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Abstract

This paper reviews the role of self-optimizing control (SOC) and neces-
sary conditions of optimality tracking (NCO tracking). We argue that self-
optimizing control is not an alternative to NCO tracking, but is to be seen
as complementary. In self-optimizing control, offline calculations are used to
determine controlled variables (CVs), which by use of a lower layer feedback
controller, indirectly keep the process close to the optimum when a distur-
bance enters the process. Preferably, the setpoints are kept constant, but
they may be adjusted by some optimization layer. Good CVs reduce the
need for frequent setpoint changes. When selecting self-optimizing CVs, a
set of disturbances has to be assumed, as unexpected disturbances are not
rejected in SOC. On the other hand, NCO tracking adapts the inputs at
given sample times without assumptions on the set of disturbances. Distur-
bances with high frequencies or which which do not lead to a steady state are
not rejected. By using NCO tracking in the optimization layer and SOC in
the lower control layer, we demonstrate that the methods complement each
other, with SOC giving fast optimal correction for expected disturbances,
while other disturbances are compensated by NCO tracking on a slower time
scale.
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1. Introduction

Most processes in industrial practice are operated in a such a way that the
operators set the setpoints for PID controllers to keep the controlled variables
(CVs) at the desired setpoint. Which measurements are chosen as CVs is
mostly decided based on process knowledge and best practices. However, due
to stronger competition and environmental regulations, in recent years it has
become increasingly important to operate the processes closer to optimality.
In many cases, steady state operation accounts for the largest part of the
operating cost, and significant economical improvements can be achieved by
operating the plant optimally at steady state.

Depending on how this is realized, the methods for achieving optimal
process operation generally may be categorized into one of the following
three categories:

• Model used online (e.g. Real-time optimization (RTO))

• Model used offline (e.g. self-optimizing control (SOC))

• Explicit Model not used (e.g. NCO tracking)

In all cases, measurements are collected online, with the aim of driving the
process towards optimality. In the first approach, online optimization, mea-
surements from the process are used together with a mathematical model to
determine the optimal set-points by solving an optimization problem online
[1].

In the offline approach, expensive online computations are avoided, and
optimal operation is achieved by designing a “smart” control structure. This
controlled variable (CV) selection procedure has the objective to transform
the economic objectives into control objectives [2]. A process model is used
to support decision making in control structure design, but it will not be
used online. Self-optimizing control [3] belongs into this category.

A third strategy avoids using an explicit process model, but uses mea-
surements in order to obtain gradient information about the process. This
information is used to update the inputs directly in order to obtain opti-
mal operation. Necessary conditions of optimality tracking (NCO tracking)
[4] and extremum seeking control [5] represent this category. This idea is
relatively old [6], but has recently gained increased attention.

These approaches to achieve steady state optimal operation have been
developed by research groups with different backgrounds for different kind of
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problems. The authors feel, that there has been some confusion about the
use, interplay, applicability and practicability of some of the concepts.

Our paper is structured as follows: The next two sections briefly describe
the ideas from self-optimizing control and NCO tracking. In particular, we
focus on the null-space method [7], which uses a model offline, and the NCO
tracking procedure for steady state optimization [4], which uses no model
at all. In Section 4 we describe the framework in which we place the two
methods and consider the properties of the two approaches. Based on this
discussion, we consider the methods as complementary and propose to use
them together. The ideas are illustrated by simulation results for a dynamic
CSTR in Section 5, followed by a discussion in Section 6, and conclusions,
Section 7.

2. Self-optimizing control

In virtually all practical cases, plant operation is subject to operational
and safety constraints, so the problem of achieving optimal operation can be
formulated as

min
u

J(u,d) s.t.

{

plant,
constraints: Call(u,d) ≤ 0

(1)

where u is the vector of adjustable input variables (e.g. a valve opening or
a pump speed), d is a vector of unknown disturbances and parameters, and
Call(u,d) is the vector of all equality and inequality constraints.

In practice, not all constraints are active during optimal operation of the
plant and some constraints will remain inactive. In terms of plant safety
and economy it is often significantly more important to satisfy the active
constraints than to handle the unconstrained degrees of freedom optimally.
Therefore, the first step when designing the control structure is to determine
the active constraints, and to control them using some kind of (feedback)
controller. After all active constraints have been implemented, problem (1)
can be re-written as an unconstrained optimization problem,

min
u

J(u,d), (2)

where, by abuse of notation, u now denotes the remaining unconstrained
degrees of freedom.

