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This  paper  reviews  the  role  of self-optimizing  control  (SOC)  and  necessary  conditions  of  optimality  track-
ing  (NCO  tracking)  as  presented  by [1].  We  show  that  self-optimizing  control  is  not  an alternative  to NCO
tracking  for steady  state  optimization,  but  is to be  seen  as  complementary.  In  self-optimizing  control,
offline  calculations  are  used  to  determine  controlled  variables  (CVs),  which  by  use of  a  lower  layer  feed-
back controller  indirectly  keep  the process  close  to the  optimum  when  a disturbance  enters  the process.
Preferably,  the  setpoints  are  kept  constant,  but  they  may  be adjusted  by  some  optimization  layer.  Good
CVs  reduce  the  need  for frequent  setpoint  changes.  When  selecting  self-optimizing  CVs,  a set  of  dis-
turbances  must  be assumed,  as  unexpected  disturbances  are  not  rejected  in SOC.  On  the  other  hand,
eal-time optimization
ptimal operation

the presented  NCO  tracking  procedure  adapts  the  inputs  at  given  sample  times  without  a  model  or  any
assumptions  on  the  set of  disturbances.  However,  disturbances  with  high  frequencies  or  those  which  do
not lead  to  a steady  state  are  not  rejected.  By  using  NCO  tracking  in  the  optimization  layer  and  SOC  in
the  lower  control  layer,  we  demonstrate  that  the  methods  complement  each  other,  with  SOC  giving fast
optimal  correction  for  expected  disturbances,  while  other  disturbances  are  compensated  by  the  model
free NCO  tracking  procedure  on  a slower  time  scale.
. Introduction

Most processes in industrial practice are operated in such a way
hat the operators set the setpoints for PID controllers that keep
he controlled variables (CVs) at the desired setpoint. Which mea-
urements are chosen as CVs is mostly based on process knowledge
nd best practices. However, due to stronger competition and envi-
onmental regulations, it has become increasingly important to
perate the processes close to optimality. In many cases, steady
tate operation accounts for the largest part of the operating cost,
nd significant economical improvements can be achieved by oper-
ting the plant optimally at steady state.

Depending on how this is realized, the methods for achieving
ptimal process operation generally may  be categorized into one
f the following three categories:

Model used online (e.g. real-time optimization (RTO) [2]).
Model used offline (e.g. self-optimizing control (SOC) [3]).
Explicit model not used (e.g. NCO tracking [1]).
n all cases, measurements are collected online, with the aim of
riving the process towards optimality. In the first approach, online
ptimization, measurements from the process are used together

∗ Corresponding author. Tel.: +47 735 94154.
E-mail address: skoge@chemeng.ntnu.no (S. Skogestad).
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with a mathematical model in a two  step procedure, where first the
model and the disturbances are updated, and then the new opti-
mal  setpoints are determined by solving an optimization problem
online [2].

In  the offline approach, expensive online computations are
avoided, and optimal operation is achieved by designing a “smart”
control structure. This controlled variable (CV) selection proce-
dure’s objective is to transform the economic objectives into control
objectives [4].  A process model is used to support decision making
in control structure design, but it will not be used online. Self-
optimizing control [5] belongs into this category.

A third strategy avoids using an explicit process model, but uses
measurements to obtain gradient information about the process.
This information is used to update the inputs to obtain optimal
operation. Necessary conditions of optimality tracking (NCO track-
ing) as presented in [1] and extremum seeking control [6] represent
this category. This idea is relatively old [7],  but has recently gained
increased attention.

These approaches to achieve steady state optimal operation
have been developed by research groups with different back-
grounds for different kinds of problems. The authors feel that there
has been some confusion about the use, interplay, applicability and
practicability of some of the concepts.
Our paper is structured as follows: The next three sections
briefly describe the setting and the ideas from self-optimizing con-
trol and NCO tracking. In particular, this work focuses on the null
space method as described in [8],  which uses a model offline, and

dx.doi.org/10.1016/j.jprocont.2011.07.001
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
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he model free NCO tracking procedure for steady state optimiza-
ion as described by [1].

In Section 5 we describe the framework in which we  place the
wo methods and consider the properties of the two approaches.
ased on this discussion, we consider the methods as complemen-
ary and propose to use them together. The ideas are illustrated by
imulation results for a dynamic CSTR in Section 6, followed by a
iscussion in Section 7, and conclusions in Section 8.

. Optimal operation

The task is to optimize the steady state operation of continuous
ystems. In virtually all practical cases plant operation is subject to
perational and safety constraints, and the problem of achieving
teady state optimal operation can be formulated as minimizing a
calar cost function J′:

in
u′

all

J′(u′
all, x′, d′) s.t.

