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Abstract

When designing the control structure of distillation columns, with optimal operation in

mind, it is important to know how the active set of constraints changes with disturbances. This

issue has received little attention in the literature. This paper applies a procedure presented

in an earlier paper, to find how the active constraints for distillation columns change with

variations in energy cost and feed flow rate.

The production of the most valuable product is maximized by keeping its purity on the

minimum allowed, that is, by keeping the valuable product on spec. This is the "avoid product

giveaway" rule, which means that the purity specification of the valuable product is always an

active constraint. We find that this rule generally holds for distillation for the common case

when the price of the on-spec product is independent of purity.

The paper includes three case studies; a single distillation column with constant product

prices, a single column where the price of the most valuable product is dependent on purity, and

two distillation columns in series. In all three case studies there is a bottleneck, corresponding

to a feed flow rate above which the column(s) can not operate without breaking constraints.
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Introduction

The literature on control of distillation processes is vast, some examples include Luyben et al.1

(general), Waller et al.2 (sensitivity to disturbances), Skogestad and Morari3 (selection of control

structure) and Nagy et al.4 (advanced control). The surveys by McAvoy5 and Skogestad,6 covering

the 1980s, illustrate just how widely the area has been researched. However, few papers deal with

optimal operation where a key issue is to identify the active constraints. The two main main

exceptions are Maarleveld et al. from 19757 and Gordon from 19868 who both discuss the issue

of active constraints for distillation columns. Apart from these two papers, this issue has received

little attention. This is strange considering that optimal control of any process plant is completely

dependent on which process constraints are active at the operating point.

Also when designing ordinary feedback control schemes, knowing the active constraint regions

is important. For example, when seeking a self-optimizing control structure,9 one needs to know

which variables are constrained and which are not. The active constraints are always selected as

controlled variables to be used for feedback, in the case of output constraints, or simply set to be

constant, in the case of input constraints. Also, a control structure which works fine for one set

of active constraints may be infeasible for another. In some cases, it may be necessary to switch

to another control structure, whereas in other cases one control structure may be optimal in one

region and near-optimal in neighboring regions.

It is easy to understand how active constraints can influence on the choice of control structure;

if a variable is optimally at its constraint value, it cannot be used to control another variable without

accepting economic loss. This is because when we want to use the constrained variable for control,

we can not keep it at its optimal value at all times. How the optimal states of the model vary with

disturbances, is often formulated as a so-called multi-parametric programming problem (10,11,12).
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One seeks to find a solution which itself is parameterized by the disturbances. The problem can be

linear, quadratic or some other nonlinear type of problem - in chemical engineering applications

like distillation, the latter is almost always the case.

In our previous paper,13 we outlined a procedure for sketching the active constraint regions for

chemical processes using few optimizations, and applied it on a "toy example". In this paper we

seek to use this method on distillation columns. The paper is structured as follows:

First we discuss optimal operation of distillation columns. Next, the case studies are described

and the main results are given. We then give a short summary of the method for identifying

active constraint regions from,13 discuss the efficiency of the method, and go more in detail about

optimal operation of distillation columns. We finally discuss the avoid product giveaway rule. The

following case studies are included:

Case study Ia. A single distillation column, constant product prices

Case study Ib. A single distillation column where the distillate price is proportional to purity xD

Case study II. Two distillation columns in sequence, again with constant product prices

In all three case studies we use of a simple distillation model with 40 equilibrium stages with

the feed entering at the middle stage. The model uses the following assumptions: Constant relative

volatilities, constant molar overflow, constant pressure over the entire column, equilibrium at every

stage and negligible vapour holdups. This is the "Column A" model used in14), but the product

purity specifications are more lax (95% for one product versus 99% for both products for column

A). The relative volatility is 1.5 for cases Ia and Ib with a single column (as for "column A"), but

for case II with two columns it is 1.33 for the A/B split in the first column, and 1.5 for the B/C split

in the second column.

In the discussion, we give some more insight into the behaviour of objective and constraint

functions for the optimization problem in case study Ia.
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Optimal operation of distillation columns

Form of the optimization problem

The optimization problem we are dealing with, is a nonlinear steady-state problem on the form

min
u

J(x,u,d)

subject to f (x,u,d) = 0

c(x,u,d)≤ 0

(1)

where J is the economical objective, f (x,u,d) the process model equations and c(x,u,d) the

process constraints. x are the internal variables (states) in the process model, u are the variables we

may manipulate (specify) and d are the disturbances. c≤ 0 is generally a vector of constraints, and

a particular constraint ci ≤ 0 is said to be active if at the optimal operating point we have equality,

that is, ci = 0. A constraint is inactive if ci < 0.

In13 we have elaborated more on various formulations, how the optimality conditions can be

related to the suggested method for finding active constraint regions as a function of the distur-

bances d, and the significance of the Lagrange multipliers at the optimal solution. In short, the

latter can be summarized as follows: At the optimal solution, the magnitude of the Lagrange mul-

tiplier λ tells us how much we sacrifice in terms of the objective when we back off from an active

constraint.