3



The term self-optimizing control refers to the procedure of selecting the
control layer (see Fig. 1). The focus is set on selecting the best controlled
variables c = Hy such that the operating cost J(u,d) is minimized. Here
y denotes all the candidate measurements and H is a selection or combina-
tion matrix. The criterion for evaluating different candidates for controlled

c

d

Disturbances

u y

c=H(y)

Plant

Controller

c   = const
set

Figure 1: Block diagram SOC

variables is the loss from optimality

L = J(u,d)− J(uopt,d), (3)

which is imposed by the disturbance d and selected control structure which
determines how u is adjusted. Using the loss L, Skogestad [3] defined:

Self-optimizing control is when we can achieve an acceptable loss
with constant setpoint values for the controlled variables (without
the need to re-optimize when disturbances occur).

The ideal self-optimizing variable candidate for this kind of controlled
variable would be the gradient c = Ju(u,d) =

∂J
∂u
, which should be zero for

optimal operation under all disturbances.
This was already formulated in [8], where it is written:
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. . . Thus the search is now reduced to find some measurement
function h(u,d) with these required properties. An example of
this kind of ideal measurement function is in fact the gradient of
the criterion function.

This idea has been also mentioned in [9], where the authors write of the
gradient as a controlled variable. It satisfies the conditions of not being at
a constraint, while the optimal values does not vary with changing distur-
bances. Controlling invariants, in particular the gradient of a process has
been proposed by other authors, too, see e.g. [10, 11].

However, in most cases, the gradient cannot be measured, for example,
because it is a function of the unknown disturbances d. The definition of
self-optimizing control [3] includes the special case of gradient control, while
leaving room for “suboptimal cases” in which the gradient cannot be de-
termined exactly from measurements. In some cases it might be desirable
to control only single measurements, or to exclude a set of measurements.
Then the gradient will not be zero and the loss L provides an objective se-
lection criterion. In other words, a self-optimizing control structure may be
considered the best possible (in terms of the loss L) approximation to the
unmeasured gradient Ju using the available measurements.

Several methods for finding self-optimizing variables have been reported
in the literature [12, 7, 13, 14]. All these methods are based on a approxi-
mating the optimization problem (2) by a quadratic optimization problem

min
u

[uT dT]

[

Juu Jud

Jdu Jdd

] [

u

d

]

, (4)

and by using a linear measurement model

y = Gyu+G
y

dd. (5)

The goal is to find a matrix H such that the controlled variable c is

c = Hym, (6)

where ym = y+ny and ny denotes the measurement noise/bias. It is assumed
that the inputs u are adjusted by a feedback controller to keep c at its
setpoint cs. If the controller has integral action, then c = cs at steady state.
In the case of single measurements, each row of H contains only one entry,
whereas if combinations of measurements are allowed, H will be a full matrix.
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2.1. Self-optimizing control using the null-space method

In the following we describe the null-space method [7] for determining a
controlled variable c = Hy. We present a reformulation of the null-space
theorem [14].

Theorem 1. Given a sufficient number of measurements (ny ≥ nu + nd)
and no measurement noise ny = 0, select H in the null space of the optimal
sensitivity matrix F,

HF = 0, (7)

where

F =
∂yopt

∂d
. (8)

Controlling c = Hy to zero yields locally zero loss from optimal operation.

The optimal sensitivity F can be obtained numerically or calculated using

F = −GyJ−1
uuJud +G

y
d, (9)

where Jud = ∂2J/(∂u∂d) and Juu = ∂2J/∂u2, and we use the linearized
process model (5).

We sketch a proof: In the neighborhood of the nominal point dnom the
optimal change in the measurements can be expressed using (8) as

yopt(d)− yopt(dnom) = F(d− dnom). (10)

The optimal variation in the controlled variables c then becomes

copt(d)− copt(dnom) = HF(d− dnom), (11)

and since H is chosen in left null space of F, we have copt(d) = copt(dnom)
for any disturbance d, and thus we do not need to change the setpoint for
c = Hy.

In Appendix A we show that choosing H in the null space of F is in
indeed identical to selecting c = Ju, where Ju = ∂J/∂u is the gradient of
(4).

However, when the measurements are corrupted by biased noise ny, the
null space method will not give the best possible solution. To find the best
controlled variable with biased process noise on the measurements, we refer
to [14].
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3. NCO tracking

NCO tracking is the concept of adapting the inputs in such a way that
the necessary conditions of optimality (NCO) are satisfied. For steady state
optimization NCO tracking [4] updates the inputs iteratively. By using iter-
ative input updates, the requirements on the model accuracy can be relaxed,
because the iterative nature of the input updates introduces a natural cor-
recting feedback. Cheng and Zafiriou [15], for example, have have developed
an algorithm that can cope with severe plant-model mismatch. The NCO
tracking [4] approach goes one step further and dispenses with a model com-
pletely. It has been described in literature as the idea of iteratively updating
the inputs u of a plant to satisfy the first order necessary conditions for opti-
mality upon convergence. Instead of controlling “normal” measurements y,
the gradient is estimated and used as a controlled variable. When a distur-
bance enters the process, the NCO tracking control scheme adapts the inputs
iteratively such that the NCO are satisfied after some iterations.