{
plant : g(u′

all
, x′, d′) = 0

constraints : h(u′
all

, x′, d′) ≤ 0,
(1)

here u′
all

∈ R

nu′
all denotes the steady state degrees of freedom (e.g.

 valve opening or a pump speed), x′ ∈ R
n′

x denotes the states, and
′ ∈ R

nd′ denotes the vector of unknown disturbances and parame-
ers. Although, the signal d′ may  vary with time, we  make a pseudo
teady state assumption [4].

The ng-dimensional and nh-dimensional vector valued func-
ions g and h denote the model equations and the operational
onstraints respectively. A constraint is said to be “active” if it is
ptimal to have hi = 0 (equality). The set of active constraints may
hange depending on the disturbances. However, in this paper, we
ssume that the set of active constraints does not change with the
isturbances.

In terms of plant safety and economy it is often significantly
ore important to satisfy the active constraints than to handle the

nconstrained degrees of freedom optimally. Therefore, the first
tep when designing the control structure is to determine the active
onstraints, and to design a control system that keeps them close
o the optimal value.

With all active constraints implemented, problem (1) can be
e-written as an unconstrained optimization problem, and if we
lso formally eliminate the internal (state) variables x′, the problem
ecomes

in
u′ J′′(u′, d′), (2)

here u′ ∈ R
nnu′ now denotes the remaining unconstrained degrees

f freedom.
For notational convenience, we introduce a variable transfor-

ation, where the nominal optimal point is used as a reference:

 = u′ − uopt′ (d
′
), (3)

 = d′ − d
′
. (4)

he transformed variables are u ∈ R
nu , and d ∈ R

nd , respectively,
nd d

′ ∈ R
nd′ denotes the nominal disturbance and uopt′ (d) ∈ R

nu′

enotes the nominal optimal value of the unconstrained degrees of
reedom, respectively. Then problem (2) is rewritten as

in
u

J(u, d). (5)

. Self-optimizing control
.1. The loss concept

We here discuss the implementation of the solution for the
nconstrained optimization problem (5). The term self-optimizing
Fig. 1. Block diagram self-optimizing control (SOC).

control refers to a procedure for selecting the controlled variables
c ∈ R

nu , which are controlled by a feedback controller (Fig. 1). The
focus is set on selecting a good set of controlled variables:

c = Hym, (6)

such that the operating cost J(u, d) is minimized. Here H ∈ R
nu×ny ,

and the measured quantities are defined as

ym = y + ny (7)

where y ∈ R
ny denotes the measurement vector and ny ∈ R

nny

denotes the noise vector. If the controller has integral action, then
c = cs at steady state. In the case of single measurements, each row
of H contains only one entry, whereas if combinations of measure-
ments are allowed, H will be a full matrix.

The criterion for evaluating different candidates for controlled
variables is the loss from optimality, which is defined as the dif-
ference between the actual cost J(u, d), which is caused by using
the input u imposed by the selected control structure, and the cost
which would have been obtained using the optimal input uopt(d):

L = J(u, d) − J(uopt(d), d), (8)

The goal is to select a control structure which is self-optimizing [5]:

“Self-optimizing control is when we  can achieve an acceptable
loss with constant setpoint values for the controlled variables
(without the need to re-optimize when disturbances occur).”

The ideal self-optimizing variable would be the gradient c = Ju(u,
d) = ∂ J(u, d)/∂ u, which should be zero for optimal operation under
all disturbances. This was  already formulated in [9],  where it is
written:

“. . .Thus the search is now reduced to find some measurement
function h(u, d) with these required properties. An example of
this kind of ideal measurement function is in fact the gradient
of the criterion function.”

The idea has been also mentioned in [10], where the authors wrote
of the gradient as an ideal controlled variable. The gradient Ju sat-
isfies the conditions of not being at a constraint, and the optimal
value (zero) does not vary with changing disturbances. Controlling
such invariants, in particular the gradient of a process, has also been
proposed by other authors, e.g. [11,12].

3.2. Relationship between the gradient and the loss
Several methods for finding self-optimizing variables have been
reported in the literature [3,8,13,14].  All these methods are based
on a local approximation of J by a second order Taylor series [13].
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round the nominal optimum (Ju(uopt(d), d) = 0), the solution of
roblem (5) can then be approximated by solving ([13]):

in
u

[uT dT]

[
Juu Jud
Jdu Jdd

] [
u
d

]
. (9)

ere, Juu = ∂ 2J/∂ u2, Jud = JT
du = ∂2

J/∂u∂d, and Jdd = ∂ 2J/∂ d2. It is
urther assumed that Juu is positive definite.