To define the problem, we need to formulate a cost function which captures the plant economy

we are interested in. This cost function is to be minimized with respect to the available degrees of

freedom u (while satisfying given constraints c) for the expected range of process disturbances d.

Plant economics and objective function

In distillation, the cost is related to the feed streams, as well as heating and cooling (and possibly

other utilities, like pumping). The profit comes from selling the products. To optimize operation
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on a short time scale, say within a few hours, there is no need to include fixed costs such as capital

cost, manpower and maintenance. The operational objective (cost) to be minimized can be written

as

J =
n f

∑
i=1

p f ,iFf ,i +
nU

∑
j=1

pU, jFU, j −
nP

∑
k=1

pP,kFP,k (2)

Here, n f , nU and nP are the number of feed streams, utility streams and product streams,

respectively. Correspondingly, p stands for the price of each stream in ($/mol) and F the feed

flowrate (in mol/s).

For a single distillation column with one feed stream and two products, no side streams and no

heat integration, we may simplify the cost function to

J1 = pFF + pLL+ pVV − pDD− pBB (3)

where F , L, V , B and D are the flow rates of feed, reflux, boilup, bottoms and distillate, re-

spectively; see Figure 1. The objective function can in most cases be simplified further. For a

given feed, an energy balance for the column gives that the reboiler heat duty and condenser heat

duty, and also the internal liquid and vapor flows inside the column, are nearly proportional. It is

therefore reasonable to combine the terms to give a new and simpler objective function

J2 = pFF + pVV − pDD− pBB (4)

where pV in Equation 4 is approximately equal to pL + pV in Equation 3. This is the form of

objective function we will use in the case studies included in this paper. (Proof: The utility terms

can be written as

pLL+ pVV = pL∆Hvap,L|QC|+ pV ∆Hvap,V |QB| (5)

where QC is negative. For a given feed (FhF ), and approximately constant product composition
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(DhD and BhB approximately constant) , we have ∆QC = −∆QB, so change in reboiler duty and

condenser duty are the same, and since a constant term does not matter for the optimization, it may

be combined into a single term in Equation 4 where pV in Equation 4 is equal to (pL∆Hvap,L +

pV ∆Hvap,V )/∆Hvap,V in Equation 3. QED)

Provided that we satisfy the product specifications, the prices are usually constant (independent

of process states). However, in some cases they may depend on product quality, for example, if we

pay or get paid only for the valuable component in a stream, in which case the price can be written

p′ = px (6)

where x is the mole fraction of the component we get paid for, and p is the price for the

pure component. In this paper, we include one case study where we only get paid for the light

component in the distillate, i.e. p′D = pDxD where xD is the mole fraction of light (valueable)

component.

Degrees of freedom

As explained in,15 when we assume a given feed and given pressure, a distillation column has got

two steady-state degrees of freedom. Dynamically, there are four remaining manipulated variables,

but there are two levels that need to be controlled dynamically, but which have no steady-state

effect. The two degrees of freedom can, for example, be selected as two flow rates,

u = [L V ], (7)

but any pair of two independent specifications can be used. For example, we may control

(i.e. specify) the concentration of the key impurity in each product stream, or two tray temperatures.

For optimization, we should choose as degrees of freedom the variables that make the problem

easiest to solve numerically.
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Figure 1: Conventional distillation column with one feed and two products

Constraints

The constraints (c(x,u,d)≤ 0) will typically consist of product purity requirements and restrictions

on operating conditions. Typically, there will be maximum and minimum limits on internal flows

(in a column, defined by the weeping and flooding points16). In addition, there may be restrictions

on column pressure, since column pressure has a big influence on condensation and evaporation

temperatures. The product purity constraints are usually expressed in terms of the mole fraction of

the main component in each stream:

• Distillate specification: xD ≥ xD,min where xD is the mole fraction of light key component in

D

• Bottoms specification: xB ≥ xB,min where xB is the mole fraction of heavy key component in

B

For a two-component mixture, this is unproblematic, but for a multicomponent mixture this

constraint formulation may cause problems, as there may be more than one composition that sat-

isfies the constraint (except for the lightest and heaviest components). Thus, one may get a more

robust problem specification by instead giving the following specifications:17
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• Distillate specification: xD ≤ xD,max where xD is the mole fraction of heavy key impurity in

D

• Bottoms specification: xB ≤ xB,max where xB is the mole fraction of light key impurity in B

Regarding the capacity constraints, there may be many just in one column: Maximum available

reboiler heating or condenser cooling, flooding and weeping points, and possibly maximum flows

of product streams due to a potential downstream bottleneck. In this paper, we simplify and assume

that it is sufficient to specify a maximum vapour boilup V;

V ≤Vmax (8)

In the case study with two columns, we use different values of Vmax for the two columns.

