustments of the manipulated
variables”. However, they did not provide any method for identifying this
function. The idea is to use this function as a controlled variable and keep
it at a constant setpoint by simple control structures, e.g. PID controllers,
or by more complex model predictive controllers (MPC). Using this kind of
controlled variables disburdens the real-time optimizer [3], or may even make
it superfluous.

The term “self-optimizing control” was coined in the context of controlled
variable selection with the purpose of describing the practical goal of finding
“smart” controlled variables c:

“Self-optimizing control is achieved if a constant setpoint policy
results in an acceptable loss L (without the need to re-optimize
when disturbances occur).” [4]

Many industrial processes are operated using self-optimizing control, al-
though this term may not be used. Optimally active constraints may be
considered as self-optimizing variables, for example, the use of maximum
cooling for a compressor. However, the more difficult problem is to iden-
tify self-optimizing control variables associated with unconstrained degrees
of freedom. An example for the unconstrained case is controlling the air/fuel
ratio to a combustion engine at a constant value.

The concept of self-optimizing control enables us to separate the two
problems of optimizing the system and designing the controller. Thus, in a
first step the controlled variables c are determined based on steady-state opti-
mization of the process, and in a second step a suitable controller is designed.
In most cases, a PI controller will be sufficient, but also more advanced con-
trollers can be used to control the self-optimizing variable. The advantage
of this two-step approach is that it makes it possible to focus completely on
steady-state optimal behavior when designing the control structure, while all
issues which arise when handling dynamic systems are considered separately
when designing the actual controllers.
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In the last decade, several contributions have been made to the systematic
search of controlled variables which have self-optimizing properties [5, 6, 7,
8, 9], but only for cases with linear measurement models and a quadratic
cost function. This results in linear measurement combinations c = Hy as
controlled variables. Here, y includes all available measurements, and the
goal is to find a good selection or combination matrix H. In cases where a
higher-order curvature is present at the optimum, the loss imposed by using
linear measurement combinations may not be acceptable, and the controlled
variables are not self-optimizing.

It has been noted previously [10, 11, 5, 12, 13], that the gradient of the
cost function with respect to the degrees of freedom u would be the ideal
controlled variable, c = Ju. However, the gradient Ju is usually not directly
measurable, and analytical expressions for the gradient generally contain
variables which are unmeasured (unknown disturbances). The concepts from
self-optimizing control theory can be thought of as methods for identifying a
measurement or a measurement combination c(y), which approximates the
gradient (in some “best” way).

The main contribution of this work is to use polynomial elimination the-
ory to extend the ideas of self-optimizing control, in particular the concept of
the null-space method [6], to constrained systems described by multivariable
polynomials. This results in controlled variables which are polynomials in
the measurements, c(y).

A summary of the proposed procedure for achieving steady state optimal
operation is given in Table 1. In steps 1 and 2 we formulate the optimiza-
tion problem and determine regions of constant active constraints, also called
critical regions. This is done by offline calculations, for example, by gridding
the disturbance space with a sufficiently fine grid and optimizing the process
for each grid point. In step 3, for each critical region, (a) the optimality con-
ditions are formulated, and (b) the Lagrangian multipliers are eliminated.
Then (c) the unknown variables, i.e. the disturbances and the internal state
variables are eliminated from the optimality conditions to obtain an invari-
ant variable combination c(y) which contains only measured variables and
known parameters. Optimal operation is achieved in each critical region by
controlling the active constraints and the invariant measurement combina-
tions, step 4. Finally, we monitor the active constraints and the invariants
of the neighboring regions to determine when to switch to a new region.

The rest of this paper is structured as follows: The next section contains
the problem formulation and derives an expression for the optimality condi-
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1. Formulate optimization problem

2. For the expected set of disturbances, find all regions with different sets
of active constraints Ai

3. For each region of active constraints Ai

a Formulate optimality conditions
b Eliminate Lagrangian multipliers λ from optimality conditions to

obtain invariants Jz,red (reduced gradient)
c Obtain measurement invariants c(y) by eliminating unknowns, such
that

c(y) = 0 ⇐⇒ Jz,red = 0

4. In each region Ai

a Control active constraints
b Control the invariants c(y)

Use controlled variables and measured constraints for changing regions

Table 1: Procedure for finding nonlinear invariants as controlled variables

tions which does not contain Lagrangian multipliers. Sections 3 and 4 show
how the unknown states and disturbances can be eliminated from the opti-
mality conditions without explicitly solving for them. In Section 5 we give
an example, followed by a discussion on changing active constraints (Section
6). Section 7 presents a case study with changing active constraints, and our
paper is closed with a discussion and conclusions in Sections 8 and 9.

2. Optimal operation using the optimality conditions

2.1. Problem formulation

Steady state optimal operation is defined as minimizing a scalar cost index
J(u,x,d) subject to satisfying the model equations, g = 0, and operational
constraints, h ≤ 0:

min
u,x

J(u,x,d) s.t

{
g(u,x,d) = 0 (model)
h(u,x,d) ≤ 0 (constraint).

(1)

Here u ∈ R
nu , x ∈ R

nx , d ∈ R
nd denote the manipulated input variables, the

internal state variables, and the unmeasured disturbance variables, respec-
tively. In this paper, the J is assumed to be a polynomial in the polynomial
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ring R[u,x,d], that is, a polynomial in the variables x,u and d with coeffi-
cients in R. Similarly, the functions g and h are assumed to be vectors with
elements in the polynomial ring R[u,x,d].

In addition, we assume that we have measurements y ∈ R
ny , which are

polynomial functions of u, x and d, which provide information about internal
states, inputs, and disturbances. To handle the measurements in a consistent
way when dealing with polynomials, we write the measurement relations
implicitly as

m(u,x,d,y) = 0, (2)

with m(u,x,d,y) ∈ R[u,x,d,y]. To simplify notation, we combine the state
and input variables in a vector z ∈ R

nz ,

z =

[
u

x

]

. (3)

Problem (1) is similar to the one solved on-line at given sample times
when using real-time optimization (RTO). In this work, however, we do not
solve the optimization problem on-line; instead, we analyze the problem using
offline calculations in order to find good controlled variables c(y), which yield
optimal operation when controlled at fixed setpoints, even for a change in
the disturbance d.

2.1.1. Optimality conditions

Let z∗ be a feasible point of optimization problem (1), and assume that
all gradient vectors ∇zgi(z

∗,d) and ∇zhi(z
∗,d) associated with gi(z

∗,d) =
0 (model) and hi(z

∗,d) = 0 (active constraints), are linearly independent
(linear independence constraint qualification, (LICQ)).

If z∗ is locally optimal, then there exist Lagrangian multiplier vectors λ
and ν, such that the following conditions, known as the KKT conditions, are
satisfied [14, 15]:

∇zJ(z
∗,d) + [∇zg(z

∗,d)]Tλ+ [∇zh(z
∗,d)]Tν = 0

g(z∗,d) = 0

h(z∗,d) ≤ 0

[h(z∗,d)]Tν = 0

ν ≥ 0.

