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Abstract

In this work, we propose a method to estimate the primary variables based on a combi-
nation of measurements. Our method is a reformulation of the Loss method. We will
compare our method with the other well-known estimators.
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1. Introduction

It happens frequently in process control that some important variables are not measur-
able. Sometimes they are expensive to measure and include delay. The value of primary
variable can be inferred by using some secondary variable measurements. The task of
soft sensors is the maximal exploitation of transforming the information of secondary
measurements into more useful process knowledge.

In multi-component distillation system, a certain temperature profile exists for a specified
feed component recovery and feed condition. The idea is to use temperature measure-
ments from several locations in order to estimate the recovery of product composition,
which is also good for some variation in feed properties. In this work, we propose an
approach for designing a static estimator which is inspired from the loss method by Sko-
gestad (2000). This work is a continuation of the work done by Hori et al. (2005). Mea-
surement noise is included. The optimal static estimator is designed for two categories:
“open-loop” performance (estimator used for monitoring) and “closed-loop” performance
(estimator used for control). It is optimal in the sense that it gives the smallest prediction
error which is defined as the difference between the true value and the estimated value.
This approach will be compared with the Partial Least Square (PLS) approach and steady-
state kalman filter.

2. Loss method for estimation

The objective is to find a linear combination of measurements such that keeping these
constant indirectly leads to nearly accurate estimation with a small loss L in spite of
unknown disturbances, d, and measurement noise, n*. Figures 1-4 show four different
scenarios we have considered. Linear models are assumed for the primary variables vy,
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measurements x, and secondary variables z. It is also assumed that dim(y) = dim(x) =
dim(z).
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The optimal H is a matrix which follows the linear relationship § = Hx,,, and derived by
minimizing ||e (H)[|2.¢x,. We assume some expected values for disturbances and noise
which come from engineering wisdom. The normalized values of disturbances and noise
are used in the calculations. Table 1 shows the final expressions for obtaining H for
different scenarios. The problem is easy for “open-loop” cases. The final expression looks
like ordinary least square problems. For “close-loop” case (Figure 4), the Frobenius norm

should be minimized subject to HG, = G, as constraint. We need to obtain the optimal
sensitivity matrix F which is defined as F = (dZ’é’” ) =GI— G.Gy ! G;i, is simply obtained

numerically by re-optimizing the model for different disturbances.

Table 1: Optimal H values for different scenarios

Y =[ GW, GIW, 0 ] Yo=[ W, 0 0]

H =YX| H; = YoX}
X = [ GW, GIW, W ] T X = GIW,, FW, W |
Hy— YVaX] Ys=[ G¢W, FW, 0] H, min|[H[ FW, W ],
X3 = [ Gilwlv F;Wd Wn" } s.t. HGx = Gy

Note that W’s are the diagonal scaling matrices which contain the standard deviations of
the elements. We can consider u to be any variable from the process. G, and G;' become

so trivial if we choose u =y (Gy = I and G¢ = 0), and G{ will be equal to the sensitivity
matrix F.

3. Partial Least Square (PLS) Method

In chemometrics, Partial Least Squares (PLS) regression has become an established tool
for modeling linear relations between multivariate measurements. This method is used to
compress the predictor data matrix X, into a set of latent variable or factor scores. The
orthogonal factor scores are used to fit a set of observations to dependent variables Y.
The main attraction of the method is that it finds a parsimonious model even when the



predictors are highly collinear or linearly dependent. The final fitting equation will be
Y =BX +B, ey

with B and By as optimization variables. By is close to zero because of centering the data.
The main drawback of this method is that there are several realization of the same method
which do not lead to the same result for a specific problem (for PLS2 cases).

For data preparation we have two ways: If we have data, small directions in the measure-
ment space should be deleted by SVD. We should ensure that all important directions are
sufficiently exposed. We can also use exactly the same data that we get in loss method. X
and Y in PLS method are the first and second row of Y,; matrix respectively.
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where Xopt =[ FW; W« |.

We need to know the expected “optimal variation” in X as given by the matrix X, .
Here “optimal” means that y is constant (see the second column in Y,;). In addition,
we also need to obtain G, and G, from the data, which means that the data must contain
“non-optimal” variations in u, and not only contain optimal data where u = u,, (d)- see
the first column in Y. This is called Closed-Loop Regressor (CLR) (Skogestad et al.,
2011). CLR suffers from the same weakness as LS, giving poor results for ill-conditioned
matrices and underdetermined systems. Performing a principal component analysis on the
X data will remove the weaker directions containing noise resulting in a well-conditioned
matrix. Then, CLR can be applied to the data. We call this “truncated CLR”.