Disturbances

The disturbances (d) are the variables that influence on either the process or the economical ob-

jective, but which we cannot influence. For a distillation column, or a chemical process unit in

general, the feed conditions (flow rate, temperature, pressure and composition) are important dis-

turbances. The constraint values (including purity specifications and flow limits) are also generally

important disturbances. Finally, prices of feeds, products and energy will be subject to change, and

should also be considered disturbances. In the case studies included here, we consider only the

feed flow rate (F) and energy cost (pV ) as disturbances.

The main reason for not including other disturbances, for example, in feed composition, feed

enthalpy or product purity specifications, is that it is difficult to show the constraints regions graph-

ically when there are more than two disturbances. We believe that the two selected disturbances in

feed rate and relative energy price are very relevant in most applications. In practice, one should

focus on the disturbances that are expected to be important for future operation, as a complete map

of all disturbances will be very time consuming.
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Case studies

Case Study Ia: One distillation column, constant product price

For the first case study, we consider a single distillation column with 41 stages and feed entering at

stage 21, separating a feed mixture of equal fractions of A and B, with relative volatility αAB = 1.5.

The optimization problem may be formulated as follows:

min
u

J(u,d) =pFF + pVV − pBB− pDD

subject to: xB ≥xB,min

xD ≥xD,min

V ≤Vmax

(9)

where u = [L V ] and d = [F pV ]. The model equations (component mass balances for each

stage and equilibrium calculations) are solved explicitly and are thus not shown in Equation 9. The

constraints on xB and xD refer to the mole fractions of the main component in each stream (compo-

nent B in the bottoms stream (B) and component A in the distillate stream (D), respectively). The

p values refer to the prices of each respective stream. The prices and other data used in this case

study are shown in Table 1.

Table 1: Data used for case studies Ia and Ib

Variable Value
αAB 1.5
zF 0.5
F variable (1-1.6 mol/s)
pF 1 $/mol
pB 1 $/mol
pD 2 $/mol
pV variable (0.01-0.02 $/mol)

xB,min 0.9900
xD,min 0.9500
Vmax 4.008 mol/s

The case study uses the feed rate F and the energy price pV as disturbances, and our goal
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is to establish the regions where the constraints on xB, xD and V are active, while using as few

optimizations as possible. The feed rate F varies from 1.1 to 1.6 mol/s. The prices for the feed (F)

and bottoms product (B) are both set at a reference price of 1 $/mol, whereas the valuable distillate

product (D) is 2 $/mol.

In our case study, the relative energy price pV /pF varies between 0.01 and 0.02, and as we

argue in the following, this is a reasonable relative price range. For hydrocarbon feed mixtures,

the energy can be generated by burning some of the feed, and since the heat of combustion is

about 100 times larger than the heat of vaporization for hydrocarbons, we expect for hydrocarbons

that pV /pF should be about 0.01 (or less, if cheaper energy sources are available). However, in

general, for other feed mixtures, the relative energy price can vary greatly, from 0 and up to a value

similar to the feed and products (about 1). Also note that energy prices can vary greatly from one

day to the next, depending on external conditions and prices. For cryogenic applications, where

cooling rather than heating is costly, the relative energy price pV /pF may exceed 0.02 or more,

even for hydrocarbon mixtures. The reason is that cryogenic cooling requires electricity as the

energy source.

Let us now generate the active constraint regions as a function of the two selected disturbances

(F, pV ). To start, we use our knowledge about the nature of the process model and the optimization

problem to state the following:

1. With NC = 3 inequality constraints, there may be at most 2NC = 8 sets of active constraints,

possibly including infeasible regions where there are more active constraints than degrees

of freedom. Here we have two degrees of freedom (u), so the region with three active con-

straints will be infeasible. As we will conclude later, there are only three regions in this

case.

2. The constraint on xD will be active for all values of (F, pV ). This is because separating this

stream to a higher purity will require that we reduce the flowrate D, or increase the internal

streams L and V . Since we do not get paid for the increased purity, this is not profitable.
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In other words, we should seek to avoid product giveaway (,8 18). This rule is discussed in

more detail later.

3. At low energy cost pV , the constraint on xB will be inactive, meaning that we should over-

purify the bottom product. This is because we get a better price for the distillate, and by

overpurifying the bottom product we move component A from bottoms to distillate. This is

profitable when energy is cheap.

4. As pV increases, the optimal value of xB decreases, and at pV = pV,1 it reaches xB,min. Since

the column stage efficiency is assumed constant at 100% (rather than dependent of flow), the

value of pV,1 is independent of F .

5. Bottleneck: There exists a maximum feed rate Fmax, above which we cannot achieve feasible

operation, i.e. satisfy all three constraints. This can be seen from a simple degree of freedom

consideration: Assume we keep both purities at their constraint values by adjusting L and V .

As we increase F , all other flows, including L and V will increase proportionally. Eventually,

we reach V = Vmax, where a further increase in F will force us to break one of the purity

constraints.