(4)
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When optimizing nonlinear systems, such as polynomial systems, there
are several complications which may arise. The optimality conditions (4)
will in general not have a unique solution. There may be multiple maxima,
minima and saddle points, so finding the global minimum is not an easy task
in itself. When a solution to (4) is found, it has to be checked whether it
indeed is the desired solution (minimum). In addition, there may be solutions
which are not physical (complex). Before controlling a controlled variable
which is based on the first-order optimality condition, it has to be assured
that the process actually is at the desired optimum.

These and other issues from nonlinear and polynomial optimization are
not addressed in this work. The focus of this paper is rather to present a
method which gives a controlled variable c(y) which is a function of mea-
surements y, and which is zero at all points that satisfy the KKT conditions,
while it is nonzero whenever the KKT conditions are not satisfied.

2.2. Partitioning into sets of active constraints

Generally, the set of inequality constraints hi(z,d) ≤ 0 that are active
varies with the value of the elements in d. The disturbance space can hence
be partitioned into regions which are characterized by their individual set of
active constraints. These regions will be called critical regions.

The concept of critical regions allows one to decompose the original op-
timization problem (1) into a set of equality constrained optimization prob-
lems, which are valid in the corresponding critical region. This idea is also
applied in multi-parametric programming [16]. However, we do not search
for an explicit expression for the inputs u∗, as in multi-parametric program-
ming. We rather use each subproblem to find good controlled variables c for
the corresponding critical region.

In order to obtain a fully specified system in each region,

1. the active constraints need to be controlled, and

2. a controlled variable must be controlled for each unconstrained degree
of freedom.

For independent constraints and model equations, the number of uncon-
strained degrees of freedom, nc = nDOF , is calculated according to

nDOF = nz − ng − nh,active, (5)

where nz, ng, nh,active denote the number of variables z, the number of model
equations, g, and the number of constraints from h which are active (hi = 0).
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Remark 1. The presented method for finding the degrees of freedom is valid
when the polynomials are algebraically independent. A more rigorous way to
determine the degrees of freedom would be to examine the dimension of the
variety defined by g and hactive [17, 18].

Remark 2. When the optimization problem (1) is composed of polynomial
equations, the critical regions are defined by semialgebraic sets in R

nu+nx+nd

[19]. A semialgebraic set is defined as the finite union of sets defined by a
finite number of polynomial equalities and inequalities,

gi(x,u,d) = 0, i = 1 . . . ng (6)

and
hj(x,u,d) ≤ 0, j = 1 . . . nh (7)

Where gi and hj are polynomials in the variables x,u and d, with coefficients
in R. Loosely speaking, a semialgebraic set can be thought of a set defined by
a finite number of polynomial inequalities. The interior of an ellipsoid, or
the set of points on a curve in the R

n are examples of semialgebraic sets.

In the rest of the paper, to simplify notation, all active constraints hi(z,d) =
0 are included in the equality constraint vector g(z,d) = 0. Then in every
critical region, optimization problem (1) can be written as

min
z

J(z,d)

s.t.

g(z,d) = 0.

(8)

The KKT first-order optimality conditions (4) simplify for problem (8)
to

∇zJ(z,d) + [∇zg(z,d)]
T
λ = 0,

g(z,d) = 0.
(9)

These expressions cannot be used for control, because they still contain un-
known variables, x (in z = [u,x]), d, and λ, which must be eliminated.

2.3. Eliminating the Lagrangian multipliers λ

In every critical region, a control structure that gives optimal operation
has to satisfy (9).
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Theorem 1. Given optimization problem (8), where we assume that the
LICQ hold, and let N(z,d) ∈ R

nz×(nz−ng) be a basis for the null space of
∇zg(z,d). Controlling the active constraints g(z,d) = 0, and the variable
combination Jz,red = [N(z,d)]T∇zJ(z,d) = 0 then results in optimal steady-
state operation.

Proof. Select N(z,d) such that ∇zg(z,d)N(z,d) = 0. Since the LICQ are
satisfied, the constraint Jacobian ∇zg(z,d) has full row rank and N(z,d)
is well defined and does not change dimension within the region. The first
equation from the optimality conditions (9) is premultiplied by [N(z,d)]T to
yield

[N(z,d)]T
(

∇zJ(z,d) + [∇zg(z,d)]
T
λ

)

= [N(z,d)]T∇zJ(z.d) + 0λ

= [N(z,d)]T∇zJ(z,d).
(10)

Since N(z,d) has full rank, we have that (9) are satisfied whenever g(z,d) =
0 and [N(z,d)]T∇zJ(z,d) = 0.

We call Jz,red = [N(z,d)]T∇zJ(z,d) the reduced gradient. By construc-
tion, the reduced gradient has nDOF = nz − ng elements. Controlling

Jz,red = [N(z,d)]T∇zJ(z,d) = 0 (11)

together with the active constraints, g(z,d) = 0, fully specifies the system
at the optimum and is equivalent to controlling the first-order optimality
conditions (9). However, Jz,red cannot generally be used for control directly
because it depends on the variables d and x, which are usually unknown.
Thus, we would like to eliminate the unknown disturbances d and the internal
states x from the expression (11). The simplest approach (Approach 1) is to
solve the measurement equations m(x,u,d,y) = 0 and the active constraints
g(z,d) = 0 for the unknowns in z and d, and substitute the solution into
Jz,red. To do this, we need as many equations as unknowns. As we show next,
this elimination method is straightforward in case of linear equations, but it
becomes significantly more complicated when working with polynomials of
higher degree.

Alternatively (Approach 2), we search for necessary and sufficient condi-
tions which guarantee that the measurement model m(x,u,d,y) = 0, the
active constraints and the model g(z,d) = 0, and the reduced gradient
Jz,red = 0 are satisfied at the same time. We require that the necessary
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and sufficient condition is a function of measurements y and known param-
eters, only. This more general approach is discussed below for the linear
quadratic case (Section 3) before it is generalized for the polynomial case
(Section 4).

3. Elimination for linear quadratic systems

The optimization problem we consider is

min
z

J(z,d) =
[
zT dT

]
[

Jzz Jzd

Jzd
T Jdd

] [
z

d

]

s.t.

g(z) = Az− b = 0,

(12)

and the linear measurement model is

m(z,d,y) = y − [Gy G
y

d]

[
z

d

]

= 0

= y − G̃y

[
z

d

]

= 0.

(13)

We consider [z ,d]T as unknown and we assume that (12) has a solution,
Jzz > 0, and A has full rank. If a variable in z is measured, we include it
also in y.

The null space of the constraint gradient, N, is a constant matrix which
is independent of z, such that AN = 0. The first-order necessary optimality
conditions require that at the optimum

Jz,red = NT∇zJ(z,d) = NT
[
Jzz Jzd

]
[

z

d

]

= 0. (14)

Approach 1. If the number of independent measurements (ny) is greater or
equal to the number of unknown variables (nz + nd), the measurement rela-
tions (13) can be solved for the unknowns,

[
z

d

]

=
[

G̃y

]†

y, (15)

and substituted into the gradient expression (14) to obtain

c(y) = NT
[
Jzz Jzd

] [

G̃y

]†

y. (16)
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Here, (·)† denotes the pseudo-inverse of (·). Controlling c(y) = and the active
constraints Az− b to zero, then results in optimal operation.

