Preprints of the 8th IFAC Symposium on Advanced Control of Chemical Processes

The International Federation of Automatic Control
Furama Riverfront, Singapore, July 10-13, 2012

Control structure design for stabilizing
unstable gas-lift oil wells

Esmaeil Jahanshahi, Sigurd Skogestad' and Henrik Hansen

Department of Chemical Engineering, Norwegian University of Science
and technology, Trondheim, NO-7491 (e-mail: skoge@nitnu.no).

Abstract: Active control of the production choke valve is the recommended solution to
prevent casing-heading instability in gas-lifted oil wells. Focus of this work is to find a simple
yet robust control structure for stabilization of the system. In order to find suitable control
variables, a controllability analysis of the system with different candidate control variables
and two alternative manipulated variables was performed. Moreover, to include robustness and
performance requirements at the same time, the controllability analysis was extended to a
mixed sensitivity Ho, optimization problem. A control structure using only the available top-
side pressure measurements was found to be effective to stabilize this system.
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1. INTRODUCTION

Gas-lift is one of the processes which are used to artificially
lift oil from wells where there is insufficient reservoir pres-
sure to produce from the well. This method is also used for
increasing the production rate of oil wells. In this process,
gas is routed from the surface into the annulus and then
injected deep into the tubing in order to be mixed with
the fluid from the reservoir. This reduces the density of
the column of fluid in the tubing and lightens it, Leads to
a lower pressure at the bottom-hole. Hence the production
rate from the low pressure reservoir is increased.
Gas-lifted oil wells often become unstable at their decline
stages. The unstable operation is characterized by large
oscillatory variations in the pressure and the production
rate. There are several phenomena causing instability in
gas-lifted oil wells; we focus on the “casing-heading” in-
stability in this paper.

The oscillatory flow condition is undesirable and an ef-
fective solution is needed to prevent it. The conventional
solutions include reducing the opening of the production
choke valve and increasing the amount of the injected gas.
However, closing the production choke increases the back
pressure of the valve, and reduces the production rate from
the oil well; also increasing the injected gas is costly.
Automatic control was first used by Jansen et al. (1999) to
stabilize unstable gas-lifted oil wells. Measurements such
as pressure, flow rate or fluid density are used as the
control variables and the top-side choke valves are the
manipulated variables. The bottom-hole pressure in well
is the recommended control variable for anti-slug control
of gas-lift wells, but this measurement is not available
usually. Therefore, Eikrem et al. (2004) and Aamo et al.
(2005) utilized model-based observers to estimate bottom-
hole pressure from top-side measurements.

We look for other possibilities for anti-slug control of
gas-lift oil wells. In this way, we examine all of possible
measured variables of the system to find suitable control
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variables for stabilization. In addition, we consider the
gas-lift choke valve as a secondary manipulated variable
and we examine if using the second manipulated variable
improves the control. Similar works on control structure
design for stabilizing riser slugging has been done by
Sivertsen et al. (2009), Storkaas and Skogestad (2007).
The controllability analysis is used as a tool to find con-
trol variables satisfying performance and robustness re-
quirements. The controllability is evaluated by minimum
achievable peaks of different closed-loop transfer functions.
The control variables or combinations of them resulting in
smaller peaks are preferred (Skogestad and Postlethwaite
(2005)).

However, the controllability analysis is a mathematical
tool for linear systems. Knowing that nature of the system
and even the simplified model used in this work is highly
nonlinear, the controllability analysis only gives insight
into the necessary conditions and limitations.

For the controllability analysis and the model-based con-
trol design, a simple dynamical model of the system is
preferred. First, a three-state model for casing-heading
instability was developed in ABB AS, then Dvergsnes
(1999) added two states for energy in annulus and tubing.
Imsland (2002) ignored the two energy states, but he used
more sophisticated pressure drop calculations. A simplified
version of the Imsland model was used by Eikrem et al.
(2004) which is the basis of the model presented in this
paper. We add a pressure loss term due to friction, also we
use a new approach by Jahanshahi and Skogestad (2011)
for calculating phase fractions and density at top of the
tubing.