Locally, the relationship between the gradient Ju and the loss L
s given by following theorem:

heorem 1. For a quadratic approximation (9) of the optimization
roblem (5) around the optimum, the relationship between the loss in
8) and the gradient Ju = ∂J(u,d)

∂u
, is

= 1
2

Ju
TJ−1

uuJu = 1
2

∥∥∥J
− 1

2
uu Ju

∥∥∥2

2
. (10)

roof. See Appendix A. �

This shows, as expected, that the loss L is zero when Ju = 0.
owever, for a non-zero gradient, which will occur in practice, we
ote that the Hessian Juu also affects the loss. While NCO tracking
ethods focus on making Ju as close to zero as possible (which cor-

esponds to minimizing ‖Ju ‖ ∗, where ‖ · ‖ ∗ denotes a suitable norm,
.g. the 2-norm), self-optimizing control focuses on minimizing the
oss L, which is a weighted norm of Ju. Thus, the approaches are
ifferent. From an operational point of view, it is more correct to
inimize the loss L.
Another issue is that in most cases the gradient cannot be

easured, for example, because it is a function of the unknown dis-
urbances d. The concept of self-optimizing control [5] includes the
pecial case of gradient control c = Ju, while leaving room for “sub-
ptimal cases”, c = Hy,  in which the gradient cannot be determined
xactly from measurements. In some cases it might be desirable to
ontrol only single measurements, or to exclude a set of measure-
ents. Then the gradient will not be zero and the loss L provides

n objective selection criterion. In other words, a self-optimizing
ontrol structure may  be considered to be an acceptable (in terms
f the loss L) approximation to the unmeasured gradient Ju using
he available measurements.

In addition, a linear measurement model,

 = Gyu + Gy
dd, (11)

s used, where y is the ny-dimensional measurement vector, and the
atrices Gy ∈ R

ny×nu and Gy
d ∈ R

ny×nd are the gain matrices from
he inputs and the disturbances, respectively, to the outputs.

.3. Self-optimizing control using the null space method

heorem 2 (Null space method, [8].). Assume that optimal opera-
ion corresponds to minimizing the cost

 = [uT dT]

[
Juu Jud
Jdu Jdd

] [
u
d

]
, (12)

here u ∈ R
nu are the available degrees of freedom, and d ∈ R

nd

re parametric disturbances. In addition, we assume noise free

easurements1y = Gyu + Gy

dd. If there exist ny ≥ nu + nd independent

easurements (independent here means that G̃
y = [Gy Gy

d] has full

1 Note that we include the degrees of freedom u in the measurement vector y. The
eason for this is that for steady state optimization, the inputs are not clearly defined,
nd it makes more sense to speak about degrees of freedom. The choice of which variable
o  select as an actual input is done when implementing the control structure.
ss Control 21 (2011) 1407– 1416 1409

row rank), then there exist nu linear variable combinations c = Hy,
c ∈ R

nu , which are invariant to disturbances d. H is selected such that

HF = 0, (13)

where

F = ∂yopt

∂d
. (14)

Controlling c = Hy to zero yields optimal operation with zero loss, that
is the optimal value of c is independent of d.

For a proof, we refer to [8].  In Appendix B we  show that choos-
ing H in the left null space of F is indeed identical to selecting c = Ju,
where Ju = ∂ J/∂ u is the gradient of (12). However, when the mea-
surements are corrupted by biased noise ny, the null space method
will not give the optimal self-optimizing variable. To find the best
controlled variable with noise, we refer to [3].

To obtain the optimal sensitivity matrix F, there are several pos-
sibilities. It can be obtained numerically by re-optimization of a
process model, or calculated using

F = −GyJ−1
uuJud + Gy

d, (15)

where Juu and Jud are obtained from a model, and Gy and Gy
d are

defined as in (11). Alternatively, one can run experiments, or use
optimal measurement data as shown in [15].

4. NCO tracking

4.1. The optimality conditions concept

Necessary conditions of optimality (NCO) tracking is a general
framework that turns a (dynamic or static) optimization problem
into a control problem. It uses the fact that at the optimal oper-
ating point, the first order necessary optimality conditions must
hold, e.g. Ju = 0 for an unconstrained problem. Basically, the neces-
sary conditions of optimality are the controlled variables, c = Ju. This
general concept has been applied both to dynamic optimization
problems (e.g. [16–19]), and static optimization (e.g. [1,20,21]).

For steady state optimization, the Karush, Kuhn Tucker condi-
tions [22] represent the optimality conditions. If the sensitivities
are available as online measurements (or estimates), they may  be
controlled by using a continuous feedback controller, such as a
PI controller. Alternatively, the inputs may  be updated iteratively
until the NCO are satisfied. To the authors’ knowledge, previ-
ous publications on steady state optimization using NCO tracking
[1,20,21] have been applying discrete input updates for iteratively
approaching the steady state optimal input value which satisfies
the NCO (at least for the unconstrained part of the NCO).