When there are no constraints, we have that z = u, and this method
results in the null space method [6]. In this case, N may be set to any
nonsingular matrix, for example the identity matrix N = I, and we get the
same result as in [8],

c(y) =
[
Juu Jud

] [

G̃y

]†

y. (17)

Approach 2. In the case of polynomial equations of higher degrees it is gen-
erally difficult to solve for the unknown variables, as done in (15). Therefore,
we consider the problem from a slightly different perspective.

We assume for the moment that ny = nz+nd, and that G̃y = [Gy G
y

d] is
invertible. Consider the elements of the reduced gradient vector (14), one at
a time, together with all the measurement equations (13). Let the superscript
(i) denote the i-th row of a matrix or a vector. We write the reduced gradient
(14) together with the measurement equations (13) as a sequence of square
linear systems

[
[NTJzz]

(i) [NTJzd]
(i) 0

Gy G
y

d y

]

︸ ︷︷ ︸

M(i)





z

d

−1



 = 0 i = 1 . . . nDOF . (18)

Here, the M(i) are square matrices of size (ny + 1). We want to find a
particular output combination which satisfies (18). A unique solution for
[z, d]T exists only if rank(M(i)) = ny = nz + nd. The submatrix [Gy G

y

d y]
already has rank ny, irrespective of the value of y (or the control policy
that generates the input u which in turn generates y). This follows because
[Gy G

y

d y] has more columns than rows, and because rank([Gy G
y

d]) = ny.
Therefore, the condition for a nontrivial common solution is:

det(M(i)) = 0 for all i = 1..nDOF . (19)

This condition guarantees that a common solution to (18) exists, so the
elements of the controlled variable c are selected as ci = det(M(i)).

It remains to show that controlling the determinants ci = det(M(i)) gives
the inputs which lead to the optimum. Since the system is linear and the
rank of the measurement equations is ny, there is a unique linear invertible
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Table 2: Gain values for Example 1

Variable Value

Gy
1 0.9

Gy
d,1 0.1

Gy
2 0.5

Gy
d,2 -1.0

mapping between the measurements y and the vector [z, d]T. Therefore
every value of y corresponds uniquely to some value in z.

In the case with more measurements, ny > nz+nd, any subset of nz+nd

measurements may be chosen such that rank([Gy G
y

d])=nz + nd.

Remark 3. For simplicity, we chose to use the measurements to eliminate
the internal states. In practice we would use the constraint equations Az −
b = 0 in addition to the measurements for elimination in the matrices M(i).
Then we only need ny ≥ nu+nd independent measurements, where we assume
that the degrees of freedom u are included in the measurement vector y.
Thus we need as many equations (measurements+constraints) as variables
to eliminate.

Example 1 (Linear model and quadratic objective). This example demon-
strates that the “determinant method” gives the same result as the previously
published null-space method [6]. Consider a system from [20]. The quadratic
cost to minimize is

J = (u− d)2, (20)

and the measurement relations are

y1 = Gy
1u+Gy

d,1d

y2 = Gy
2u+Gy

d,2d.
(21)

The values of the gains are given in Table 2. We are searching for a con-
dition on the measurements y1 and y2 such that the optimality condition is
satisfied. The gradient is ∇uJ = 2(u−d) and Juu = 2, Jud = −2. It is easily
verified that measurements are linearly independent. Using (18), this gives

11



an equation system of 3 equations in 2 unknowns:

M





u
d
−1



 = 0, (22)

where

M =





Juu Jud 0
Gy

1 Gy
d,1 y1

Gy
2 Gy

d,2 y2



 . (23)

Equation (22) has a nontrivial solution if and only if det(M) = 0. Therefore
the necessary and sufficient condition for the existence of a nontrivial solution
is

c = det (M) = −y1(JuuG
y
d,2 −Gy

2Jud) + y2(JuuG
y
d,1 −Gy

1Jud)

= 0.
(24)

Inserting the parameter values from Table 2 gives

c = det(M) = y1 + 2y2. (25)

Thus, controlling c = y1 + 2y2 to zero yields optimal operation. This is the
same result as found by applying the null-space method in [20].

Even though obtaining the invariants via the determinant (Approach 2)
may seem cumbersome, it eliminates the necessity of inverting the measure-
ments and solving for the unknowns (Approach 1). While this is of little
advantage for systems of linear equations, Approach 2 can be generalized for
systems of polynomial equations which cannot easily be solved for the right
set of unknowns.

4. Elimination for systems of polynomial equations

4.1. The problem

We consider the optimization problem (8), where all functions are poly-
nomials in u,x and d. Let d̂ now denote the vector of all unmeasured
(unknown) variables,

d̂ =

[
x

d

]

, (26)
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not only including disturbances d, but also unknown states x, and let y

include all measurements, including all inputs. Thus, every variable belongs
either to d̂ or y, and we write the optimality conditions as

Jz,red(y, d̂) = 0

g(y, d̂) = 0,
(27)

and the measurement relations as

m(y, d̂) = 0. (28)

Remark 4. Note that in the elimination step, we do not distinguish between
internal states variables x and external disturbances d. All variables which
are not available as measurements (that is, d̂ = [x,d]T) have to be eliminated
from the optimality conditions using g and m.

For polynomial equations, eliminating the unknown variables from Jz,red

is not as straightforward as in the linear case, as we cannot just solve the
measurement equations for the unknowns and insert them in to the expression
of Jz,red (Approach 1). Even for the case of a univariable polynomial of degree
5 and higher, for example d5 − d + 1 = 0, there exist no general analytic
solution formulas, as was proven by [21]. Therefore we need to find another
way to eliminate the unknown variables d̂ from Jz,red(y, d̂) = 0 without
solving g and m for them first. For linear systems, we used the determinant
in (18) (Approach 2). The generalization of the determinant to systems of
polynomial equations is called the resultant. According to [22],

“the resultant of an overconstrained polynomial system charac-
terizes the existence of common roots as a condition on the input
coefficients”.

4.2. Results from polynomial elimination theory

For the elimination procedure, we consider multivariate polynomials f ∈
R(y)[d̂], that is, polynomials in the variables d̂, whose coefficients are func-
tions of y (that is, polynomials with variables y and coefficients in R). Given
an nd̂-tuple,

αi,j = (αi,j(1), αi,j(2), . . . , αi,j(nd̂)) , (29)

we use the shorthand notation

d̂αi,j = d̂
αi,j(1)
1 d̂

αi,j(2)
2 . . . d̂

αi,j(nd̂
)

n
d̂

. (30)
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Then we can write a system of n polynomials in compact form

fi(y, d̂) =

ki∑

j=0

ai,j(y)d̂
αi,j , i = 1..n, (31)

where the coefficients aij(y) 6= 0 are polynomials in R[y], that is, polynomials
in y with coefficients in R.

We consider the functions ai,j(y) as polynomial coefficients, and d̂ as
variables. For every polynomial fi, we collect the exponent vectors in the set
Ei = {αi,1, . . . ,αi,ki}. This set is called support of the polynomial fi.

The support of the polynomial f = d21 + d1d2 − 1, for example, is E =
{(2, 0), (1, 1), (0, 0)}. We denote as Qi = conv(Ei) the convex hull of the
support of a polynomial (that is the smallest convex set in R

n
d̂ containing

E).
Further, we denote the set of complex numbers without zero as C∗ (C∗ =

C \ 0).
Next we present some basic concepts from algebraic geometry taken from

[23].