6. From the above, we can conclude that we will have three feasible regions: (I): xD active,

(II): xD and Vmax active, and (III): xD and xB active. Regions I and III will be separated by

a straight line (as explained above). The same goes for the border between the infeasible

region (IV) and the others. See Figure 2.

7. The border between regions I and II intersects with the border between regions I and III

exactly at Fmax. The border between regions I and II is the only one for which we cannot say

a priori whether it will be straight or not.

Using the method described in our previous paper,13 we obtain the following numerical values,

which are sufficient for sketching the active constraint regions (shown in Figure 2):

• The maximum feed rate is Fmax = 1.435mol/s
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• For all F < Fmax, xB = xB,min is active when pV > 0.0144$/mol

• At pV = 0.01, V = Vmax is active for F > 1.233mol/s

Notice that the line between regions I and II is shown as being straight. This is because it is

based on only two data points - in reality, it is slightly curved. The constraint lines in Figure 2 are

as follows:

• Red: Vmax becomes active.

• Blue: xB becomes active.

The vertical parts of these two constraint lines indicate F = Fmax. Table 2 lists optimal data at

selected points in the disturbance space (all flows are in [mol/s].

In Figure 3 we show how the Lagrange multipliers λ for the active constraints behave at pV =

0.01. As expected, the λ corresponding to xD is always positive. The λ corresponding to Vmax

becomes nonzero at F = 1.233mol/s. Notice that it increases very slowly up to F = 1.37 - this

means that up to F = 1.37, this constraint does not influence strongly on the plant objective.

Table 2: Single column (case Ia): Values of key variables at selected disturbances (F, pV ) (numbers
in bold indicate active constraints)

Region(s) I II III
F [mol/s] 1.2 1.4 1.3
pV [$/mol] 0.01 0.01 0.015
L [mol/s] 2.827 3.276 2.949
V [mol/s] 3.454 4.008 3.627
D [mol/s] 0.627 0.731 0.678
B [mol/s] 0.573 0.669 0.622
xD 0.9500 0.9500 0.9500
xB 0.9920 0.9920 0.9900
J [$/s] -0.536 -0.625 -0.566

Case Study Ib: One distillation column, variable product price

In the second study, the constraints are the same, but the objective function is altered to make

the price of the distillate stream proportional to its purity, that is, one gets paid for the valuable
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Figure 2: Active constraint regions for single column with fixed prices (case Ia)
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Figure 3: Single column (case Ia): Lagrange multipliers for active constraints at pV = 0.01
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component only:

J(u,d) = pFF + pVV − pBB− p′DD (10)

where

p′D = pDxD (11)

pD and the other prices are the same as in case study Ia (Table 1). The consequence of the vary-

ing price p′D is that we now may have additional regions where the constraint on xD is inactive. The

reason for this is: When energy is cheap enough, we may overpurify the distillate D without giving

away anything (as we get paid for the extra component A in the distillate D). Since component B

in the distillate is now worthless, it is profitable to send it to the bottom instead. As the energy cost

pV increases, the purity constraints become active. Just as for the first case, we can deduce some

things about the active constraint regions a priori, before carrying out any optimizations:

1. As above, theoretically there may be at most 7 regions (since the region with three active

constraints is infeasible). As we will show, only five of these regions are present.

2. The lines separating the different regions where only purity constraints are active, will be

horizontal. In the following, the pV values corresponding to these lines will be referred to as

pV,1 and pV,2.

3. We will have a region where no constraints are active and one where V < Vmax is the only

active constraint.

4. We will have a region where one purity constraint is active and V =Vmax. The border between

this region and the previous one will be vertical. This can be explained as follows: When V

is fixed at Vmax, pV has no influence on the optimal solution - the F value for which the next

constraint becomes active is independent of pV and thus the line is vertical. This F value

will be referred to as F1.
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5. As for the previous case, we have a value of F for which all constraints are active, and for

any higher F value we cannot satisfy all constraints. This value will be referred to as Fmax.

6. The two regions with two active constraints will meet in a point on the line F = Fmax, just

like regions II and III in Figure 2.

7. As pV → 0, the value of F at which Voptimal = Vmax will also approach 0. This is because

when the energy utility is free, and there is a benefit from extra purity, we want to maximize

both purity and flow rate of the distillate stream. This means we can use the point F = 0,

pV = 0 when constructing the diagram.

This means if we take the assumption that the regions with V = Vmax are also separated by

straight lines from the regions where V < Vmax, we are left with the task of finding just a few

values for F (F1 and Fmax) and pV (pV,1 and pV,2). The actual values are shown in Table 3, and the

resulting active constraint regions are shown in Figure 4. Table 4 gives optimal data at selected

points in the disturbance space (one point inside each region). In Figure 4, we have three constraint

lines:

• The red constraint line indicates where xB becomes active.

• The blue constraint line indicates where Vmax becomes active.

• The green constraint line indicates where xD becomes active.