As in self-optimizing control, it is assumed that the set of active con-
straints does not change when a disturbance enters the process. The opti-
mization problem then can be written as

min J(u,d) s.t. C(u,d) = 0. (12)

The number of inputs, disturbances and constraints is denoted nu, nd and
nc, respectively. In contrast to the previous section, u now denotes the all
inputs, not only the unconstrained degrees of freedom. It is assumed that
the linear independence constraint qualification (LICQ) hold, i.e. that the
gradients of the nc active constraints are linearly independent at the optimal
point.

Both, the values of the active constraints C(u,d) and the objective func-
tion are assumed to be measurable. In addition, the gradients of these func-
tions are assumed to be “measurable”, e.g. by estimating them experimen-
tally (at each iteration) using nu perturbations and applying finite differences
to estimate Ju(u,d) = ∂J/∂u and Cu(u,d) = ∂C/∂u.

While in self-optimizing control, the active constraints are assumed to be
directly controlled by feedback, and the task is to find the best controlled
variables for the remaining degrees of freedom, NCO tracking updates all
inputs iteratively to satisfy the constraints and to push the sensitivities of
the unconstrained degrees of freedom to zero. This allows one to handle
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constraints that cannot be controlled by feedback, for example, end point
constraints in dynamic optimization.

To determine appropriate update laws, which converge to the active con-
straints and force the unconstrained sensitivities to zero, the input directions
are partitioned into two orthogonal components. The two-dimensional case
is illustrated in Fig. 2, where the first component of the input ū is orthog-

ū ũ

C(u,d) = 0

u1

u2

Figure 2: Input partitioning: constraint seeking input ū, sensitivity seeking input ũ

onal to the constraints, and is called “constraint seeking” input direction,
and the second input direction ũ is parallel to the constraints and is called
“sensitivity seeking” input direction.

The directions can be found by measuring the constraint sensitivity ma-
trix Cu, and by performing a singular value decomposition, Cu = USV T . We
then write SG = [S̄G 0] and VG = [V̄G ṼG] to obtain:

ū = V̄ T
G u and ũ = Ṽ T

G u. (13)

Partitioning the input in this way has the advantage that changing the
sensitivity seeking inputs ũ does not have any influence the constraints
C(u,d), that is:

Cũ =
∂C(ū, ũ,d)

∂ũ
= 0 (14)

Assuming that the linear independence constraint qualifications hold, the
NCO can be expressed using the partitioned inputs ū and ũ as:

C(ū, ũ,d) = 0 ∈ R
nc

Jũ =

(

∂J(ū, ũ,d)

∂ũ

)T

= 0 ∈ R
nu−nc

(15)
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To determine the input update equations, a Taylor expansion of the NCO
(15) is performed around the current input point (ū, ũ).

C(ū+∆ū) = C(ū) + Cū(ū)∆ū

Jũ(ũ+∆ũ) = Jũ(ũ) + Jũũ(ũ)∆ũ
(16)

At optimal operation the left hand sides of (16) are zero. So setting them
equal to zero, and solving for ∆ū and ∆ũ gives the optimal updates of the
inputs:

∆ū = − [Cū(ū)]
−1C(ū) (17)

∆ũ = − [Jũũ(ũ)]
−1 Jũ(ũ) (18)

These input updates are exact for a quadratic approximation of the sys-
tem (12), in the sense that the NCO (15) are satisfied after one iteration, as
in dead beat control. Considering the process at time instant k, the input at
the next sample time k + 1 is determine by

ūk+1 = ūk + β̄∆ū and ũk+1 = ũk + β̃∆ũ. (19)

Here β̄ and β̃ are tuning parameters which adjust the step size, since applying
the full updates may lead to infeasibility and convergence problems.

This procedure is analog to a Newton(like) optimization method. In this
analogy, steady state operating periods correspond to function evaluations
in the newton procedure, and the system is solved when the NCO hold.