Definition 1 (Affine variety). Consider f1, . . . , fn polynomials in C[d̂1, . . . d̂n
d̂
].

The affine variety defined by f1, . . . , fn is the set

V (f1, · · · , fn) =
{

(d̂1, . . . , d̂n
d̂
) ∈ C

n
d̂ : fi(d̂1, . . . d̂n

d̂
) = 0 i = 1 . . . n

}

(32)

Casually speaking, the variety is the set of all solutions in C
n
d̂ .

Definition 2 (Zariski closure). Given a subset S ⊂ C
m, there is a smallest

affine variety S̄ ⊂ C
m containing S. We call S̄ the Zariski closure of S.

Let L(Ei) be the set of all polynomials whose terms all have exponents in
the support Ei:

L(Ei) =
{

ai,1d̂
αi1 + · · ·+ ai,kid̂

αiki : ai,j ∈ C

}

(33)

The coefficients ai,j of a given polynomial then define a point in C
ki . Now

let
Z(E1, . . . En) ⊂ L(E1)× · · · × L(En) (34)
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be the Zariski closure of the set of all (f1, . . . fn) for which (31) has a solution
in (C∗)nd̂ (that is the Zariski closure of the points defined by all coefficients
ai,j ∈ C for which (31) has a root). For an overdetermined system of nd̂ + 1
polynomials in nd̂ variables we have following result:

Lemma 1 (Sparse resultant). Assume that Qi = conv (Ei) is an nd̂-dimensional
polytope for i = 1, . . . , nd̂ + 1. Then there is an irreducible polynomial R in
the coefficients of the fi such that

(f1, . . . , fn
d̂
+1) ∈ Z(E1, . . . , En

d̂
+1) ⇐⇒ R(f1, . . . , fn

d̂
+1) = 0. (35)

In particular, if

f1(d1 . . . dn
d̂
) = · · · = fn

d̂
+1(d1 . . . dn

d̂
) = 0 (36)

has a solution (d̂1, . . . , d̂n
d̂
) in (C∗)nd̂, then

R(f1, . . . , fn
d̂
+1) = 0. (37)

For a proof and a detailed treatment of the sparse resultant, we refer to
e.g. [24, 23].

Remark 5. The requirement that Qi has to be nd̂-dimensional is no restric-
tion and can be relaxed, [25]. However, for simplicity, we chose to present
this result here.

Depending on the allowed space for the roots, there are other resultant
types (e.g. Bezout resultants and Dixon resultants for system of homogeneous
polynomials), with different algorithms to generate them. Generally, they
will be conditions for roots in the projective space with homogeneous (or
homogenized) polynomials. For more details on different resultants, we refer
to [24, 25, 23].

We choose to use the sparse resultant, since most polynomial systems en-
countered in practice are sparse in the supports. That means, for example,
a polynomial of degree 5 in two variables x, y will not contain all 21 possible
combinations of monomials x5, y5, x4y, xy4, . . . , x4, y4, x3y, . . . , y, x, 1. Just
as in linear algebra, this sparseness can be exploited for calculating the re-
sultant. Another reason for using the sparse resultant is that it gives the
necessary and sufficient conditions for toric roots, that is, roots in (C∗)nd̂ ,
such that the input polynomials need not be homogeneous (or homogenized),
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as for other resultants. Finally, the sparse resultant enables us to work with
Laurent polynomials, that is, polynomials with positive and negative integer
exponents.

Usually, resultant algorithms set up a matrix in the coefficients of the
system. The determinant of this matrix is then the resultant or a multiple
of it. Generating the coefficient matrices and their determinants efficiently
is a subject to ongoing research, but there are some useful algorithms freely
available. An overview of different matrix constructions in elimination theory
is given in [22]. In this work, we use the maple software package multires

[26], which can be downloaded from the internet1. For more details on the
theory of sparse resultants, we refer to [24, 22, 27, 28].

4.3. Finding invariant controlled variables for polynomial systems

We are now ready to apply these concepts to the problem of selecting
controlled variables and self-optimizing control. As in the linear case above,
we assume that the active constraints and the model equations, g(y, d̂) =
0, and the measurement relations, m(y, d̂) = 0, are satisfied. To obtain
the nc = nDOF controlled variables needed for the unconstrained degrees of
freedom we have:

Theorem 2 (Nonlinear measurement combinations as controlled variables).
Given d̂ ∈ (R∗)nd̂, and ny + ng = nd̂, independent relations g(y, d̂) =

m(y, d̂) = 0 such that the system

g(y, d̂) = 0

m(y, d̂) = 0
(38)

has finitely many solutions for d̂ ∈ (C∗)nd̂, and let J
(i)
z,red denote the i-th

element in the reduced gradient expression. Let R(J
(i)
z,red,g,m), i = 1 . . . nc

be the sparse resultants of the nc polynomial systems composed of

J
(i)
z,red(y, d̂) = 0, g(y, d̂) = 0, m(y, d̂) = 0 i = 1 · · ·nc. (39)

Then controlling the active constraints, g(y, d̂) = 0, and the polynomial

invariants ci = R(J
(i)
z,red,g,m) = 0, i = 1, . . . , nc, yields optimal operation

to first order throughout the region.

1 http://www-sop.inria.fr/galaad/logiciels/multires
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Proof. The active constraints are controlled, thus g(y, d̂) = 0 and m(y, d̂) =
0 are satisfied. The system g(y, d̂) = 0,m(y, d̂) = 0 has only finitely many
solutions for d̂, so the set of possible d̂ is fixed. Moreover, we know that a
real solution d̂ to the subsystem g(y, d̂) = m(y, d̂) = 0 exists, since it is the
given disturbance d and the actual state x.

From Lemma 1, the sparse resultant gives the necessary and sufficient
conditions for the existence of a solution d̂ ∈ (C∗)nd̂ for (39). Therefore,

whenever J
(i)
z,red = 0, the resultant is zero (necessary condition). On the

other hand, if R(J
(i)
z,red,g,m) = 0 then (39) is satisfied (sufficient condition).

This holds for any solution d̂ ∈ (C∗)nd̂ , and in particular the “actual”
values of d̂. Because there are as many resultants as unconstrained degrees
of freedom, controlling R(J

(i)
z,red,g,m) for i = 1, . . . , nu satisfies the necessary

conditions of optimality in the region.

Remark 6. In cases where the d̂ /∈ (C∗)nd̂, we may apply a variable trans-
formation to formulate the problem such we get d̂ ∈ (C∗)nd̂. For example a
translation d = d̃− 1.

Remark 7. We assume that we have “well behaved” systems for each region.
In particular it is assumed that there are no base points (values of ai,j(y), for

which a polynomial in g or m vanishes for all values of d̂).