This paper is organized as the following. A modified simpli-
fied model for the casing heading instability is introduced
in Section 2. Afterwards, the theoretical background for
the controllability analysis is given in Section 3, then con-
trollability analysis results are presented in Section 4. In
section 5, we choose suitable control structures, and finally
the main conclusions and remarks will be summarized in
Section 6.
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Fig. 1. Schematic presentation of candidate control vari-
ables and manipulated variables

2. SIMPLIFIED DYNAMICAL MODEL

A schematic illustration of gas-lift oil wells is shown in
Fig. 1. Similar to the model introduced by Eikrem et al.
(2004), state variables of our model are x; mass of gas in
the annulus, zo mass of gas in the tubing and x3 mass of
liquid in the tubing. We consider also production of gas
from the reservoir, therefore our state equations are in the
following form:

—_
~—

Tl = WG in — WG, inj (
$2 = WaqG,inj + WG, res — WG, out

(tS = WL,res — WL, out (3)
In this model, wg, i is the mass flow rate of inlet gas to
the annulus and wg in; is the mass flow of injected gas
from the annulus into the tubing. wg res and wy, s are
gas and liquid mass flow rates from the reservoir to the
tubing. wa out and wr, ou¢ are the mass flow rates of gas
and oil outlet from the tubing, respectively.
There is only gas phase inside the annulus, and pressure
at top of the annulus can be calculated by ideal gas law.

RTafEl
Py = 4
t MGV@ ( )
Then, the pressure at bottom of the annulus is given by
z19L,
Py = Pay + 1‘1 : (5)
Thus, the density of the gas phase at this point is
PayMg
e . 6
PG,ab RT, ( )

The inlet gas to the annulus comes from a source tank or
a compressor with the pressure Py, and the density of gas
through the gas-lift choke can be written as:
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PgsMG
RT,

(7)

PG, in =

Therefore, gas mass flow into the annulus is

waG,in = KgsUQ\/pG,inmaI(Pgs — Py, 0)~ (8)
Because of high pressure, the fluid from the reservoir
is saturated (Ahmed (2006)). Hence, we assume that
distance between the bottom-hole and the injection point,
Ly, is filled by liquid phase. This must be accounted for in
calculating the volume of gas in the tubing. Consequently,
the density of gas at top of the tubing follows as
T2

TV, + SonLon — x3/pr

(9)

PGt
Pressure at top of tubing using ideal gas law:

pa,+ T}

P, =
tt MG

(10)

Average mixture density inside tubing:

T2 + x3 — prLSpn Ly
Vi

Pmiz =

(1)

Average liquid volume fraction inside tubing:

— pr.Spn L
_ T3 — PLObhLbh (12)
Vior
GOR is the constant mass ratio of gas and liquid produced
from the reservoir, and gas mass fraction at bottom of the
tubing is

agy=GOR/(GOR+1). (13)
Before calculating the inlet mass flow rate from the reser-
voir by use of the bottom-hole pressure in equation (27),
the pressure drop due to friction is needed to determine
the bottom-hole pressure. However, we need to know the
inlet flow rate to calculate the friction term. We evade this
problem by using an average of the inlet flow rate, W,
in calculation of friction terms.

Average superficial velocity of liquid phase in tubing:

A1 — o ) Wres

sl,it — 14
t pL'/TDtQ ( )
Average superficial velocity of gas phase:

st = 4(wG,in + ag’bwres) (15)

2
pamD;

We have not calculated flow rate of the injected gas from
the annulus into the tubing yet, instead we use wg iy in
equation (15); we believe averages of these two variables
are equal.

Average mixture velocity in tubing:

ﬁm,t = Usl,t + Usg,t (16)
Reynolds number of flow in tubing:
PrizUm.tD

Re; = pmmUmﬂf t (17)
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An explicit approximation of the implicit Colebrook-White
equation proposed by Haaland (1983) is used as the
friction factor in the tubing.