Just like any (quasi) Newton method, NCO tracking depends crucially on
the availability of good gradient estimates. Beside estimating the gradients
using input perturbations and finite differences, there exist other methods,
which do not require frequent perturbations. In [16], past inputs are used
in Broyden’s formula to obtain the gradients. Other methods which do not
rely on input perturbations are described in [17, 18]. However, in this work,
the authors choose to use finite differences because of its simplicity. Avoiding
input perturbations for gradient estimation will result in less nervous process
operation, but the inputs will still be updated iteratively only at given sample
times.

Since the Hessian Jũũ in (18) is expensive to obtain numerically, one
often uses the Hessian at the nominal operating point, which is determined
experimentally only once. Alternatively, an approximation of the inverse of
the Hessian can be obtained by a BFGS update.
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Run plant to steady state

Measure C (constraint value)
“Measure” Cu (e.g. nu experiments)

Compute svd(Cu) and obtain Cū

Update constraint seeking di-
rection: ∆ū = − (Cū)

−1C
ūk+1 = ūk + ∆ū

Run to steady state. “Measure” Jũ

(e.g. nu − nc experiments)

Update sensitivity seeking di-
rection: ∆ũ = − (Jũũ)

−1 Jũ

ũk+1 = ũk + ∆ũ

Start from beginning

Figure 3: NCO tracking procedure

The complete NCO tracking procedure is visualized in Fig. 3. If more
information on the directionality of the disturbance is available, this infor-
mation can be used in the updating scheme to make the updating more
efficient. For more details on the NCO tracking procedure for steady state
optimization of processes, the reader is referred to [4].
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3.1. NCO tracking, unconstrained case

This section briefly describes a simplified NCO tracking procedure which
will be used later in this work. If there are no constraints, all inputs u are
sensitivity seeking inputs, and the constraint seeking updates can be omitted.
The block diagram is shown in Fig. 4. In practice, the gradient cannot just be

d

Disturbances

J

u      = u  +   u

Controller

Plant

u

∆

k+1 k
Gradient
Evaluator

∆

u = − J   Juu u

Figure 4: Block diagram NCO tracking

evaluated as indicated in Fig. 4. In this work we make a small perturbation
in the input and run the process for a given time to estimate the gradient by
finite differences. The simplified action sequence is shown in Fig. 5.

Remark 1 (Recent advances in NCO tracking). Recently, the idea of NCO
tracking has been extended to the case where the gradient estimate is based on
output feedback. Gros and coworkers, [19] use a linear measurement model
to eliminate the disturbance from the gradient expression. Their results are
based on the same idea as the null-space method, which uses a measurement
model to eliminate unknown disturbances and internal states from the gradi-
ent expression. However, [19] goes one step further and determines the ac-
tual change in the inputs. This step is omitted in the self-optimizing control
structure design context, because the focus is set on finding good controlled
variables, and the generation of the corresponding inputs, u, is left to the
feedback controller.
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Run plant to steady state

Perturb u. Run nu experiments
to determine the gradient Ju(uk)

Update input:
∆u = −J−1

uu(uk)Ju(uk)
uk+1 = uk + β∆u

Start from beginning

Figure 5: Simple NCO tracking procedure

The authors of [19] consider zero mean noise, and show that if the model
is invertible and the number of unknowns (nd) is lesser or equal than the
number of measurements (ny), the inputs can be updated to converge to the
optimum.

In the case of biased noise, neither the null-space method nor the NCO
tracking modifications introduced by [19] will give the best achievable opera-
tion. In this case it is necessary to use other methods which find a trade-off
between the loss caused by the disturbance and the loss caused by the measure-
ment offset. A method applicable in this case is the “minimum loss method”
[14].

4. Self-optimizing control and NCO tracking in relation to each

other

In order to suggest how to combine self-optimizing control and NCO
tracking, we first consider how a chemical plant is usually operated today.

4.1. Time scale separation of the overall control system

The control structure of a complete chemical plant can be decomposed
vertically into different layers, which operate on different time scales, [20, 21].
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Each control layer implements the setpoints which are given from the layer
above, Fig. 6.

Planning and scheduling

Optimization
(Operator and/or

Real-time optimization)

Control layer

Plant

Parameters,

constraints

csetpoint

u
y

Figure 6: Vertical decomposition into control layers

The top layer consists of planning and scheduling. This includes manage-
ment decisions on e.g. the product specifications, and on profit and safety
parameters, such as utility prices and constraints. Usually this layer has a
time scale of weeks or days, strongly depending on the type of process and
the production scale.