4.2. NCO tracking procedure as described by [1]

In this paper we  refer to “NCO tracking” as described in [1].  This is
a truly measurement based optimization method, which does not
rely on any process model. Instead of controlling “normal” mea-
surements y, the gradient is measured (or estimated), and used as
a controlled variable. When a disturbance enters the process, the
NCO tracking control scheme adapts the inputs iteratively such that
the NCO are satisfied after some iterations. The block diagram is
given in Fig. 2.

We do not present the general NCO tracking procedure (with
constraints) here, but we  rather give a derivation of the special case

without constraints, i.e. only the sensitivity seeking directions, as
applied in e.g. [20]. Assume that optimal operation corresponds to

min
u

J(u, d). (16)
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Fig. 2. Block diagram NCO tracking.

mitting to write the explicit dependence on d, the first order nec-
ssary condition for optimality is

u(u) = ∂J(u)
∂u

= 0. (17)

o achieve optimal operation, we update the input u at each sample
ime k using the update equation

k+1 = uk + �u,  (18)

ntil (17) is satisfied. To obtain the update term �u,  we linearize
17) around the current operating point uk,

u(uk + �u)  = Ju(uk) + Juu(uk)�u. (19)

Since we want the update �u  to force the sensitivity to zero, we
et the left hand side of (19) to zero and solve for �u  [1]:

u  = −J−1
uu(uk)Ju(uk). (20)

his Newton update step is exact for a quadratic approximation
f the system (16), in the sense that the NCO (17) are satisfied
fter one iteration. In practice we do not apply the full update step
u, because this may  lead to feasibility and convergence problems

s the process can move outside the region where the quadratic
pproximation is valid. To avoid this, the update term �u is multi-
lied by some tuning parameter  ̌ ∈ [0  1], such that uk+1 = uk + ˇ�u.

To evaluate (20) we need the derivative Ju(uk) for a given input
k. In this work it is chosen to make a small perturbation in the input
nd to run the process for a given time to estimate the gradient by
nite differences. The magnitude of the perturbation is desired to
e small in order not to upset the process excessively. At the same
ime it has to be larger than the process noise to yield sufficient
nformation about the descent direction.

Since the Hessian Juu(uk) is difficult to obtain, it is often deter-
ined once at the nominal operating point. Alternatively, as we

hoose to do in this work, an approximation of the inverse of the
essian can be obtained by a BFGS update scheme [23]. The NCO

racking algorithm is summarized in Fig. 3. This procedure is ana-
og to a Newton(like) method in optimization. In the analogy, the
teady state operating periods correspond to function evaluations
n the Newton procedure, and the solution is found when the NCO
old.

Just like any (quasi) Newton method, NCO tracking depends
rucially on the availability of good gradient estimates. Beside
stimating the gradients using input perturbations and finite dif-
erences, there exist other methods which do not require frequent
erturbations. In [24] past inputs are used in Broyden’s formula

o obtain the gradients. Other methods which do not rely on input
erturbations are described in [25] and [26]. However, in this work,
he authors choose to use finite differences because of its sim-
licity. Avoiding input perturbations for gradient estimation will
Fig. 3. Simple NCO tracking procedure ([1,20]).

result in less nervous process operation. However, inputs will still
be updated iteratively, but only at given sample times.

Remark 1. The idea of NCO tracking [1] has been extended to the
case where the gradient estimate is based on output feedback in
combination with a process model. Gros and co-workers [21] use a
linear measurement model to eliminate the disturbance from the
gradient expression. Their results are based on the same idea as
the null space method, which uses a measurement model to elim-
inate unknown disturbances and internal states from the gradient
expression. However, [21] determines directly the actual change
in the inputs, whereas in self-optimizing control, the generation of
the inputs u is done by the feedback controller.

The authors of [21] consider zero mean noise, and show that if
the model is invertible and the number of unknowns nd is less than
or equal to the number of measurements ny′ (where the degrees
of freedom (inputs u) are not included in the measurement vector
y′), the inputs can be updated to converge to the optimum. This
is the same result as found with the null-space method [8],  where
it is required that ny ≥ nu + nd, but where the degrees of freedom
u are included in the measurement vector, y = [y ′ , u]T, such that
ny = ny′ + nu.

In the case of biased noise, neither the null space method nor
the NCO tracking modifications introduced by [21] will give the
best achievable operation. In this case it is necessary to use other
methods which find a trade-off between the loss caused by the dis-
turbance and the loss caused by the measurement offset. A method
applicable in this case is the “minimum loss method” [3].