1 e/D\'"" 6.9
— = —1.8l _— —_— 18
~ 0810 < 37 ) + Re, (18)
Pressure loss due to friction in tubing:
=2
aL}‘tﬁmiw Um tLt
= : 19
! 2D, (19)

Pressure at bottom of the tubing where gas being injected
from annulus:

Pip = Pt + Prniz9Le + Fi (20)
Mass flow rate of gas injected into tubing:
WG, ing = K?n] \/pG,abmax(Pab - Ptb, 0) (21)
Liquid velocity at bottom-hole:
TT w?‘es
Up = ———— 22
Y LS (22)
Reynolds number of flow at bottom-hole:
U1sD
Rey, = pLU 1, u Db (23)
Friction factor at bottom-hole:
e/D\"" 6.9
— = —1.81 —_— 24
N 0810 l( 37 ) + Rey (24)

Pressure loss due to friction from bottom-hole to injection
point:

—2
- Apr2%;bLbh (25)
Pressure at bottom-hole:
Py, = Py + Fy + prgLun (26)
Mass flow rate from reservoir to tubing:
Wres = PImax(Pyres — Pyp, 0) (27)
Mass flow rate of liquid from reservoir to tubing:
Wrres = (1 — O p)Wres (28)
Mass flow rate of gas from reservoir to the well:
WG res = A pWres (29)
Density of gas at bottom of tubing:
PG tb = PZJJ\{G (30)
Liquid volume fraction at bottom of tubing:
apy = WL, resPG,tb (31)

WL, resPG,tb + (wG;inj + wG,res)pL

With the same assumptions used by Jahanshahi and
Skogestad (2011), liquid volume fraction at top of the
tubing can be written as

apt = 20p —apy, (32)
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Fig. 2. Stability transition of system, blue markers for

OLGA and red markers for simplified model

Then, the mixture density at top of the tubing will be

Pmizt = o pL + (1 —ari)pa,- (33)
Mass flow rate of mixture from production choke:
Wout = Kprul \/pmia:,tmax(Ptt - POa 0) (34)
Volumetric flow rate of production choke:
Qout = wout/pmiw,t (35)
Gas mass fraction at top of tubing:
1—
O[g,t _ ( aL,t)pG,t (36)
arpr + (1 —ari)pc,
Mass flow rate of outlet gas from tubing:
waG,out = ag‘,twout (37)
Mass flow rate of outlet liquid from tubing:
WL, out = (]- - Oégyt)wout (38)

The simplified model was fitted to a test case implemented
in the OLGA simulator. Constants and parameters used
in the model are given in Table 1. The stability map of the
system is shown in Fig. 2 where stability transitions of the
OLGA model and the simplified model are compared. The
controllability analysis and all simulations are performed
at the operating point u; = 0.6 and wg,;n, = 0.86 [kg/s]
which is located in the unstable region of the stability map.
It was not possible to add the gas-lift choke to the OLGA
model, therefore we used a constant gas source equal to
wa,in = 0.8 [kg/s] in the OLGA model and we fitted the
model with the constant gas rate. Then, we added the gas-
lift choke valve to the Matlab model so that the simplified
model gives wg i = 0.8 [kg/s] when the gas-lift choke
opening is us = 0.4 and the production choke opening is
11 = 0.3. The system switches from stable to unstable at
this operating point. Finally, we opened the production
valve to u; = 0.6 in order to make the system unstable;
the inlet gas rate becomes wg ., = 0.86 [kg/s] at this
operating point.
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3. CONTROLLABILITY ANALYSIS: THEORETICAL
BACKGROUND

The state controllability is not considered in this work; in-
stead the concept of input-output controllability as defined
by Skogestad and Postlethwaite (2005) is used.

Definition 1. (Input-output) controllability is the abil-
ity to achieve acceptable control performance; that is, to
keep the outputs (y) within specified bounds or displace-
ments from their references (r), in spite of unknown but
bounded variations, such as disturbances (d) and plant
changes (including uncertainty), using available inputs (u)
and available measurements (ym, and d, ).