The optimization layer is located below the planning and scheduling layer
and implements the goals given from the planning and scheduling layer. In
most plants this is done by operators, but in recent years, online optimization
(RTO) has been increasingly used to find good setpoints for the controlled
variables of the lower layers. However, this can become complicated as it
involves several difficult steps such as steady state detection, data estimation
and reconciliation and solving a large nonlinear optimization problem. Once
the optimization problem has been solved successfully or the operators have
decided to change the setpoints, the new setpoints are passed on to the
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control layer and implemented. It is typical for this layer that the setpoints
are updated at discrete time instances with update intervals in the time scale
of several hours.

The control layer below the optimization layer generally consists of PID
controllers or model predictive controllers (MPC), which act directly on the
plant inputs u. This layer has a time scale ranging from fractions of seconds
up to minutes and to a few hours. Finally, the plant layer contains the actual
plant, but usually with some stabilizing (regulatory) control loops.

When a disturbance enters the system, the control layer will try to keep
the setpoints of the controlled variables to their original setpoints. After the
plant has settled down and (suboptimal) steady state has been reached (and
detected), the operator may adjust the setpoints based on experience, or the
real-time optimizer may re-calculate the setpoints. Then the setpoints of
the controlled variables are ramped to their new values, and the plant has
to settle down again. The long time delay between start of the disturbance
and reaching the final optimized operation point is one of the challenges
for the optimization layer. In particular if RTO is used, it is not possible
to counteract disturbances which occur on a fast time scale [22]. This limits
successful RTO applications for cases with sporadic disturbances, which, after
a short transition period, lead to a new steady state, e.g. step changes in the
plant throughput or the like. Disturbances occurring on a faster time scale
cannot be detected and rejected in RTO implemented as described above.

Using a dynamic model in the real-time optimization with an economic
objective function would allow setpoint changes without having to wait for
steady state. However, practical obstacles have prevented the dynamic RTO
(DRTO) from becoming a standard tool in process industries. The main
problems arise from the reliability of the information used in the DRTO,
because good models are difficult to obtain and maintain with justifiable
efforts. In addition, the state estimation causes additional challenges. And
even if a good model and states are available in the DRTO, the dynamic
optimization problem itself is difficult to solve.

4.2. Properties of self-optimizing control and NCO tracking

Both methods, NCO tracking and self-optimizing control, pursue the
same goal, minimization of the operating cost. The main difference, as we
see it, is that in NCO tracking, we focus on manipulating the input values
directly at given sample times to force the sensitivities to zero. As the name
implies, the necessary conditions of optimality are the controlled variables,
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and the method is basically a kind of control law, which updates the inputs
accordingly.

In self-optimizing control, we focus on finding controlled variables which
do not need frequent updates. Since the gradient is usually not available as a
measurement, self optimizing control does not in general aim for controlling
the gradient to zero, but to find controlled variables, which give acceptable
operation. The active constraints and the self-optimizing variables are kept
at their setpoints by feedback controllers, so there is no need for solving for
the optimal inputs explicitly.

In summary, we may say that the NCO tracking procedure works as a
controller which calculates directly the required input change ∆u. In self-
optimizing control, we are not interested in the inputs, as they are taken care
of by the controllers. We are rather interested in finding the right controlled
variable c = Hy, which when kept constant, leads to the correct input action
u.

In table 1 we have listed the main differences between the null space
method and NCO tracking.

Table 1: Summary of properties

Null space method NCO tracking

Procedure for finding c = Hy Controlled variable: c = Ju

Ju and Cu not measured Ju and Cu measured
Set of important d assumed a priori No assumptions on disturbances

F = ∂yopt

∂d
obtained from model No model needed

Active constr. satisfied by feedback Active constr. satisfied iteratively
Optimal for expected disturbances Optimal for unexpected disturbance
Local, linearized at nom. point Local, linearization point moves
Direct, continuous input change (PID) Discrete updates at sample times
Fast (feedback) Slow (acts only at sample times)

4.3. Using self-optimizing control and NCO tracking together

The previous observations lead us to consider self-optimizing control and
NCO tracking (or RTO) as complementary, and use them together. NCO
tracking fits better into the optimization layer and is thus an alternative
to model based real-time optimization (RTO), while self-optimizing control
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Optimization
NCO tracking

as RTO

PID/MPC
controller

Plant

csetpoint

u
SOC

c = Hy

y

c

disturbance d

Figure 7: Relation between NCO tracking and self-optimizing control

should be used in the lower layer and follow the setpoints coming from the
NCO tracking layer, as shown in Fig. 7.

It may be argued that if NCO tracking or a RTO system is installed, there
is no need to select a self-optimizing control structure because the setpoints
are updated by the optimization layer. However, this combination of an RTO
layer (or NCO tracking) and self-optimizing control avoids the shortcomings
of conventional RTO:

1. The use of self-optimizing controlled variables enables a faster optimal
reaction to expected (main) disturbances, not only at sample times.