5. Self-optimizing control and NCO tracking [1] combined

In order to suggest how to combine self-optimizing control as
described in [8] and NCO tracking as in [1],  we first consider how a
chemical plant is usually operated today.

5.1. Time scale separation of the overall control system

The control structure of a complete chemical plant can be
decomposed vertically into different layers, which operate on
different time scales [27,28].  Each control layer implements the

setpoints which are given from the layer above (Fig. 4).

The top layer consists of planning and scheduling. This includes
management decisions on e.g. the product specifications, and on
profit and safety parameters, such as utility prices and constraints.



J. Jäschke, S. Skogestad / Journal of Process Control 21 (2011) 1407– 1416 1411

schedulingandPlanning

Optimization
and/or(Operator

optimization)Real-time

layerControl

Plant

Parameters,
constraints

cs

u
y

U
d

s
n
b
u
e
d
r
O
o
a
t
w

s
a
f
t
s

t
n
s
t
r
a
s
a
l
p
[
d
s
D
a

a
o
h
t
r
e
a

Table 1
Summary of properties.

Null space method [8] NCO tracking [1]

Offline analysis to find c = Hy Controlled variable: c = Ju

Ju not measured Ju measured (or estimated)
Set  of important d assumed a priori No assumptions on disturbances
c  = Hy obtained from model No model needed
Input generated by feedback Input computed explicitly
Near-optimal for expected disturbances Optimal for unexpected disturbance

ture because the setpoints are updated by the optimization layer.
However, a combination of an RTO layer (or NCO tracking) and
self-optimizing control avoids the shortcomings of conventional
RTO:
Fig. 4. Vertical decomposition of the control structure.

sually, this layer has a time scale of weeks or days, strongly
epending on the type of process and the production scale.

The optimization layer is located below the planning and
cheduling layer and implements the goals given from the plan-
ing and scheduling layer. In most plants this is done by operators,
ut in recent years online optimization (RTO) has been increasingly
sed to find setpoints for the controlled variables of the lower lay-
rs. However, this can become complicated as it involves several
ifficult steps such as steady state detection, data estimation and
econciliation, and solving a large nonlinear optimization problem.
nce the optimization problem has been solved successfully or the
perators have decided to change the setpoints, the new setpoints
re passed on to the control layer and implemented. It is typical for
his layer that the setpoints are updated at discrete time instances
ith update intervals in the time scale of several hours.

The control layer below the optimization layer generally con-
ists of model predictive controllers (MPC) or PID controllers, which
ct on the plant inputs u. This layer has a time scale ranging from
ractions of seconds up to minutes and to a few hours. Finally,
he plant layer contains the actual plant, but usually with some
tabilizing (regulatory) control loops.

When a disturbance enters the system, the control layer will try
o keep the setpoints of the controlled variables c at their origi-
al setpoints. After the plant has settled and a (suboptimal) steady
tate has been reached (and detected), the operator may  adjust
he setpoints based on experience, or the real-time optimizer may
e-calculate the setpoints. Then the setpoints of the controlled vari-
bles are ramped to their new values, and the plant is allowed to
ettle again. The long time delay between start of the disturbance
nd reaching the final optimized operation point is one of the prob-
ems for the optimization layer. In particular if RTO is used, it is not
ossible to counteract disturbances which occur on a fast time scale
29]. This limits successful RTO applications to cases with sporadic
isturbances, which, after a short transition period, lead to a new
teady state, e.g. step changes in the plant throughput or the like.
isturbances occurring on a faster time scale cannot be detected
nd rejected in RTO implemented as described above.

Using a dynamic model in the real-time optimization layer with
n economic objective function would allow setpoint changes with-
ut having to wait for steady state. However, practical obstacles
ave prevented dynamic RTO (DRTO) from becoming a standard

ool in the process industries. The main problems arise from the
eliability of the information used in the DRTO, because good mod-
ls are difficult to obtain and maintain with justifiable efforts. In
ddition, the state estimation causes additional challenges. Even if
Linearized at nom. point Linearization point moves
Fast (feedback) Slow (acts only at sample times)

a good model and states are available in the DRTO, the dynamic
optimization problem itself is difficult to solve.

5.2. Properties of self-optimizing control and NCO tracking

Both methods, NCO tracking and self-optimizing control, pursue
the same goal, namely minimization of the operating cost. The main
difference is that in unconstrained NCO tracking [1] the gradient is
“measured” online, and the inputs are explicitly manipulated.