The ability of the system to reach performance and ro-
bustness requirements with the control can be evaluated
quantitatively by calculating minimum achievable peaks
of different closed-loop transfer functions. These peaks are
related to physical limitations of a the system in terms of
controllability and they are dependent on the location of
poles and zeros of the open-loop system.

3.1 Transfer functions

We assume a linear model in the form y = G(s)u+ Gq(s)d
with a feedback controller u = K(s)(r —y — n) in which
d represents disturbances and n is the measurement noise.
The resulting closed-loop system is

y=Tr+ SGqd —Tn, (39)
where S = (I + GK)™! and T = GK(I + GK)™! =
I — S represent the sensitivity and the complementary
sensitivity transfer functions, respectively. The control
input to the closed-loop system is

u=KS(r—Gqd—n). (40)

In addition to the transfer functions introduced above,
the transfer function SG is related to the effect of input

Table 1. Parameters values used in simulations

Symb. Description Values Units
R universal gas constant 8314 J/(kmol.K)
g gravity 9.81 m/s?
m viscosity 3.64 x 1073 Pa.s
oL liquid density 760 kg/m3

Mg gas molecular weight 16.7 gr
Ta annulus temperature 348 K
Va annulus volume 64.34 m3
Lqg annulus length 2048 m3
Pys gas source pressure 140 bar
Vi tubing volume 25.03 m3
Sun CI‘(.JS&.}—SB(.:thn b.elow 0.0314 m2
injection point
I length below 75 m
bh injection point
T tubing temperature 369.4 K
GOR mass gas oil ratio 0 —
Pres reservoir pressure 160 bar
Bros average mass ﬂow 18 kg/s
from reservoir
Dy tubing diameter 0.134 m
Ly tubing length 2048 m
PI productivity index 2.47e-6 kg/(s.Pa)
Kgs gas-lift choke cons. 9.98 x 10~5 -
Kinj injection valve cons. 1.40 x 10~4 —
Kpr production choke cons.  2.90 x 10~3 -
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disturbances on the control error r — y. The closed-loop
transfer functions S,7T, K.S and SG can also be regarded
as the measures of robustness against different types of
uncertainty. We prefer to keep them as small as possible
to achieve better robustness properties of the control sys-
tem. For instance, the sensitivity transfer function S is
also the sensitivity to inverse relative uncertainty, which
is a good indication of uncertainty in the pole locations
(Skogestad and Postlethwaite (2005)). Therefore, the low-
est achievable peaks of the closed-loop transfer functions
S, T,KS,SG, KSG; and SG4 provide information regard-
ing both achievable performance and possible robustness
issues.

By the “peak” we mean maximum value of frequency
response or Hoo norm, |M||. = max, |M(jw)|, that is
simply the peak value of the transfer function. The bounds
are not dependent on the controller K, and they are
physical properties of the system itself. The bounds are,
however, dependent on a systematic and correct scaling of
the system. Scaling of the system will be explained later
in this Section.

The lowest achievable peaks in sensitivity and comple-
mentary sensitivity transfer functions, denoted Mg ymin
and Mt i, are closely related to the distance between
the unstable poles (p;) and zeros (z;). Considering SISO
systems, for any unstable (RHP) Zero z:

H |Z+pz

|Z _pz

(41)

Note that the bound approaches infinity as z approaches
p;. For systems with only one unstable zero, the bound
holds with equality.

Formulae for calculating bounds on minimum achievable
peaks of the other closed-loop transfer functions are given
by Skogestad and Postlethwaite (2005), also by Storkaas
and Skogestad (2007).

8.2 Mized Sensitivity Controllability Analysis

The above controllability measures were also considered
by Sivertsen et al. (2009), Storkaas and Skogestad (2007).
However, these measures considering only one of transfer
functions at any time, may give conflicting results. To get a
single measure (v), we consider an Ho, problem where we
want to bound &(S) for performance, (T for robustness
and to avoid sensitivity to noise and T (KS) to penal-
ize large inputs. These requirements may be combined
into a stacked Ho, problem (Skogestad and Postlethwaite
(2005)).