Example 2 (Elimination). This simple example illustrates the computa-
tion of the resultant for the case with one disturbance d and no unmeasured
states. Consider a system where we want to minimize a cost J subject to
one constraint. Assume the reduced gradient is Jz,red = NT∇zJ(y, d) =
a1,1(y) + a1,2(y)d, and the constraint is

g(y, d) = a2,1(y) + a2,2(y)d+ a2,3(y)d
2 = 0, (40)

where all coefficients ai,j(y) are known functions of the measurements. At
the optimum we must have

Jz,red = a1,1(y) + a1,2(y)d = 0. (41)

For arbitrary coefficients a1,1, a1,2, a2,1, a2,2, a2,3, this system of univariate
polynomials in d does not have a common solution. However if the sparse
resultant is zero, then there exist a common solution d 6= 0 for (40)-(41).
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In the case of univariate polynomials, the sparse resultant coincides with the
classical resultant, which is the determinant of the Sylvester matrix [18],

Syl =





a1,2(y) a1,1(y) 0
0 a1,2(y) a1,1(y)

a2,3(y) a2,2(y) a2,1(y)



 . (42)

The resultant is (where we omit writing explicitly the dependence on y)

R (Jz,red, g(y, d)) = det(Syl) = a21,2a2,1 − a1,2a1,1a2,2 + a2,3a
2
1,1. (43)

For a common root d∗ to exist, the polynomial in the coefficientsR(Jz,red, g(y, d))
must vanish. Since the constraints are satisfied, g(y, d) = 0 for any distur-
bance d ∈ R, controlling the resultant to zero is the condition for the reduced
gradient Jz,red to become zero. So for any real d 6= 0, the optimality conditions
will be satisfied whenever R(Jz,red, g(y, d)) = 0.

5. CSTR Case Study I

The purpose of this case study is to show on a small CSTR example, that
the proposed polynomial method can give polynomial variable combinations
that are suitable for practical implementation. Consider a CSTR (Figure 1),
with a feed stream F [m3/min] containing mainly component A, and two
first-order chemical reactions,

A −→ B r1 = k1cA

B −→ C r2 = k2cB.
(44)

Component B is the desired product, while C is an undesired side product.
At steady state we have one degree of freedom, the feed stream u = F , which
can be adjusted to achieve optimal operation. The operational objective is
to maximize the production of component B, which for a given feed rate F
corresponds to maximizing the concentration of B,

J = −cB. (45)

It is assumed that the unmeasured disturbances d are the rate constants
k1 and k2, which could vary due to catalyst decay, but also imperfect tem-
perature control in the reactor or unknown reaction mechanisms, which have
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cAF , cBF , cCF

cA, cB, cC

F

F

Figure 1: Isothermal CSTR (Case Study 1)

Table 3: Variables for Case Study 2

Symbol Description Type Value Unit

F Feed flow rate Known input u Varying m3/min
cA Outlet concentration A Measurement y Varying kmol/m3

cC Outlet concentration C ” ” kmol/m3

V Tank volume Known parameter Fixed m3

cAF Feed concentration A ” ” kmol/m3

cBF Feed concentration B ” ” kmol/m3

cCF Feed concentration C ” ” kmol/m3

cB Concentration of product Unmeasured state x Varying kmol/m3

k1 Reaction constant 1 Disturbance d Varying 1/min
k2 Reaction constant 2 ” ” 1/min
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been approximated by first-order kinetics. In addition, we assume that the
concentration cB is too difficult (or expensive) to measure online.

All variables and known parameters are shown in Table 3. The task is to
find a controlled variable c(y) which can be controlled using the total flow
rate u = F , and which maximizes the desired concentration. We use the
procedure from Table 1.

Step 1: Formulate the optimization problem. We collect the input u = F and
the states x = [cA, cB, cC ]

T into a vector

z = [F, cA, cB, cC ]
T. (46)

Then, the optimization problem is

min
z

J = −cB

s.t.

g(z) = 0,

(47)

where the model equations g(z) = 0 are derived from the mass balances,

g1 = FcAF − FcA − k1cAV = 0

g2 = FcBF − FcB + k1cAV − k2cBV = 0

g3 = FcCF − FcC + k2cBV = 0.

(48)

Step 2: Find regions of active constraints. In our example, there are no other
constraints than the model equations. Therefore we have only one region of
active constraints, which is defined by (48). Since we have four variables and
three constraints, the number of unconstrained degrees of freedom is

nDOF = nz − ng = 4− 3 = 1, (49)

and thus the number of controlled variables which we want to find, is nc =
nDOF = 1.

Step 3a: Formulate optimality conditions. Using z = [F, cA, cB, cC ]
T, the

first-order optimality conditions are

∇zJ(z) + [∇zg(z)]
T
λ = 0,

g(z) = 0.
(50)
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Step 3b: Eliminate Lagrangian multipliers. We calculate the null-space of
the constraint Jacobian N = [n1, n2, n3, n4]

T with

n1 = −F (F + k2V )(F + k1V ) (51)

n2 = −(F + k2V )F (cAF − cA) (52)

n3 = F (−k1V cAF + k1cAV − FcBF − cBFk1V + FcB + cBk1V ) (53)

n4 = k1[(−cBF + cB − cAF + cA − cCF + cC)V
2k2 + V (−FcCF + FcC)]

+(FcB − FcCF + FcC − FcBF )V k2 + F 2(cC − cCF ). (54)

The reduced gradient for our system is defined as Jz,red = [N(z)]T∇zJ(z) =
0. Using ∇zJ(z) = [0, 0, −1, 0]T we have that

Jz,red = −n3

= −F (−k1V cAF + k1cAV − FcBF − cBFk1V + FcB + cBk1V ).
(55)

Step 3c: Eliminating unknowns k1, k2 and cB. We have three model equations
g(z) = 0, (48), and three unknowns

d̂ =





cB
k1
k2



 , (56)

which need to be eliminated from Jz,red. Before we apply Theorem 2, we
check the assumptions:

1. Under normal operation (nonzero feed, etc.), when all other variables
are given, g(z) = 0 has one solution for k1, k2, cB (finite number of
solutions).

2. Under normal operation we have that k1 6= 0, k2 6= 0 and cB 6= 0.
Therefore we have that d ∈ (C∗)3.

Since all requirements are fulfilled, we can use the sparse resultantR(Jz,red, g1, g2, g3)
as controlled variable. We use the software multires [26] to calculate the
sparse resultant and obtain for the controlled variable

c = R(Jz,red, g1, g2, g3) = cAF cA + cAF cCF − cAF cC − c2A. (57)

This variable combination is simple and should be well suited for practical
implementation.
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Step 4: Control the invariant. Controlling the invariant such that

c = 0 (58)

yields optimal operation.

Remark 8. We note with interest that the self-optimizing invariant (57) is
simpler than the expression for the reduced gradient (55). This is good for
implementation, in other cases, however, it may become more complicated.
Generally it is difficult to make statements about the form of the invariant
a-priori.

6. Discussion: Changes in active constraints.

In this section we present a brief discussion on a method for detecting
when a disturbance d causes changes in the active set. Since we have derived
a set of controlled variables, which is equivalent to controlling the optimality
conditions, the idea is to use these controlled variables for detecting changes
in the active set.

This important topic has received some attention in literature, for exam-
ple Baotić et al. [29] worked on linear systems with quadratic objectives,
while [30] present an extremum seeking method, which can handle changing
active constraints. Other references are [31, 32, 33].

From an optimization perspective, there is no difference between a con-
straint and a controlled variable c(y), as the controlled variable may be
simply seen as an active constraint, and, similarly, an active constraint may
be considered a variable which is controlled at its constant setpoint. From
this perspective, there is no difference between an active constraint and the
model equations, either.