• At F = Fmax, the blue and green constraint lines are vertical, and they intersect in the point

(Fmax, pV,2).

Table 3: Single column (case Ib): Values for F and pV needed to draw Figure 4

Variable Value
F1 1.23

Fmax 1.44
pV,1 0.014
pV,2 0.106
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Figure 4: Single column (case Ib): Active constraint regions with purity-dependent distillate price
(p′D = pDxD)

Table 4: Single column (case Ib): Values of key variables at selected (F, pV ) (numbers in bold
indicate active constraints)

Region(s) I II III IV V
F [mol/s] 0.7 1.2 1.3 1.0 1.0
pV [$/mol] 0.013 0.010 0.010 0.05 0.12
L [mol/s] 2.048 3.408 3.355 2.443 2.268
V [mol/s] 2.423 4.008 4.008 2.951 2.790
D [mol/s] 0.3749 0.600 0.653 0.508 0.521
B [mol/s] 0.3751 0.600 0.647 0.492 0.479
xD 0.9905 0.9918 0.9853 0.9755 0.9500
xB 0.9901 0.9914 0.9900 0.9900 0.9900
J [$/s] -0.3411 -0.5558 -0.6004 -0.3605 -0.1969
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It is also worth noticing that the value of pV for which xD becomes active (pV2) is quite high.

This is because the number of stages in the column (column A14) was designed to obtain 99 %

purity in both ends. This makes overpurifying cheap in terms of energy.

Case study II: Two distillation columns in sequence

Figure 5: Two distillation columns in sequence

In the third and final case study, we consider two distillation columns in series, both with the

same number of stages (41) and feed entering at stage 21. The feed now contains three components,

A, B and C, where A is the most volatile and C the least volatile, and B is the most valuable

product. The two columns with stream names are shown in Figure 5. The relevant parameters are

summarized in Table 5. For simplicity we will refer to xA,D1 , xB,D2 and xC,B2 simply as xA, xB and

xC, respectively.

The objective function is again formulated as a function of (u,d),

J(u,d) = pFF + pV (V1 +V2)− pAD1− pBD2− pCB2 (12)
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with u = [L1 V1 L2 V2] 1 and d = [F pV ].

The constraints are defined as follows;

xA ≥ xA,min

xB ≥ xB,min

xC ≥ xC,min

V1 ≤ V1,max

V2 ≤ V2,max

(13)

Table 5: Data for two columns (case II)

Variable Value
αAB 1.333
αBC 1.5
zF [0.4 0.2 0.4]

V1,max 4.008 mol/s
V2,max 2.405 mol/s
xA,min 0.9500
xB,min 0.9500
xC,min 0.9500

pF 1$/mol
pA 1$/mol
pB 2$/mol
pC 1$/mol
pV variable

Just as for the case of one column, we can deduce some things about the active constraints

regions before carrying out optimization:

• There can be at most 25 = 32 regions, of which 31 will be feasible (we have four independent

inputs, so we cannot satisfy all five constraints). We will show that the actual number of

regions in this case study is 8.

• There exists a value Fmax above which we cannot satisfy all constraints.

1This choice of u is not unique, and in the optimization we actually use the four product compositions as degrees
of freedom
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• D2 is the most valuable product stream, so the constraint on xB will remain active for all dis-

turbances d. This reduces the maximum number of regions to 16 (of which 15 are feasible).

• As for both one-column cases, the lines separating the regions with only purity constraints

active will be horizontal. The pV values corresponding to these lines will be referred to as

pV,1 (the lower value) and pV,2.

• Above pV,2, there will be a region where all three purity constraints are active while both

capacity constraints are inactive. The F value for which the first capacity constraint becomes

active will be independent of pV , meaning the region in question will be bordered to the right

by a vertical line at an F we shall refer to as F1.

• For low pV , we will have a region where the constraint on xB will be active along with the

constraints on V1 and V2. At some value of F , one of the remaining purity constraints will

become active. This F value is independent of pV , because the term pV (V1 +V2) in the

objective function is constant in this region, meaning this region will also be bordered by a

vertical line to the right. This F value is referred to as F2.

• At pV,1, one of the capacity constraints (V1 or V2) will become active at some F < Fmax. We

refer to this value as F3.

To sketch the active constraint regions, we need to find pV,1, pV,2, F1, F2 and Fmax. These are

summarized in Table 6. For all the region borders that are neither vertical nor horizontal, we also

need an additional data point in addition to their intersection with one of the already established

lines. By applying the same method as above, we come up with the regions shown in Figure 6.

The constraint lines are given different colors:

• Along the red line, xA becomes active

• Along the orange line, V1 becomes active

• Along the blue line, V2 becomes active
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• Along the green line, xC becomes active

• The black line indicates Fmax, which is reached when xC once again becomes active.