W,KS
WrT
WpS

min [ N(K)|., N2 (42)

where Wp and W determine the desired shapes of sensi-
tivity S and complementary sensitivity 7'. Typically, W, 1
is chosen to be small at low frequencies to achieve good
disturbance attenuation (i.e., performance), and Wy !
chosen to be small outside the control bandwidth, which
helps to ensure good stability margin (i.e., robustness).
Solution to this optimization problem is a stabilizing con-
troller K corresponding to S, T and K .S which satisfy the
following loop shaping inequalities:
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Fig. 3. Closed-loop transfer function for mixed sensitivity

control design

(K S(jw)) < vo (W (jw))
(T (jw)) < vo (Wi (jw)) (43)
7(S(jw)) < va(Wp'(jw))

To have the same cost function in all simulation tests
for the measurement selection, all the candidate control
variables shown in Fig. 1 are included in the y; port and
the control variable(s) for test is in the port ys of the
generalized plant in Fig. 3. The value of « in equation (43)
should be as small as possible for good controllability.

3.8 Scaling

One important step before controllability analysis is scal-
ing of inputs, outputs and disturbances of the model. In
Definition 1, the bound that the control variable must be
kept within is not the same for different control variables
shown in Fig. 1. For a correct comparison between candi-
date control variables, they must be scaled based on their
maximum allowed variations, in a way that maximum al-
lowed variation for all of them in the scaled model become
(-1,1). The scaling factors D, for different measurements
are given in Table 2. Disturbances in the scaled model
are also expected to vary in the range of (—1,1). The
maximum expected value of the both disturbances (P.s
and Pg,) is 3 bar variation around their nominal values.
Therefore, the scaling matrix of the disturbances:

30]

03
Controllability analysis is performed at the operating point
up = 0.6 and ugy = 0.4. Valves can go to filly-open or fully-
closed condition, therefore the maximum possible change
for the both manipulated variables is 0.4, this means

50l

0 04
4. CONTROLLABILITY ANALYSIS RESULTS

|

D, =

4.1 Bounds on Minimum Achievable Peaks

Minimum achievable peaks for different closed-loop trans-
fer functions are given in Table 2 and Table 3. Minimum
peaks of |S| = |T'| for Py, pmisz,s and ar, in Table 2 are
larger than 1, and it is expected to have difficulty using
these measurements as control variables.

The reason for large values of |S| = |T'| is RHP-zeros in
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Fig. 4. Location of RHP-poles of system and RHP-zeros of
tubing top pressure for us = 0.4 and different values
of ug

transfer functions. Location of RHP-poles of the system
and RHP-zeros of Py; for us = 0.4 and different production
choke openings u; are shown in Fig. 4. The system has
a pair of complex conjugate poles on the imaginary axis
for u; = 0.3. These two poles move to the RHP and the
system becomes unstable for u; > 0.3; this is in agreement
with the stability map in Fig. 2. P, shows two RHP-
zeros for all u; values. One of the RHP-zeros does not
move so much and it is always close to pole locations. As
the production valve opening u; increases, RHP-poles get
closer to the smaller (important) RHP-zero. According to
equation (41), the closer poles and zeros are, the larger the
peak of sensitivity transfer function becomes.

The pressure at top of the tubing, Py, is not recommended
to be used as a single control variable, but the large peak
of sensitivity does not occur when it combines with other
measurement. The minimum achievable peak of sensitivity
transfer function for the paired measurements becomes 1
in Table 2, because the system becomes non-square and
zeros disappear.

The bottom-hole pressure Py, shows the best controlla-
bility properties. It has the largest element in the output
pole vector that makes it suitable for stabilization of the
unstable system. Moreover, Py, has the largest steady-
state gain G(0) and the smallest values for all of the closed-
loop transfer functions. In the second place, the pressure
at the bottom of the annulus shows good controllability
properties. The third good candidate is the pressure at
top of the annulus, P,;.