However, from an implementation point of view, there are differences be-
tween the model, the active constraints and the controlled variables c(y).
First of all, the active constraints and the controlled variables c(y) = 0 are
not satisfied automatically, that is one must control them to their setpoints.
Secondly, since their values are known (or calculated using known measure-
ments) they may be used for detecting when to switch control structures. To
do this, we make following main assumptions:

Assumption 1. The regions are adjacent and only two regions share a
boundary.
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Assumption 2. The disturbance moves the system continuously from one
region to another, and the system cannot jump over regions.

Assumption 3. Controlling the invariant c(y) = 0 and the constraint g =
0 is equivalent to controlling the optimality conditions, and the system is
operated optimally in the current region (c = g = 0). Moreover, we assume
that controlling c = g = 0 minimizes the cost J .

Assumption 4. The optimality conditions of two neighbouring regions are
simultaneously satisfied only on the interface between the regions.

In most practical cases, only one constraint will become active or inactive
at a time. However, it is also possible that several constraints become active
or inactive simultaneously. Starting in the correct region, we use following
rules to track the set of active constraints:

1. (One or more new constraints become active) When a new constraint
is hit, change the control structure to the corresponding region.

2. (One or more constraints become inactive) As soon as the controlled
variable c in one of the neighboring regions becomes zero (reaches its
optimal setpoint), change the control structure to the corresponding
region.

The reasoning behind the rules is that we start with an optimally oper-
ated system in region 1, and that controlling the c1 = g1 = 0 is equivalent to
controlling the optimality conditions in region 1 (Assumption 3). A slowly
varying (quasi-steady-state) disturbance will move the system gradually to-
wards the boundary (Assumption 2). On the interface between two regions,
the optimality conditions of both regions are satisfied. This is when the con-
trol structure is switched because either c2 of the new region will become
zero, or a constraint of the new region g2 will become active (Assumption
4). As the disturbance moves the system further into the new region, the
system stays optimal, because the optimality conditions of the new region,
c2 = 0 and g2 = 0, are controlled. Thus, if the boundary is the only place
where the optimality conditions of both regions are satisfied simultaneously
(Assumption 4), and if only two region share a common boundary (Assump-
tion 1), then we may use the controlled variables for determining when to
switch regions.

Although the assumptions will not generally hold for all polynomial sys-
tems, in many practical cases the rules can be used to detect when the con-
trol structure should be switched. The probability of the system operating
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at steady state on the boundary is zero (zero measure set), so this does not
affect the controllability of the whole system [33].

Similar to our approach, [30] present a method which detects active set
changes based on the optimality conditions. Their approach will be ap-
plicable in the same cases as our approach. However, there are significant
differences between [30] and our approach. We separate the steady-state opti-
mization problem and the dynamic control problem, by using self-optimizing
controlled variables. Once the steady-state optimal regions of active con-
straints are known, and control structures are set up for each region, we
start with designing the dynamic controllers and an appropriate switching
law, which can handle the dynamic system and avoids e.g. switching back
and forth for high frequency disturbances. In contrast, [30] aim at directly
designing a dynamic (extremum seeking) controller, which can detect chang-
ing active constraints.

The main focus of this work is to find steady-state optimal controlled
variables for different regions in the disturbance space. The actual dynamic
implementation with switching control structures is beyond the scope of this
paper and has to be studied separately.

7. CSTR Case Study II

The purpose of this case study, taken from [34], is to show how to find
variable combinations for use as controlled variables in different regions of
active constraints, and how to switch between the regions. In this case the
resulting polynomials are probably too complicated for practical implemen-
tation. Nevertheless, we illustrate by dynamic simulation that a simple feed-
back control structure based on these variables gives optimal steady state
operation.

We consider an isothermal CSTR with two parallel reactions, as depicted
in Figure 2. The reactor is fed with two feed streams FA and FB which
contain the reactants A and B in the concentrations cA and cB. In the main
vessel, the two components react to the desired product C, and the unde-
sired side product D. The reactants A and B are not consumed completely
during the reaction, so the outflow contains all four products. The CSTR is
operated isothermally, and we assume that perfect temperature control has
been implemented.
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FA

FB

q
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Figure 2: CSTR with two reactions (Case Study II)

The products C and D are formed by the reactions:

A + B
k1−→ C

2 B
k2−→ D.

(59)

We wish to maximize the amount of desired product (FA+FB)cC , weighted
by a yield factor (FA + FB)cC/(FAcA,in) [34]. The amount of removed heat
and the maximum flow rate are limited by the equipment, and we formulate
the mathematical optimization problem as follows [34]:

max
FA,FB

(FA + FB)cC
FAcAin

(FA + FB)cC (60)

subject to

FAcAin
− (FA + FB)cA − k1cAcBV = 0

FBcBin
− (FA + FB)cB − k1cAcBV − 2k2c

2
BV = 0

−(FA + FB)cC + k1cAcBV = 0

FA + FB ≤ Fmax

k1cAcBV (−∆H1) + 2k2c
2
BV (−∆H2) ≤ qmax.

(61)

Here, k1 and k2 are the rate constants for the two reactions, (−∆H1) and
(−∆H2) are the reaction enthalpies, qmax the maximum allowed heat pro-
duction, V the reactor volume, and Fmax the maximum total flow rate. The
measured variables (y), the manipulated variables (u), the disturbance vari-
ables (d), and the internal states (x) are given in Table 4, and the parameter
values of the system are listed in Table 5.
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Table 4: Overview of variables (Case Study II)

Symbol Description Comment

FA Inflow stream A Measured input u
FB Inflow stream B ”
F total flow Measured variable y

q Heat produced ”
cB Concentration of B ”
cA Concentration of A Unmeasured state x

cC Concentration of C ”
k1 Rate constant reaction 1 Unmeasured disturbance d

Table 5: Parameters (Case Study II)

Symbol Unit Value

k1 l/(mol h) 0.3 - 1.5
k2 l/(mol h) 0.0014
(−∆H1) J/mol 7× 104

(−∆H2) J/mol 5× 104

cA,in mol/l 2
cB,in mol/l 1.5
V l 500
Fmax l/h 22
qmax kJ/h 1000
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Figure 3: Optimal values of the constrained variables (Case Study II)

We write the combined vector of states x = [cA, cB, cC ] and manipulated
variables u = [FA, FB] as

z =
[
cA, cB, cC , FA, FB

]T
. (62)

7.1. Identifying operational regions

Next, the system is optimized off-line for the range of possible distur-
bances, which is assumed to be the single disturbance d = k1. Based on
which constraints are active, the system can be partitioned into three adja-
cent critical regions. The critical regions are visualized in Figure 3, where the
normalized constraints are plotted over the disturbance range. In the first
region, for disturbances below about k1 = 0.65 l

mol h
, the flow constraint is the

only active constraint. The second critical region, for values between about
k1 = 0.65 l

mol h
and k1 = 0.8 l

mol h
, is characterized by two active constraints,

i. e. both the flow constraint and the heat constraint are active. Finally, in
the third region, above about k1 = 0.8 l

mol h
, only the heat constraint remains.
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7.2. Eliminating λ

In each critical region, the set of controlled variables contains the active
constraints (we know that they should be controlled at the optimum). This
leaves the unconstrained degrees of freedom, which is the difference between
the number of manipulated variables and the active constraints, nDOF =
nz − ng. For each of the unconstrained degrees of freedom one controlled
variable is needed.