Table 6: Two columns (case II): Values for F and pV needed to draw Figure 4

F1 1.442
F2 1.469
F3 1.458

Fmax 1.489
pV,1 0.0382
pV,2 0.1441

1,35 1,4 1.45 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Feed

pV

Infeasible
region

F1

Fmax

F2

IV: XA, XB and XC
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I: XB only

pV,1

F3

pV,2

VI: XB, V1 and V2

VIII: XA, XB, 
V1 and V2

II: XA and XB

V: XA, XB and V1

Figure 6: Two columns (case II): Active constraint regions

In the following discussion, we will refer to the various regions in Figure 6 as indicated in

Table 7. Note that region IX, with five active constraints, corresponds to the vertical black line in

Figure 6.
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Table 7: Two columns (case II): Active constraints in each region

Region number Constrained variable(s)
I xB
II xA, xB
III xB, V1
IV xA, xB, xC
V xA, xB, V1
VI xB, V1, V2
VII xA, xB, xC, V1
VIII xA, xB, V1, V2
IX xA, xB, xC, V1, V2

When we examine Figure 6, we notice two things that may at first seem surprising.

• The line separating regions II and V (part of the orange constraint line) has a negative

slope. Thus we have that the optimal value of V1 increases with increasing pV , which seems

counter-intuitive. However, this is compensated by a decrease in V2 - the sum V1 +V2 is

actually decreasing, which is what we would expect.

• The next interesting feature about Figure 6 is that the border between regions V and VII

(part of the green constraint line) is not horizontal. Across this border, the constraint on xC

switches between active and inactive. The reason for this one not being horizontal, is the

following: When starting with only the three purity constraints active, an increase in F leads

to a proportional increase in all streams, until the first capacity constraint becomes active (in

this case, this means V1). Now, since V1 is not allowed to increase further, any extra A fed to

the system must either go to stream D1, meaning the constraint on xA is no longer active, or

more A goes through to the second column where it enters the distillate stream D2. Thus we

need to put more C into stream B2, thus making the constraint on xC, inactive. Thus, one of

two purity constraints must become inactive at this point. Of course, it will become active

again once we reach Fmax.

• The black line indicating Fmax could be seen as part of the constraint line for xC. However,

the two are not connected - this is why we choose to show them in different colors.
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It is also worth noting that the objective function J becomes positive above a fairly low value

for pV (approximately pV = 0.05) for all F ∈ 〈0,Fmax〉. This means operation in this region is not

economically profitable - thus we would only operate in this region if we have to. Finally, Table

8 shows flow rates and compositions at the optimal solution at selected points in the disturbance

space (one point in each of the eight regions).

Table 8: Optimal data for selected points in case study II (numbers in bold indicate active con-
straints)

Region(s) I II III IV V VI VII VIII
F 1 1.4 1.22 1.35 1.48 1.4 1.45 1.48
pV 0.01 0.1 0.01 0.1441 0.10 0.01 0.18 0.01
V1 3.335 3.870 4.008 3.754 4.008 4.008 4.008 4.008
L1 2.935 3.290 3.516 3.194 3.396 3.436 3.407 3.396
B1 0.600 0.820 0.732 0.791 0.869 0.829 0.849 0.869
D1 0.400 0.580 0.488 0.559 0.611 0.571 0.601 0.612
xA,D1 0.9815 0.9618 0.9803 0.9500 0.9500 0.9618 0.9500 0.9500
xB,D1 0.0185 0.0382 0.0197 0.0500 0.0500 0.0382 0.0500 0.0500
xC,D1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
xA,B1 0.0127 0.0112 0.0128 0.0108 0.0127 0.0126 0.0112 0.0127
xB,B1 0.3209 0.3061 0.3203 0.3062 0.3056 0.3116 0.3061 0.3056
xC,B1 0.6664 0.6828 0.6669 0.6830 0.6817 0.6758 0.6828 0.6817
V2 1.862 2.015 2.275 1.843 2.310 2.405 2.006 2.405
L2 1.662 1.772 2.031 1.618 2.048 2.139 1.764 2.136
B2 0.400 0.577 0.488 0.566 0.607 0.563 0.608 0.600
D2 0.200 0.243 0.243 0.225 0.262 0.265 0.242 0.268
xA,D2 0.0381 0.0377 0.0381 0.0379 0.0421 0.0392 0.0393 0.0411
xB,D2 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500
xC,D2 0.0119 0.0123 0.0115 0.0121 0.0079 0.0108 0.0107 0.0089
xA,B2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
xB,B2 0.0066 0.0346 0.0500 0.0066 0.0274 0.0107 0.0500 0.0176
xC,B2 0.9934 0.9654 0.9934 0.9500 0.9726 0.9893 0.9500 0.9824
J -0.1480 0.3452 -0.1805 0.5814 0.3699 -0.2013 0.8408 -0.2042
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Discussion

Method for finding active constraint regions

In,13 we outlined a method for finding active constraint regions (illustrated with a two-dimensional

example). It is based on that when a constraint ci changes from active to inactive, the sum of this

constraint value and its corresponding Lagrange multiplier λi is zero. If we define this sum as si

we have that, when constraint i changes between active and inactive,

si(d) = ci,opt(d)+λi,opt(d) = 0 (14)

where ci,opt(d) is the optimal value of ci given the disturbance d, and λi,opt(d) is the corre-

sponding Lagrange multiplier. For the case of two disturbances, with d1 on the horizontal axis and

d2 on the vertical axis, the method can be summarized as follows:

1. Use process and problem knowledge to predict if we have any constraints that are either

always active or always inactive, thus reducing the number of potential regions.