4.2 Mized Sensitivity Controllability Analysis

The ~ values are given in Table 2 and Table 3. Con-
trol structures with small value of v are able to reach
performance, robustness and input requirements easier.
The bottom-hole pressure shows the smallest v among
the single measurements; it is consistent with the other
controllability data. Moreover, combination of the bottom-
hole pressure and the tubing top pressure results in the
smallest ~ for the both single manipulated variable and
the related MIMO case.

Using two control variables and one manipulated variable,
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Table 2. Controllability data using w; as manipulated variable

Measurement ~ Value D, G(0) Polevector |S|=|T| |KS| |SG| |KSGqi| |KSGga2| |SGa1| |SGa2| Y1 ¥2
Wyin[kg/s] 0.86 0.05 0.76 0.0004 1.00 3.04  0.00 0.23 1.987 0.00 0.00 89.55 -
Pyt [bar] 81.16 1 5.22 0.0031 1.00 0.44  0.00 0.23 0.10 0.00 0.00 14.85 -
Pyi[bar] 20.89 1 5.72 0.0028 3.06 0.38 10.49 0.25 0.11 0.69 0.42 19.16 -
Pyp[bar] 90.35 1 5.81 0.0034 1.00 0.40  0.00 0.23 0.10 0.00 0.00 13.54 -
Pyp [bar] 88.56 1 6.95 0.0089 1.00 0.11  0.00 0.23 0.09 0.00 0.00 3.60 -
Wout[kg/s] 18.51 2 0.88 0.0024 1.00 0.49  0.00 0.30 0.11 0.00 0.00 19.35 -
pmiz t[kg/m3] 186.96 20 1.61 0.0013 3.11 1.24  3.77 0.56 0.29 0.71 0.38 38.08 -
ar (-] 0.23 0.23 0.17 0.0001 3.11 10.83  0.43 0.57 0.30 0.08 0.04  289.88 -
Pap wout - - - 0.0034 1.00 0.26  0.00 0.13 0.05 0.00 0.00 8.89  19.35
Pop pmix - - - 0.0034 1.00 0.36  0.00 0.20 0.08 0.00 0.00 12.20 13.17
Py wa,in - - - 0.0034 1.00 0.40  0.00 0.12 0.10 0.00 0.00 13.42  22.13
Pat Py, - - - 0.0089 1.00 0.11  0.00 0.12 0.05 0.00 0.00 4.52 3.45
Pat Pyt - - - 0.0031 1.00 0.26  0.00 0.12 0.05 0.00 0.00 8.65 11.58
Pat wout - - - 0.0031 1.00 0.27  0.00 0.13 0.05 0.00 0.00 9.17  19.35
Pat pmix - - - 0.0031 1.00 0.39 0.00 0.20 0.08 0.00 0.00 13.12  13.96
Pot wa,in - - - 0.0031 1.00 0.44  0.00 0.12 0.10 0.00 0.00 14.70 22.13
Pyp, wout - - - 0.0089 1.00 0.10  0.00 0.13 0.05 0.00 0.00 3.39 19.35
Py, pmiz - - - 0.0089 1.00 0.11  0.00 0.20 0.09 0.00 0.00 3.53  10.96
Py wa in - - - 0.0089 1.00 0.11  0.00 0.12 0.10 0.00 0.00 3.60 22.13
Pyt Py, - - - 0.0089 1.00 0.10  0.00 0.12 0.05 0.00 0.00 7.25 3.39
Pt wout - - - 0.0028 1.00 0.30  0.00 0.14 0.06 0.00 0.00 15.41 19.35
Pt pmix - - - 0.0028 1.00 0.34 0.00 0.21 0.10 0.00 0.00 16.97 12.23
Py wa,in - - - 0.0028 1.00 0.37  0.00 0.12 0.12 0.00 0.00 18.64 22.13
Wout WG, in - - - 0.0024 1.00 0.47  0.00 0.13 0.12 0.00 0.00 19.35 22.13

Table 3. Controllability data using u; and ug as manipulated variables (MIMO controller)