On the other hand, in self-optimizing control, a model is used
offline to find controlled variables c = Hy which do not need fre-
quent updates. One example would be the gradient, c = Ju, but
since the gradient is usually not available as a measurement, self-
optimizing control does not in general aim for controlling the
gradient to zero, but instead aims for finding controlled variables,
which give a small loss when the inputs are adjusted to keep c
constant.

In summary, we may  say that the NCO tracking procedure
[1] measures the gradient, and calculates explicitly the required
(steady state) input change �u,  whereas in self-optimizing con-
trol [8] the inputs, are generated implicitly by the controllers to
keep c = Hy constant. In Table 1 we have listed the main differences
between the null space method and NCO tracking [1].

5.3. Using self-optimizing control and NCO tracking together

The previous observations lead us to consider self-optimizing
control and NCO tracking as described by [1] as complementary,
and use them together. The NCO tracking [1] fits better into the
optimization layer as an alternative to model based real-time opti-
mization (RTO), while self-optimizing control should be used to
identify the controlled variable c for the lower layer, as shown in
Fig. 5. This is a cascade structure, where the NCO tracking controller
updates the setpoints for the self-optimizing variable c.

It may  be argued that if NCO tracking or an RTO system is
installed, there is no need to select a self-optimizing control struc-
Fig. 5. Combining NCO tracking and self-optimizing control.
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Table 2
Objective function parameters (prices).

Parameter Value

To obtain the gradient information, the input Ti is perturbed with
a step of 1 K. Starting with a positive value, the sign is altered every
fourth NCO iteration. Changing the sign of the perturbation was
found to give better overall performance of the NCO procedure. No

Table 3
Nominal values for the CSTR model.

Variable Value Unit Description

Ti 424.20 K Feed temperature (input u)
CA 0.4978 mol/l Concentration A in product (y1)
CB 0.5022 mol/l Concentration B in product (y2)
T 426.71 K Reactor temperature (y3)
CA,in 1.000 mol/l Concentration A in feed (d1)
CB,in 0.000 mol/l Concentration B in feed (d2)
F  1.000 holdup min−1 Flow rate
A1 5000 s−1 Arrhenius factor 1
A2 1 × 106 s−1 Arrhenius factor 2
cp 1000 cal kg−1 K−1 Heat capacity
E1 10,000 cal mol−1 Activation energy 1
E2 15,000 cal mol−1 Activation energy 2 (d3)
CB

Fig. 6. Schematic diagram of a CSTR.

. The use of self-optimizing controlled variables enables a faster
optimal reaction to expected (main) disturbances; not only at
sample times.

. The RTO has to change the setpoints less frequently and the
system will be more robust.

nfrequent RTO updates result in fewer complex operations such
s steady state detection, data reconciliation, and solving the
esulting nonlinear optimization problems. At the same time, the
elf-optimizing control structure can benefit significantly from an
TO system or NCO tracking controller on top of it. One reason

s that self-optimizing control is based on a model and can only
andle expected (modelled) disturbances, whereas NCO tracking
an also handle unknown disturbances. Another reason is that if

 disturbance moves the process far from the linearization point,
he local model approximation used for finding the self-optimizing
ariables may  be poor. Therefore, the self-optimizing control struc-
ure cannot reject disturbances which move the process far away
rom the linearization point. They have to be counteracted by re-
ptimization of the system.

In summary, it is recommended to always use a self-optimizing
ontrol layer below the optimization layer instead of directly com-
uting the plant input u. This rejects known disturbances on a fast
imescale, while the unexpected disturbances can be rejected by
he NCO tracking/RTO layer updates. Applying self-optimizing con-
rol is thus a robust way to implement the control layer below the
TO layer.

. Case study

.1. Model

To illustrate the ideas above, we present simulation results for
 dynamic CSTR with a feed stream F containing mainly the com-
onent A, and a reversible chemical reaction A � B, see Fig. 6. The
rocess model is taken from [30], and the dynamics of the system
re described by following set of equations:

dCA

dt
= 1

�
(CA,in − CA) − r, (21)

dCB

dt
= 1

�
(CB,in − CB) + r, (22)

dT

dt
= 1

�
(Ti − T) + −�Hrx

�cp
r, (23)

here CA, CB, T, and Ti denote the concentrations of components
 and B, the reactor temperature and the feed inlet temperature,
espectively. Further, � is the residence time, � is the density, cp is
he heat capacity, and −�Hrx is the reaction enthalpy. The reaction
ate r is defined by
 = k1CA − k2CB (24)

here

1 = A1e−E1/RT and k2 = A2e−E2/RT , (25)
pCB
2.009

pTi
1.657×10−3

and A1 and A2 are the Arrhenius factors for the reaction constants
k1 and k2.