2. If possible, deduce which constraint will become active first when changing a disturbance

value.

3. Predict whether some constraint region boundaries will be independent of one of the distur-

bances. This corresponds to a horizontal boundary (if it is independent of d1) or a vertical

boundary (if it is independent of d2).

4. Locate the vertical or horizontal region boundaries, by finding the disturbance value for

which si = 0 for constraint i. When locating a vertical boundary, we hold d2 constant and

find the value of d1 which gives si = 0. For a horizontal boundary, we hold d1 constant

instead.

5. For the remaining region boundaries, on which there are no assumptions about being vertical

or horizontal, find as many points as desired along each boundary. If a linear approximation
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is deemed sufficient, one needs just one or two new points for each new boundary (one, if one

knows from the previous step where this region boundary intersects with another boundary)

We have used MATLAB’s fmincon solver for optimization and fzero for interpolation to find

the points where si(d) = 0, but in principle, any NLP solver could be used for optimization.

Numerical issues in optimization and region finding

Despite the three case studies sharing many of the same features, we found that a different opti-

mization approach was better suited for case study II than the one used for case studies Ia and Ib.

In case studies Ia and Ib we used an algebraic equation solver to solve for dx
dt (x,u.d) = 0, whereas

in case study II we used dynamic simulation to find the steady states needed to calculate J(u,d)

and c(u,d). In addition, in case study II we did not specify L and V directly, but used these for

control of compositions. This made the dynamic simulation more robust. A reason for this might

be that the optimization solver would suggest negative values for V1 and V2 as this would obviously

reduce the objective function - but this would make problems for the dynamic simulation2.

One point which we did not address above, is that we may search directly for the points where

two constraint lines intersect. An example is the point (F1, pV,1) in Figure 4. Since two constraints

change at the same time in these intersection points, we could try to solve the equation set

c1(d1,d2)+λ1(d1,d2) = 0

c2(d1,d2)+λ2(d1,d2) = 0
(15)

for (d1,d2). However, this demands a more sophisticated equation solver, and if this solver is

not more computationally efficient, using this approach would defeat the purpose of the method,

which is a reduced need of repeated optimizations.

2The final solution would obviously not have negative flows, but the active-set method used by fmincon.f allows
breaching of bound constraints at intermediate iterates. An alternative could be using the interior-point algorithm, but
this algorithm was much slower for this problem.
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More on optimal operation of a single column

In Case Study Ia, we found active constraint regions for a single distillation column where the

product prices pD and pB were constant. To give a better understanding of how the active con-

straints change for differing prices, we will here show how the cost function J depends on bottom

purity xB, for three different energy prices pV , when distillate purity xD is fixed at xD,min. When xD

is fixed, there is one degree of freedom left, so the remaining variables can be plotted against xB.

In Figure 7, we show how reflux L and boilup V vary with increasing amount of light component

in the bottom stream. The maximum boilup rate (Vmax) is also included, the thin black line indi-

cates the highest purity we can achieve without breaking the constraint V ≤ Vmax (it is located at

xB ≈ 0.9917). All calculations are done at a feed flow rate of F = 1.4mol/s

Figure 8 shows how the objective function J varies with xB for three different values of pV .

In each subfigure, the feasible region which lies between the constraints on V and xB is shown

in green, whereas red indicates an infeasible region where a constraint would have to be broken

(Vmax to the right, xB,min to the left). In Figure 8(a) (low energy price), we see that the objective is

decreasing throughout the feasible region, meaning the optimum is at the right end of this region

- i.e. at the point where V = Vmax. The opposite is true for Figure 8(c) (high energy price), where

the minimum lies at the left end of the green part of the curve. Here, the constraint on xB is active.

In Figure 8(b) (intermediate energy price), we see that the minimum lies within the green region,

meaning neither V nor xB are at their constraint values. Thus Figures 8(a), 8(b) and 8(c) correspond

to regions II, I and III in Figure 2.

More on the "‘Avoid Product Giveaway"’ rule

In Case Studies Ia and II, we used what we called the "avoid product giveaway" rule (,8 later used

in18). The rule can be stated as follows: The purity constraint for the most valuable product is

always active.

However, this rule relies on at least two assumptions:
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Figure 7: Single column (case Ia): L and V as function of xB

• A1: The valuable product price is constant, meaning we get paid for the impurity as well,

as long as the purity specification is satisfied (this is the case in case studies Ia and II, but

not Ib). If we do not get paid for the impurity, the value of the product (in $/mol or $/kg)

increases when we overpurify.