In the first critical region this gives nDOF,1 = 5 − 4 = 1 unconstrained
degrees of freedom, so apart from the active constraint, which is the first
controlled variable, we need to control one more variable (invariant).

To obtain the reduced gradient, we calculate the null space of Jacobian of
the active set NT

z and multiply it with the gradient of the objective function
∇zJ(z,d) to obtain Jz,red,1 = NT

z ∇zJ . Depending on the algorithm to com-
pute the null space, this may become a fractional expression, but since we
want to control the process at the optimum, i. e. we control Jz,red,1 to zero,
it is sufficient to consider only the numerator of Jz,red,1. This is possible be-
cause a fraction vanishes if the numerator is zero (provided the denominator
is nonzero which is the case here because ∇zg has full rank). For the critical
region 1, we obtain from (11) the reduced gradient

Jz,red,1 = −(FA + FB)
2cC

[
−3cCF

2
BFA − 3cCF

2
AFB

− 4cCcBF
2
Ak2V − 4cCk2V

2k1c
2
BFA − cCF

3
A

− cCF
3
B − 4cCk2V

2k1c
2
BFB − cCcBF

2
Ak1V

− 4cCcBF
2
Bk2V − cCcBF

2
Bk1V − cCF

2
AcAk1V

− cCF
2
BcAk1V − 8cCFAcBFBk2V

− 2cCFAcBFBk1V − 2cCFAFBcAk1V

+ 8FAk1V
2cA,ink2c

2
B + 2F 2

Ak1V cBcA,in

+ 2FAk1V FBcBcA,in − 2F 2
Ak1V cB,incA

−2FAk1V FBcB,incA] ,

(63)

which should be controlled to zero. This expression may be simplified slightly,
since it is known that (FA + FB)

2cC 6= 0. It is therefore sufficient to find an
invariant which is equivalent to controlling the factor in square brackets in
(63).

Similarly, in the second critical region nDOF,2 = 5 − 5 = 0, and here we
simply control the active constraints, keeping q at qmax and F at Fmax.
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In the third critical region nDOF,3 = 5 − 4 = 1, and we use one of the
manipulated variables to control the active constraint (q = qmax) while the
other one is used to control the invariant derived from Jz,red,3, which is an
expression similar to (63).

7.3. Eliminating unknown variables

The reduced gradients for the first and the third critical region Jz,red,1 and
Jz,red,3 still contain unknown variables, namely k1, cA and cC , and cannot
be used for feedback control directly. To arrive at variable combinations
which can be used for control, we include all known variables into y, and all
unknown variables into d̂, such that d̂ = [k1, cA, cC ]

T. Then we write the
necessary conditions for optimality for each region as

Jz,red(y, d̂) = 0

g(y, d̂) = 0.
(64)

Considering the known variables y as parameters of the system, we want to
find conditions on these parameters such that (64) is satisfied. The system
has nd̂ = 3 unknown variables, k1, cA and cC , of which we know that they
are not zero. This corresponds to solutions [k1, cA, cC ] ∈ (C∗)3. According to
Section 4 we have that (64) is satisfied if and only if the sparse resultant is
zero.

For the first region, we use the sparse resultant of the system consisting of
the invariant (63), the model equations (the first three equality constraints in
(61)) and the first (active) inequality constraint in (61) to eliminate k1, cA, cC
and FB and to calculate the controlled variable combination. The computa-
tions were performed using the multires software [26], and the controlled
variable for region 1 is

c1 = −c2b,inF
2
A − F 2

AcA,incb,in + 6FAcA,ink2c
2
bV + 2FAcA,inFmaxcb

− FAcA,inFmaxcb,in + F 2
maxc

2
b + c2b,inF

2
max + 4V 2k2

2c
4
b

− 2cb,inF
2
maxcb − 4V k2c

2
bcb,inFmax + 4V k2c

3
bFmax.

(65)

Note that this invariant has become simpler than the reduced gradient (63).
In the second critical region control is simple; the two degrees of freedom

are used to control the two active constraints F = Fmax and q = qmax.
The third critical region is controlled similar to the first one. One degree

of freedom is used to control the active constraint, and the second degree
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of freedom is used to control the resultant. The model equations (the first
three equations together with the energy constraint) in (61) and the reduced
gradient are used to compute the resultant. Thus, the unknown variables
k1, cA, cC , and FB are eliminated from the reduced gradient. The controlled
variable for region 3 is

c3 = −4V c2Bk2∆H2FAcA,incB,inqmax∆H1 + FAc
2
B,inq

2
max∆H1

+ 4V 2c4Bk
2
2∆H2FAcA,incB,in∆H2

1 − 4V 2c4Bk
2
2∆H2

2FAcA,incB,in∆H1

− 2V c2Bk2FAcA,incB,in∆H2
1qmax − 4V c2Bk2∆H2FAc

2
B,in∆H1qmax

− 2V c2Bk2∆H2F
2
AcA,inc

2
B,in∆H2

1 + 8V c3Bk2∆H2∆H1FAcA,inqmax

− 8V 2c4Bk
2
2∆H2cB,in∆H1qmax − 12V 2c4Bk

2
2FA∆H2

2c
2
B,in∆H1

− 8V 2c5Bk
2
2∆H2FAcA,in∆H2

1 + 8V 2c5Bk
2
2∆H2

2∆H1FAcA,in

+ 8V 2c5Bk
2
2FA∆H2

2cB,in∆H1 − q3maxcB,in + 2cBq
3
max

−∆H1cB,inFAcA,inq
2
max + 2cBFAcA,inq

2
max∆H1 + F 2

AcA,inc
2
B,in∆H2

1qmax

− 2cBFAcB,inq
2
max∆H1 + 8V c3Bk2∆H2q

2
max + 8V 2c5Bk

2
2∆H2

2qmax

+ 8V 3c6Bk
3
2∆H3

2cB,in − 2cBF
2
AcA,incB,in∆H2

1qmax

− 2V c2Bk2∆H1q
2
maxcB,in − 2V c2Bk2∆H2q

2
maxcB,in

+ 4V 2c4Bk
2
2∆H2

2cB,inqmax − 8V 3c6Bk
3
2∆H2

2cB,in∆H1.

(66)

Due to the structure of the polynomials in region 3, here the invariant
has become more complicated after eliminating the unknown variables.

Although the expressions are quite complicated, they contain only known
quantities, and can be simply evaluated and used for control. Before actually
using the measurement combinations for control, they are scaled so that the
order of magnitude is similar. That is, c1 is scaled (divided) by 10, and c3 is
scaled by ∆H2

1∆H2FAFB.

7.4. Using measurement invariants for control and region identification

Having established the controlled variables for the three critical regions,
it remains to determine when to switch between the regions. Starting in the
first critical region, the flow rate is controlled such that FA + FB = Fmax,
and the first measurement combination c1 is controlled to zero. As the value
of the disturbance k1 rises, the reaction rate increases as well as the required
cooling to keep the system isothermal, until maximum cooling is reached,
Figure 4. When the constraint is reached, the control structure is switched
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Figure 4: Optimal values of controlled variables (Case Study II)

to the next critical region, where the inputs are used to control q = qmax

and FA + FB = Fmax. While operating in the second region, the controlled
variables of the neighboring regions are monitored. As soon as one of the
variables c1 or c3 reaches its optimal setpoint (i. e. 0) for its region the control
structure is changed accordingly. Specifically, when k1 is further increased,
such that c3 = 0 is reached, we must keep FA +FB < Fmax such to maintain
the value c3 = 0.