2. The RTO has to change the setpoints less frequently.

Infrequent RTO updates result in fewer complex operations such as steady
state detection, data reconciliation, and solving the resulting nonlinear opti-
mization problems. At the same time, the self-optimizing control structure,
can benefit significantly from an RTO system or NCO tracking controller
on top of it. One reason is that the measurement selection process is based
on expected disturbances, whereas NCO tracking can also handle unknown
disturbances. Another reason is that if a disturbance moves the process far
from the linearization point, the local model approximation may be poor. So
the self-optimizing control structure cannot reject unexpected disturbances
or disturbances which move the process far away from the linearization point.
They have to be counteracted by re-optimization of the system.
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In summary, it is recommended to always use a self-optimizing control
layer underneath the optimization layer instead of directly computing the
plant input u. This rejects expected disturbances on a fast timescale, while
the unexpected disturbances are rejected by the NCO tracking/RTO layer
updates. Applying self-optimizing control is thus basically an intelligent way
to implement the control layer below the RTO layer.

5. Case study

5.1. Model

To illustrate the ideas above, we present simulation results for a dynamic
CSTR with a feed stream F containing mainly the component A, and a
reversible chemical reaction A ⇋ B, see Fig. 8. The process model is taken

F
CA,in

CB,in

Ti

CA

CB

T

Figure 8: Schematic diagram of a CSTR

from [23], and the dynamics of the system are described by following set of
equations,

dCA

dt
=

1

τ
(CA,in − CA)− r (20)

dCB

dt
=

1

τ
(CB,in − CB) + r (21)

dT

dt
=

1

τ
(Ti − T ) +

−∆Hrx

ρcp
r (22)

where CA, CB, T, Ti denote the concentrations of components A and B, the
reactor temperature and the cooling temperature, respectively. Further, τ is
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the residence time, ρ is the density, cp is the heat capacity, and −∆Hrx is
the reaction enthalpy. The reaction rate r is defined by

r = k1CA − k2CB (23)

where
k1 = A1e

−E1

RT and k2 = A2e
−E2

RT , (24)

and C1 and C2 are the Arrhenius factors for the reaction constants k1 and
k2.

This process has one manipulated input (u), the jacket temperature Ti.
The expected disturbances d1 and d2 enter the process as variations in the
feed concentrations CA,in, CB,in, and the measured variables are y1 = CA,
y2 = CB, y3 = T . The objective is to maximize the profit function which is
a trade-off between cooling cost and income from selling product B ([24]):

P = [pCB
CB − (pTi

Ti)
2], (25)

Here pCB
is the price of the desired product B and pTi

is the cost for cooling.
The parameter values are given in table 2, and the nominal operation values
for all variables are listed in table 3.

Parameter Value

pCB
2.009

pTi
1.657·10−3

Table 2: Objective function parameters

5.2. Simulations

First, we control the process for the expected disturbances using direct
NCO tracking. Next, we use a self-optimizing CV, c = Hy, obtained using
the null space method and compare the results with direct NCO tracking.
After comparing both control structures for an unexpected disturbance, we
finally combine the methods as shown in Fig.7.

The expected disturbance scenario is given in Fig. 9. After 500 minutes
at the nominal value, the concentration CA,in (d1) varies sinusoidal before
returning to its nominal value. Then ramp disturbances in CA,in are intro-
duced, followed by large step disturbances. At 4000 minutes, the concen-
tration CB,in (d2) makes a step change of 0.2 mol/l. The non-steady state
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Variable Value Unit Description

Ti 424.20 K Reactor temperature (input u)
CA 0.4978 mol/l Concentration A in product (y1)
CB 0.5022 mol/l Concentration B in product (y2)
T 426.71 K Reactor temperature (y3)
CA,in 1.000 mol/l Concentration A in feed, (d1)
CB,in 0.000 mol/l Concentration B in feed, (d2)
F 1.000 holdup min−1 Flow rate
A1 5000 s−1 Arrhenius factor 1
A2 1 · 106 s−1 Arrhenius factor 2
cp 1000 cal kg−1K−1 Heat capacity
E1 10000 cal mol−1 Activation energy 1
E2 15000 cal mol−1 Activation energy 2 (d3)
R 1.987 cal mol−1K−1 Ideal gas constant
−∆Hrx 5000 cal mol−1 Heat of reaction
ρ 1.000 kg/l Density
τ 1.000 min Residence time

Table 3: Nominal values for the CSTR model

periods (sinusoid and ramp) are included to test how the controller behaves
in these cases. Note that strictly speaking, the gradient is not defined when
the process is not at steady state.