Measurement Pole vector |S|=|T| |KS| |SG| |KSGa1| |KSGa2| [SGail |SGa2l m Y2 3

Pap wout 0.0034 1.00 0.12  0.00 0.08 0.03 0.00 0.00 7.55 13.20 15.31
Pob pmia,t 0.0034 1.50 0.14  2.00 0.11 0.05 0.34 0.12 10.39 12.16 16.53
Pap wa,in 0.0034 1.00 0.16  0.00 0.09 0.07 0.00 0.00 11.43 10.98 12.40
Pat Ppp, 0.0089 1.00 0.07  0.00 0.08 0.03 0.00 0.00 3.94 3.20 1447
Pat Pyt 0.0031 1.59 0.13 11.00 0.08 0.03 0.96 0.62 7.36 7.76 8.16
Pat wout 0.0031 1.00 0.13  0.00 0.08 0.03 0.00 0.00 7.83 12.30 15.33
Pot pmic,t 0.0031 1.52 0.15 1.87 0.11 0.05 0.32 0.11 11.23 12.89 16.74
Pot wa,in 0.0031 1.00 0.18  0.00 0.09 0.07 0.00 0.00 12.59 12.20 13.63
Py wout 0.0089 1.00 0.07  0.00 0.08 0.04 0.00 0.00 3.15 13.30 75.80
Pop pria,t 0.0089 1.02 0.07 7.71 0.11 0.06 1.05 0.52 3.28 10.07 32.09
Pyh wa in 0.0089 1.00 0.07  0.00 0.09 0.09 0.00 0.00 3.35 3.20 3.58
Pyt Pyp, 0.0089 1.20 0.07 16.73 0.08 0.04 1.04 0.64 5.19 3.15 5.22
Pit wout 0.0028 2.05 0.19 0.00 0.09 0.04 1.04 0.64 11.37 13.30 12.33
Pt pmiz,t 0.0028 2.15 0.20 19.48 0.12 0.06 1.69 0.95 12.18 11.35 13.09
Pt wg in 0.0028 2.69 0.25 19.38 0.09 0.09 1.14 1.09 14.15 8.78 16.56
Wout WG in 0.0024 1.00 0.30 0.00 0.10 0.09 0.00 0.00 13.30 11.32 21.55

it is impossible to get tight control on the both control
variables at the same time. Similar to a cascade controller,
we can have tight control with a constant set-point only
on one of control variables.

In Table 2, we calculated 7; when tight control was re-
quired on the first control variable of the pair, and 2 when
tight control was on the second one in the pair.

Uisng two manipulated variables, it was possible to have
tight control on the both control variables in the pairs; 3
values in Table 3 were calculated for this condition. v; and
2 in Table 3 can be compared to those in Table 2, but the
cost function related to the Ho, problem for calculating
the ~y3 values is different.

5. CONTROL STRUCTURE SELECTION

Based on the controllability data provided in Table 2 and
Table 3, we can decide about choosing the control struc-
ture. For a SISO control structure, pressure at bottom-
hole Py, is the best control variables in our results. It is in
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accordance with previous works in which always Py, has
been favored. Py, usually is not directly measurable, but as
suggested by Eikrem et al. (2004) and Aamo et al. (2005),
it can estimated using an observer. Simulation result of
using this measurement is shown in Fig 5. Simulation
results of using P;; and P,; are shown in Fig 6 and
Fig 7, respectively. The both P;; and P,; demonstrate poor
performance when they are used for SISO control. All of
the simulations are based on scaled variables, and the ideal
is to keep the control variables in the range of (-1,1).
Looking at paired control variables with u; as the manip-
ulated variable in Table 2, all parings including Py, with
tight control on Py, result in small + values. However,
there is no significant improvement in ~ values compared
to using the single control variable Ppj; simulation result
of combing Py, and wyy: is shown in Fig. 8. The next
suitable combination is the pair of P,; and Py (two top-
side pressures) with tight control on P,;. The simulation
result for this case is given in Fig. 9.