7.5. Implementation and dynamic simulations

In the steady-state case, we have assumed that we have ideal temperature
and level control. In practice this has to be achieved by control, so we modi-
fied the model (61) such that the reactor holdup (level) and the temperature
can vary dynamically. A detailed description of the dynamic model with its
parameters is given in [35].
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Control structure in region 1. All variables are controlled using PI controllers.
The control structure in region 1 is presented in Figure 5. The cooling
duty q is used to control the temperature and the feed flow FA is used to
control the invariant c1. Further, we use the outflow F to control the level,
and the feed FB to control the throughput to F = Fmax. Since we are
controlling a constraint with a PI controller, we need some back-off in order
not to become infeasible. We assume that this has already been taken into
consideration when formulating the constraints, such that 0.1 l/h deviations
from Fmax = 22 l/h can be tolerated.

Control structure in region 2. In this region we simply keep F = Fmax and
q = qmax. Using PI controllers, the temperature is controlled by manipulating
the input FA, and the level is controlled by FB.

Control structure in region 3. All variables are controlled using PI controllers.
The selected pairing is shown in Figure 6. The optimal value for cooling,
q = qmax is set in open loop. The feed flow FA is used to control the invariant
c3, and the feed flow FB is used to control the temperature. As in region 1,
the outflow F is used to stabilize the level of the reactor.

In Figure 7 we show the dynamic behavior of the system. Starting in re-
gion 3, we control the heat constraint q = qmax and the invariant c3. The dis-
turbance decreases stepwise until the flow constraint becomes active. When

32



FA

FB

SOC
c3

TC

LC

qmax

F

Figure 6: Variable Pairings for Region 3 (Case Study II)

the constraint is hit, we change the corresponding control structure to region
2, where we control F at Fmax and q at qmax. We monitor the controlled vari-
ables of the neighboring regions, and as the disturbance decreases further,
we switch the control structure to region 1 when the controlled variable c1
becomes zero.

The simulations demonstrate nicely that it is possible to obtain optimal
operation by controlling the invariants using simple PI controllers. Moreover
we see that the control structure including active constraints can be changed
based on monitoring the controlled variables and the constraints.

8. Discussion

Applicability. Since the sparse resultants can give “large” expressions, our
method is best suited for small systems with not too many constraints and
measurement equations. This is further emphasized by the fact that calcu-
lating the analytical determinant for large matrices is computationally de-
manding and that the construction of the resultant matrices is based on
the computation of the mixed volume, which is a hard enumerative problem
[23]. However, large systems can often be decomposed into smaller subsys-
tems which can be considered (optimized) independently. In those cases our
method can be applied to a subsystem.

Depending on the problem structure, the invariants may become more
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complicated than the reduced gradient, as in region 3 of case study II, or
much simpler, as in case study I and region 1 of case study II.

Alternative elimination of λ. The elimination of the Lagrangian multipliers
could also been done simultaneously with the other unknown variables us-
ing the resultant. Under the strict complementarity condition (λi is nonzero
whenever the corresponding constraint is active), the solutions for λ lie in
the toric variety, and therefore the sparse resultant gives necessary and suf-
ficient conditions on the known variables so that the KKT system has a
solution. We chose to apply the two-step procedure, where we first form
the reduced gradient, and then eliminate the unknown variables using the
resultant, because this results in lower computational load when computing
the resultants.

Gröbner bases. As an alternative to using resultants, our initial approach
was to compute the controlled variable combinations by Gröbner bases [18].
We calculated a Gröbner basis for the ideal generated by the optimality con-
ditions using a suitable elimination ordering. Then we used a polynomial
from the elimination ideal as controlled variable. However, in this approach
it is not straightforward to find an ordering that eliminates the unknown
variables while not yielding the “trivial solution” (i. e. the invariant is always
zero when the constraints are satisfied). Another disadvantage with this
Gröbner basis approach is that the selected invariant may give rise to addi-
tional “artificial solutions” which are not solutions of the original optimality
conditions.

A similar approach is to calculate a Göbner basis for the ideal generated
by the active constraints g(y, d̂) and m(y, d̂) using some elimination order-
ing, and to reduce NT∇zJ modulo the ideal. This avoids the trivial solution,
however, the problem of choosing a monomial ordering which eliminates all
unknown variables, remains. Generally the Gröbner basis approach tends to
give even more complicated expressions than the sparse resultant approach
presented here.

Number of equations/measurements. If there are more polynomial equations
than unknowns, the engineer must choose a set of nd̂ polynomials to use for
eliminating the unknowns. For different sets of polynomials, however, the
controlled variables will look quite different. The best (in terms of simplicity)
choice depends on the structure of the equations, and is thus specific to the
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problem. However, as a general guideline, we would advise to keep the degrees
of the polynomials low.

Although we can specify which nd̂ variables must be eliminated from the
reduced gradient, the number of variables which remain depends strongly on
the structure of the model equations and the eliminated variables. In some
cases all information about the optimum is contained in very few variables,
in other cases many variables are needed to specify the optimum.

In the case where ny + ng ≤ nd̂, that is, fewer equations than unknown
variables, it is generally not possible to find invariants, which are equiva-
lent to controlling the optimality conditions. Instead, we need to find the
best possible approximation in terms of the cost. For linear systems with
quadratic cost, the method in [8] can be used. How this can be generalized
to polynomial and nonlinear systems is still an open problem.

Noise, plant-model mismatch. The resultant method, as presented in this
paper, does not take into account measurement noise or model error. One
possible approach to compensate for plant-model mismatch could be to use
an experimental method such as NCO tracking [12] to adjust the setpoints
or other parameters in the invariants. However, this is beyond the scope
of this work; our goal was to generalize the null-space method [6] and to
demonstrate that the concept of finding variables which remain constant at
optimal operation is possible also for polynomial systems.

Controllability. Since our approach separates the controlled variables selec-
tion procedure and the controller design, it must be verified that the mea-
surement invariants are controllable using simple controllers. That is, the
controlled variables c must cross zero. Proving this is not trivial, and beyond
the scope of this paper. However, in our experience so far, the measurement
invariants could be controlled by simple controllers.

Relationship to NCO tracking. The presented method is based on the same
idea as NCO tracking [12, 34]. However, in contrast to [12] and [34], where the
optimality conditions are solved for the optimizing inputs, this work focuses
on finding the right outputs which express the optimality conditions. The
problem of generating the inputs which control the outputs to zero is dealt
with separately. In most cases, inputs can be generated by feedback control,
e.g. PI controllers.
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9. Conclusions

Previously, the concept of self-optimizing control was only treated in the
framework of linear models with quadratic cost functions. This paper con-
tains the first contribution to extend the ideas to the more general class of
polynomial systems. Although further work should be dedicated to handling
the effect of noisy measurements and finding ways to approximate the in-
variant using simple and robust measurement polynomials, the polynomials
obtained by the sparse resultant can become quite simple for some systems,
and then they may also be implemented in real processes.
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