5.2.1. Direct NCO tracking

To obtain the gradient information, the input Ti is perturbed with a step
of 1 K. Starting with a positive value, the sign is altered every forth NCO
iteration. Changing the sign of the perturbation was found to give better
overall performance of the NCO procedure. No steady state detection is
implemented in the NCO tracking procedure. Instead, a step test is used
to determine the approximate time for the system to settle down to a new
steady state. At the nominal point, the system has a time constant of less
than two minutes for an input step of ∆Ti = 5 K. To let the system settle
down far from the nominal point, where the system dynamics are different, a
sample time of 10 minutes is chosen for the direct NCO tracking procedure.
The step size parameter β is set to 0.4.

Fig. 10 shows the concentration and temperature trajectories for the NCO
tracking procedure. The control strategy enables acceptable control. It is fur-
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Figure 9: Disturbance trajectories CA,in, Cb,in
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Figure 10: NCO tracking, concentrations and temperature

method assumes steady state after 10 minutes, and uses the results at each
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sample time for calculating the input update, it has difficulties handling sinu-
soidal and ramp disturbances which do not lead to a steady state. However,
the controller manages to keep the system stable during these periods. The
performance of the NCO tracking algorithm is very sensitive to the tuning
parameter β, the sample time, and the timing and kind of the disturbance,
and of course the perturbation for estimating the gradient.

5.2.2. Self-optimizing control using the null-space method

Next, the process is controlled using the null space method from Sec-
tion 2. Since we have one input and 2 disturbances to compensate for, we
need three measurements for the invariant variable combination, so y =
[ CA CB T ]T. We optimize the steady state system at the nominal operat-
ing point and then introduce small perturbations in the disturbance variables
d = [CA,inCB,in]

T. After re-optimizing we calculate

F =
∂yopt

∂d
=





−0.4862 −0.3223
−0.5138 −0.6777
−9.9043 40.5807



 . (26)

Then with H = [ −0.7688 0.6394 0.0046 ] we have that HF = 0. Us-
ing a PI controller, the self-optimizing variable c = Hy = −0.7688CA +
0.6394CB + 0.0046T is controlled at a constant setpoint (zero if we use the
deviation from nominal steady state). The concentration and temperature
trajectories with self-optimizing control are plotted in Fig. 11. Compared
with the concentrations and temperature using NCO tracking, the trajecto-
ries are much smoother.

5.2.3. Comparing inputs and profit for NCO tracking and self-optimizing
control

As may be guessed from the trajectories for NCO tracking and self-
optimizing control, the input usage for the two cases is quite different, Fig. 12.
While the NCO tracking procedure needs large input variations to estimate
the gradient and to iteratively update the input, the input usage of the self-
optimizing control structure is very moderate and smooth. Especially during
the non-steady state disturbances, the NCO tracking changes the input ex-
cessively.

Comparing the profits, Fig. 13, shows that both systems are very similar
in the steady state periods, but for disturbances, where no steady state is
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Figure 11: SOC, concentrations and temperature
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Figure 12: Input usage for SOC and NCO tracking

reached within one sample time, NCO tracking is not performing as well as
the self-optimizing control policy using the null-space method.
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Figure 13: Profit for SOC and NCO tracking

5.2.4. Using NCO tracking as RTO and self-optimizing control in the lower
layer

If it can be guaranteed that the disturbances in the feed concentration are
the only ones entering the process, then using only self-optimizing control is
sufficient, and a RTO layer is not necessary. However, the situation changes
for disturbances not anticipated in the control structure design. Consider a
positive step change in the activation energy E2 (d3) of 3% at time 3100 min.
This disturbance reduces the reaction rate for the reverse reaction, especially
at higher temperatures. Comparing the profits using the two control struc-
tures, Fig. 14, shows that the self-optimizing control system cannot exploit
the improved conditions caused by the unexpected disturbance.

Adapting the self-optimizing control setpoints using RTO or NCO track-
ing can solve this problem, and at the same time reduce RTO or NCO track-
ing sample time. In Fig. 15 the instantaneous profit for direct NCO tracking
(sample time: 10 min) and the combined system with a sample time of 25
min is shown. The combined system operates smoother than the pure NCO
tracking system while giving similar performance in terms of the profit. How-
ever, considering the input usage, Fig. 16, we find that the combination of
self-optimizing control and NCO tracking gives a substantially smoother in-
put action than direct NCO tracking. Using online RTO, the performance
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Figure 14: Profit, for NCO tracking and for SOC with unexpected disturbance (d3) at
3100 min
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Figure 15: Profit for combined SOC/NCO tracking (25 min sample time) and direct NCO
tracking (10 min sample time)

could be improved even further because the setpoints would move directly
to the optimal values instead of iteratively approaching them. However, un-
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Figure 16: Input, combined NCO/SOC and direct NCO tracking

modelled (unexpected) disturbances are not rejected in online RTO either

6. Discussion

There has been some confusion about the relationship between “self-
optimizing” control approach of Skogestad and coworkers and the NCO
tracking approach of Bonvin and coworkers. The reason for the confusion
is that both approaches seek to optimize operation and make the gradient
zero (Ju = 0), but there are significant differences:

In self-optimizing control the idea is to use offline calculations to obtain
good controlled variables, typically as linear combination of the measure-
ments, c = Hy, where c may be considered an estimate of the gradient. It
is critical to have a model of the expected disturbances when obtaining c.
One does not compute the optimal inputs explicitly; they are generated by
a feedback controller to make c = Hy = cs (constant).

In NCO tracking one aims at obtaining the optimal inputs u that drive
the measured or estimated gradient to zero. It is not necessary to know the
disturbances in advance, and no model is needed.

As shown in this paper, the two methods may be successfully combined
by controlling the self-optimizing variables c in the lower layer and let NCO
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tracking adjust the setpoints, c = copt based on online estimates of the
gradient.

It was not easy to make the NCO tracking work in spite of the fact that
we assumed no measurement noise. This could be partly attributed to the
fact that we used a simple finite difference procedure to obtain the gradients,
without, for example, steady state detection.

The NCO tracking parameters (perturbation magnitude, step size β, sam-
ple time), which converge to the optimum were found by trial and error. Pa-
rameters which perform well for one disturbance may give poor performance
for a different disturbance. Especially the non-steady state periods make it
difficult to find parameters which optimize the cost with acceptable input
usage.

The NCO tracking procedures hinges on good gradient estimates, and
using finite differences for estimating the gradient gives poor NCO tracking
updates, even with the assumptions of perfect measurements without noise,
and perfect knowledge of the profit value. Other more advanced gradient and
update methods may give better overall performance, especially in terms of
input usage, because poor update steps caused by wrong gradient estimates
would be avoided.

However, we chose to apply the simplest method in this work, because
our purpose is to demonstrate that the basic concepts of NCO tracking and
self-optimizing control are complementary. Whatever technique for calculat-
ing the gradient and the NCO tracking updates is used, combining the two
methods helps to overcome their limitations. An interesting task for future
research might be to study the combination of self-optimizing control with a
more advanced update/gradient estimation method and a more realistic case
with non-zero mean random measurement noise.

7. Conclusion

The different characteristics of the two methods studied in this paper
suggest to consider them as complementary, not competing. NCO tracking
is most suitable for use in the optimization layer, as an alternative to online
RTO, while self-optimizing control is used for selecting CVs in the control
layer.

Since almost every RTO system has a dynamic control system in the layer
below, using a self-optimizing control structure in the lower layer, improves
performance and can significantly reduce need for RTO updates. For NCO
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tracking as implemented in this paper, this means less perturbations for
gradient estimation. For an online RTO, this means more time for complex,
time intensive, computations, with few compromises on performance.

The matlab simulation files are available on the home page of S. Skoges-
tad, http://www.nt.ntnu.no/users/skoge, or as supplementary material
from the journal.

Appendix A. Relationship between the gradient and the null space

method

Consider the unconstrained optimization problem

min
u

J(u,d) = min
u

[uT dT ]

[

Juu Jud

Jdu Jdd

] [

u

d

]

. (A.1)

Deriving the cost J with respect to u gives:

Ju =
[

Juu Jud

]

[

u

d

]

(A.2)

The linear model (5) can be rewritten as:

y = G̃y

[

u

d

]

(A.3)

If we assume that we have a sufficient number of measurements, ny = nu+nd,
then the model may be inverted, and substitution into (A.2) gives

Ju =
[

Juu Jud

]

[G̃y]−1y. (A.4)

At the optimum, we have Ju = 0, or equivalently c = Hy = 0, where
H = [Juu Jud][G̃

y]−1. This is the same expression for H as derived in [14].
And indeed, if we evaluate HF using F in (9), we get HF = 0. This follows
since F in (9) may be rewritten as

F = G̃

[

−J−1
uuJud

I

]

. (A.5)

Also note that the loss L and gradient are related by

L =
1

2
JuJ

−1
uuJu, (A.6)

so Ju = 0 is equivalent to L = 0. In summary, we see that the null space
method is identical to controlling the gradient, Ju = 0.
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