This process has one manipulated input (u), the inlet tempera-
ture Ti. The expected disturbances d1 and d2 are variations in the
feed concentrations CA,in and CB,in, and the measured variables are

y1 = CA,
y2 = CB,
y3 = T.

(26)

The objective is to maximize the profit function, which is the differ-
ence between the income from selling the product B and the cost
for heating the feed [31],

−J = P = [pCB
CB − (pTi

Ti)
2], (27)

Here pCB
is the price of the desired product B, and pTi

is the cost for
heating. The parameter values are given in Table 2, and the nominal
operation values for all variables are listed in Table 3.

6.2. Simulations

First, we control the process for the expected disturbances using
direct NCO tracking [1].  Next, compare it with self-optimizing
control with c = Hy obtained using the null-space method. After
comparing the individual methods, for an unexpected disturbance,
we finally combine the methods as shown in Fig. 5.

The expected disturbance scenario is given in Fig. 7. After
500 min  at the nominal value, the concentration CA,in (d1) varies
sinusoidally for 500 min  before returning to its nominal value. Then
ramp disturbances in CA,in are introduced, followed by large step
disturbances. At 4000 min, the concentration CB,in (d2) makes a
step change of 0.2 mol/l. The non-steady state periods (sinusoid
and ramp) are included to test how the controller behaves in these
cases. Note that strictly speaking, the gradient is not defined when
the process is not at steady state.

6.2.1. Direct NCO tracking
R  1.987 cal mol−1K−1 Ideal gas constant
−�Hrx 5000 cal mol−1 Heat of reaction
� 1.000 kg/l Density
�  1.000 min Residence time
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Fig. 7. Disturbance trajectories CA,in , CB,in .

teady state detection is implemented in the NCO tracking proce-
ure. Instead, a step test is used to determine the approximate time
or the system to settle down to a new steady state. At the nominal
oint, the system has a time constant of less than 2 min  for an input
tep of �Ti = 5 K. To let the system settle down far from the nominal
oint, where the system dynamics are different, a sample time of
0 min  is chosen for the direct NCO tracking procedure. The step
ize parameter  ̌ is set to 0.4.

Fig. 8 shows the concentration and temperature trajectories for
he NCO tracking procedure. The control strategy enables accept-
ble control for the steady state periods and the step disturbances.

Since the method assumes steady state after 10 min, and uses
he results at each sample time for calculating the input update, it
as difficulties handling sinusoidal and ramp disturbances which
o not give a steady state. However, the controller manages to keep
he system stable during these periods. The performance of the
CO tracking algorithm is very sensitive to the tuning parameter
, the sample time, and the timing and kind of disturbance, and

f course is sensitive to the size of perturbation for estimating the
radient.
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Fig. 8. NCO tracking, concentrations and temperature.
Fig. 9. Self-optimizing control (SOC), concentrations and temperature.

6.2.2. Self-optimizing control using the null space method
Next, we  obtain the self-optimizing controlled variable c = Hy

using the null space method from Section 3. Since we have one
input and 2 disturbances to compensate for, we need three mea-
surements for the invariant variable combination, and we  choose
y = [ CA CB T ]T. We use the model offline to optimize the steady
state system at the nominal operating point and then introduce
small perturbations in the disturbance variables d = [CA,in CB,in]T.
After re-optimizing we  calculate

F = ∂yopt

∂d
=

⎡
⎢⎣

−0.4862 −0.3223
−0.5138 −0.6777
−9.9043 40.5807

⎤
⎥⎦ . (28)

The resulting nontrivial H which gives HF = 0 (null-space method)
is H = [ −0.7688 0.6394 0.0046 ]. Using a PI controller, the
self-optimizing variable c = Hym = − 0.7688CA + 0.6394CB + 0.0046T
is controlled at a constant setpoint (zero if we  use the deviation
from nominal steady state). The concentration and temperature
trajectories with self-optimizing control are plotted in Fig. 9.
Compared with the concentrations and temperature using NCO
tracking, the trajectories are much smoother.

6.2.3. Comparing inputs and profit for NCO tracking and
self-optimizing control

As may  be seen from the trajectories for NCO tracking and self-
optimizing control (Fig. 10), the input usage for the two  cases is
quite different. While the NCO tracking procedure needs large input
variations to estimate the gradient and to iteratively update the
input, the input usage of the self-optimizing control structure is
very moderate and smooth.

Especially during the non-steady state disturbances NCO track-
ing leads to excessive input changes. This is because the effect of
the input change and the effect of the disturbance cannot be dis-
tinguished when estimating the gradient.