We did controllability analysis also by using us as the



8th IFAC Symposium on Advanced Control of Chemical Processes
Furama Riverfront, Singapore, July 10-13, 2012

o

at

10

15 20 25 5 10 15 20 25

P
it

20 5 10 15 20 25 0 5 10 15 20 25 20 5 10 15 20 25 0 5 10 15 20 25 _
1 T == 1 T =
W 1 P YY) | p
1 out 1 out
1 1
O—Fm o _J L_l ,__| 0 0 —1 L_] ,__l
I ! I !
-1 0 | -1 0 |
2 -1 [y, S 2 -1 T
0 5 10 15 20 25 0 0 5 10 15 20 25 0 5
time[h] t| me [h] time[h] t| me [h]

Fig. 5. Simulation result of H ., control using Py, as control
variable and u; as manipulated variable

Fig. 7. Simulation result of H, control using P,; as control
variables and u; as manipulated variable

e et

-1
"

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
2 2 4
1 1 J 2
. l ol Apedpdndind o
- i : :
' th th P((
-2 -2 -4
5 10 15 20 25 0 5 10 1520 0 5 10 15 20 25 0 5 10 15 20 2
2 1 T === 1 T =
== — ==
1 out
| |
0 oF—L—1 |._.| ,__I 0 _J L_.I ,__I
1 I | 1
-1 | | | |
- 1 R B - 4 R
0 0 5 10 15 20 25 0
time[h] tlme[h time [h] t|me h]

Fig. 6. Simulation result of H ., control using P;; as control
variable and u; as manipulated variable

single manipulating variable, but the results using uo, were
not satisfactory and we did not add another large table for
sake of the space limitation. The simulation result using
relatively the best pair of control variables for this case,
resulted in 5 = 14.1, is shown in Fig. 10.

Looking at Table 3, the pairs with Py;, show small v values,
but compared to the =~ values in Table 2, there is no
substantial improvement. The simulation result of using
the two top-side pressure measurement, P,; and Py, using
two manipulated variables is shown in Fig. 11.

The pressures at top can be easily measured with good
accuracy and a control structure using their combination
(Fig. 9) is recommended. However, by comparing simu-
lation results in Fig. 9 and Fig. 11, one should notice
that adding the secondary manipulated variable does not
enhance the control performance.

The choice of the suitable control structure is dependant
on proper scaling of the control variables. For example for
this case, first we chose a small scaling factor for the mass
flow rate and we wanted to control it in a tight bound.
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Fig. 8. Simulation result of H ., control using Py, and wyy+
as control variables and u; as manipulated variable

As a result, gain of the system with this control variable
increased and the control structures using the flow rate
resulted in better performance compared to those using
the pressures. In order to control the flow rate in a tight
range, we must be able to measure it accurately. However,
this is unlikely for two-phase flow in practice. Therefore, we
chose a wider scaling factor for the flow rate. On the other
hand, pressure can be measured more reliably, thus a small
scaling factor was used for pressures. Consequently, the
control structures using pressure measurements are shown
to be superior for this case study.

6. CONCLUSION

An improved dynamical model for the casing-heading in-
stability in gas-lifted oil wells was proposed, then the pro-
posed model was fitted to a rigorous model in the OLGA
simulator. Minimum achievable peaks of the different
closed-loop transfer functions with each of the candidate
control variables and their combinations were calculated.
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Fig. 10. Simulation result of H., control using Py, and
P,; as control variables and and us as manipulated
variable

Performance, robustness and input usage requirements
were integrated in a mixed-sensitivity control problem and
a single number (v) was represented to evaluate quality of
alternative control structures. We found out that adding
the secondary manipulated variable does not improve sta-
bilization of the gas-lifted oil wells significantly.

The bottom-hole pressure is the best control variable for
this system in terms of controllability. Nevertheless, this
variable often is not directly measurable.

Finally, a control structure using a pair of top-side pressure
measurements was shown to be effective for preventing the
casing-heading instability.

Further, it was found that accuracy of the sensors must be
taken into account for scaling of different control variables
correctly.
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Fig. 11. Simulation result of H, control for P,; and Py
as control variables using MIMO controller
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