• A2: Overpurification costs extra energy. For distillation, this seems to be a general rule,

except possibly for some very non-ideal mixtures. Define the overall separation factor for

distillation as the ratio between light and heavy key component in the distillate and bottoms

products, respectively, S = (xL/xH)D/(xL/xH)B. Then S generally increases as we increase

the internal flows L and V . For example, for the case with constant relative volatility, we

have from the Fenske formula that the maximum separation factor S = αN is achieved for

infinite L and V , that is, for infinite energy.

With the statement "overpurification costs extra energy" we are here assuming that we fix

the composition in the cheap product (e.g. xB) while overpurifying the valuable product

(xD). Of course, if we let both compositions vary, then "overpurification" need not cost

more energy. Consider, for example, a case where the separation is very simple so we use
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Figure 8: Single column (case Ia): Cost function J as function of amount of heavy component in
column bottoms for three values of pV

a simple flash. Assume that the feed is partly vapor and that the flash gives 95 % purity

in the valuable top product (xD) without adding any energy. If the specification is only 90

%, we would need to boil up more of the heavy component (use more energy) to achieve

this, so overpurification (to xD = 95%) seemingly saves energy. However, in a flash xB will

increase when xD increases because of the equilibrium between the products, so the bottom

product becomes less pure and there is additional loss of valuable product in the bottom. In

summary, even for this special case where a single flash is sufficient, it seems unlikely that

it will be economically optimal to overpurify the valuable product.
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Selection of control structure

A detailed analysis of selection of controlled variables is outside the scope of this work. However,

we will discuss it briefly here. Within the self-optimizing control framework, we should:

1. Control the active constraints

2. Use the remaining unconstrained degrees of freedom to control variables whose optimal

values are relatively insensitive to disturbances

For the single column case studies, there are two degrees of freedom, so we need to find two

variables to control. In case Ia, with fixed prices, regions II and III both have two active con-

straints, so in these regions, selection of controlled variables is straight-forward (control the active

constraints). In Region I, there is one active constraint (XD) which should be controlled. The un-

constrained degree of freedom can be used to control xB; as we see from Table 2, this variable is

relatively constant around 0.9900.

For the two-column case study, we have a lot of room for selecting controlled variables. There

are nine regions, and thus we may have to select as much as nine sets of controlled variables.

However, one variable need to be controlled everywhere (the purity of the most valuable product)

and some are active over large parts of the disturbance space (like the purity of stream D1, the top

product of the first column).

When the active constraints are controlled, we need to select controlled variables to be associ-

ated with the unconstrained degrees of freedom. There are four degrees of freedom. From Table 7

we see that that we need to find three variables in Region I, two variables in Regions II and III and

one variable in Regions IV, V and VI. In Regions VII and VIII, all degrees of freedom are used to

control active constraints.

As an example, we consider in Figure 9 the control in region VI, where the three active con-

straints are xB, V1 and V2. The stabilizing control layer is based on the common LV-configuration,

where reflux (L) and boilup (V ) remain as degrees of freedom after having closed the stabilizing

loops for levels and pressure. The control of the three active constraints is then easily implemented
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by using the reflux in the second column (L2) to control xB (in the top of the second column),

whereas the two vapor flows (V1 and V2) are simply set at their maximum.

Figure 9: Control of two-column system in region VI: Possible control structure with stabilizing
layer (red) and control of active constraints (blue). The reflux flow in the first column remains as a
degree of freedom.

In Figure 9, the reflux in the first column (L1) remains as an "unused" unconstrained degree

of freedom, and we would like to select an associated "self-optimizing" controlled variable. The

obvious choice would be to control xA in the top of the first column, but this is not a good choice

because the optimal value of xA changes as a function of the feedrate; from about 0.98 at low feed

rates (as we enter from region III) to 0.95 at higher feedrates (when it becomes active and we enter

region VIII); see Table 8.

A better choice may be to control the amount of impurity A which is carried through to the

second column (xA,B1) as variations in this concentration are likely to cause trouble for the second

column. As seen from Table 8, the optimal value of this concentration does not vary much, which

means it could be a good controlled variable in all regions where we have unconstrained degrees

of freedom.
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However, to identify the best choice of controlled variables, a more detailed analysis is needed,

based on evaluation of the cost for different alternatives.9

Conclusions

We have applied the method described in13 to three distillation case studies. The method allowed

us to find these regions using relatively few optimizations. For the cases with constant prices,

we found that the purity constraint on the more valuable product was always active, as expected.

For a single distillation column, we found three distinct regions (with constant prices) and five

regions (with a purity-dependent distillate price). For two columns in sequence we found eight

distinct regions. In all three cases, we have found the highest feed rate for which the columns can

run without violating purity constraints - i.e. the physical bottleneck. We have also described the

assumptions under which the "‘Avoid Product Giveaway Rule"’ is correct.
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