4. Kalman filtering

The Kalman filter estimates process states by using a form of feedback control. The
linearity of state dynamics and observation process, as well as the normal distribution of
noise in state dynamics and measurements are the assumptions of kalman filter. A linear
difference equation x; = Axy_ + Buy_1 +wy_1 with a measurement that is z; = Cxi + vy,
define the linearized process. The random variables wy and v; represent the process and
measurement noise respectively. They are assumed to be independent of each other and
with normal distributions.

p(w)~4(0,0) 3)
p(v)~ A (0,R) 4)

The objective is to minimize the estimation error. By writing a posteriori state estimate as
a linear combination of an a priori estimate and the difference between actual measure-
ment and measurement prediction weighted by kalman gain, K is calculated to minimize
the a posteriori estimation error covariance. Since the focus of our work is on chemical
processes, the time scales at which the sensor noise characteristics change are much larger
than the time scale at which we study the system. Thus we assume the system and noise
covariances are time-invariant. In addition, as mentioned previously, our proposed esti-
mator is categorized as static estimator. So, the steady-state of kalman filter is interesting.
The steady-state kalman gain is calculated as K.. = P H' (HP_H" +R). Figure 5 shows
the block diagram of kalman filter estimation.
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The algorithm of Kalman filter requires knowledge of the process noise variance W and
the measurement noise variance V (Nakamura, 1982). If state-feedback control is used,
the overall controller is optimal because of the separation principle. If an output-feedback
controller (u = Ky) is used, then it is generally not optimal to use the § = CX estimated
by Kalman filter. In loss method, the primary variable comes directly from combination
of measurements (¢ = Hy). Since the measurements do not contribute similarly in the
estimation of primary variable, it is expected that by putting weights on the state error
terms, the estimation of primary variable will be improved. Another point is that we
should think of what to use the estimation for. KF is said to be used for control,but
if R approaches infinity, then it means that there is no control. Mejdell and Skogestad
(1993) have shown that the kalman-filter might be better than a simple PCR in open-loop
performance, which is because of the recursive nature of the filter, but PCR performs
similarly if it is used for closed loop. We can model slowly-varying disturbances by
adding states of the noise model. This gives the augmented kalman filter (Brown and C.,
1997). Here, we use non-stationary noise. So zero steady-state is not reached.

5. Example

A binary distillation column model - Column A (Skogestad, 1997) - is used to demonstrate
the performance of different estimators. There are two inputs, namely the reflux flow and
the boilup, and two disturbances, which is the change in feed composition.

Table 2 shows the results of validation for estimators for different scenarios. Calibrating
with one scenario and validating with another is mostly applicable to the last scenario.
So, the shaded cells are actually showing the more interesting data. As it was expected,



the optimal estimator is obtained when it was calibrated and validated for its intended
scenario. Note that all the scenarios are not comparable to each other because of different
variances for different scenarios. Since there is no control in the first scenario, a small
standard deviation in u was selected to give a small standard deviation in y.

Figure 6 shows the performance of estimators. Calibration data was generated by drawing
random values for u ~ .4 (0,0.005%I;), d ~ .4 (0,0.05°1;), y; ~ .4 (0,0.005°I;) and
5~ N (O, [ 0.05 0.5% ] Iz), and calculating the corresponding output variables X,,
and y for the respective scenarios (except scenario 4). The median of the prediction error
for 150 runs are used to assess the estimators’ performances because noise and variation
in input variables resulted in a distorted picture of estimator performance by outliers. By
increasing the number of regressors, the error decreases. All estimators are trained on
calibration data from scenario 2 and validated on scenario 4.

Table 2: The mean prediction error of the model-based estimators applied to four opera-
tion scenarios

Validation Data

S1 S2 S3 S4
~S1 1 0.0085 0.2749 0.0215 = 0.0506
S2 0.0591 | 0.0093 0.0104 0.0104
S3 0.0599 0.0166 @ 0.0098 0.0132
S4 0.0099 0.0099 0.0099 @ 0.0099

Caliberation Data

6. Conclusions

In this paper, we introduced a new static estimator. Four scenarios have been used to get
the calibration data and were validated for the closed-loop scenario. Our emphasis was
on the fact that we should be aware of what we want to use the estimator for.
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