Comparing the profits (Fig. 11)  shows that both methods
are very similar in the steady state periods, but for distur-
bances where no steady state is reached within one sample time,

NCO tracking is not performing as well as the self-optimizing
control.
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.2.4. Using NCO tracking as RTO and self-optimizing control in
he control layer

If it can be guaranteed that the disturbances in the feed concen-
ration are the only ones entering the process, then self-optimizing
ontrol is sufficient, and an RTO layer is not necessary. However, the
ituation changes if there are disturbances which were not included
n the offline analysis (plant-model mismatch). Also, the nominal
etpoint for the self-optimizing variables may  not be correct.

As an unmodelled disturbance, consider a positive step change
n the activation energy E2 (d3) of 3% at time 3100 min, which
omes in addition to the disturbances in CA,in and CB,in in Fig. 7. The
nexpected disturbance reduces the reaction rate for the reverse
eaction, especially at higher temperatures. Comparing the prof-
ts using the two control structures (Fig. 12)  we see that the
elf-optimizing control system cannot make use of the improved
onditions caused by the unexpected disturbance.

A combined approach, where the self-optimizing control set-
oints are adapted using RTO or NCO tracking can solve this

roblem, and at the same time reduce RTO or NCO tracking sample
ime. In Fig. 13 the instantaneous profit for pure NCO tracking [1]
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Fig. 11. Profit for SOC and NCO tracking.
Fig. 12. Profits for NCO tracking and SOC with unexpected disturbance (d3) at
3100 min.

(sample time: 10 min) is compared to the combined system with a
sample time of 25 min.

The combined system gives a similar performance in terms of
the profit, and more importantly, we  see from Fig. 14 that the
combined system gives a substantially smoother input action than
direct NCO tracking.

Using online RTO, the performance could be improved even fur-
ther because the setpoints would move directly to the optimal
values instead of iteratively approaching them. However, unmod-
elled (unexpected) disturbances are not rejected in online RTO
either, so in this case (unmodelled disturbances) a method like NCO
tracking would be required.

7. Discussion

There has been some confusion about the relationship between
the “self-optimizing” control approach of Skogestad and co-

workers and the NCO tracking approach of Bonvin and co-workers.
As shown in this paper, the two  methods may  be successfully com-
bined by controlling the self-optimizing variables c in the lower
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Fig. 13. Profits for combined SOC/NCO tracking (25 min sample time) and pure NCO
tracking (10 min  sample time).
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Fig. 14. Input, combined NCO/SOC and direct NCO tracking.

ayer, and letting NCO tracking adjust the setpoints, c = copt based
n online estimates of the gradient.

In the case study, it was not easy to make the NCO tracking work
n spite of the fact that we assumed no measurement noise. This
ould be partly attributed to the fact that we used a simple finite
ifference procedure to obtain the gradients, without, for example,
teady state detection. The NCO tracking parameters (perturbation
agnitude, step size ˇ, sample time) which converge to the opti-
um,  were found by trial and error. Parameters which perform
ell for one disturbance may  give poor performance for a different
isturbance. Non-steady state periods make it especially difficult
o find parameters which optimize the cost with acceptable input
sage.

The NCO tracking procedure hinges on good gradient estimates,
nd using finite differences for estimating the gradient gives poor
CO tracking updates, even with the assumptions of perfect mea-

urements without noise, and perfect knowledge of the profit value.
ore advanced gradient estimation techniques and input adapta-

ion methods may  give better overall performance, especially in
erms of input usage; because poor update steps caused by wrong
radient estimates would be avoided. In this work, we chose to
pply the simple finite difference method, because our purpose
s to demonstrate that the basic concepts of measurement based
ptimization techniques, such as NCO tracking, and the model
ased self-optimizing control concepts are complementary. What-
ver technique for calculating the gradient and the NCO tracking
pdates is used, combining the two methods helps to overcome
heir limitations. An interesting task for future research might be
o study the combination of self-optimizing control with a more
dvanced update/gradient estimation method and a more realistic
ase with non-zero mean random measurement noise.

. Conclusion

The different characteristics of the two methods studied in this
aper suggest considering them as complementary, not competing.
CO tracking is most suitable for use in the optimization layer, as
n alternative to online RTO, while self-optimizing control is used
or selecting CVs in the control layer.
Since almost every RTO system has a control system in the layer
elow, using a self-optimizing control structure in the lower layer

mproves performance and robustness, and can significantly reduce
eed for RTO updates. For NCO tracking as implemented in this
ss Control 21 (2011) 1407– 1416 1415

paper, this means fewer perturbations for gradient estimation. For
an online RTO, this means more time for complex, time intensive
computations, with few compromises on performance.

The matlab simulation files are available on the home page of S.
Skogestad, http://www.nt.ntnu.no/users/skoge,  or as supplemen-
tary material from the journal.

Appendix A. Relationship between the gradient value and
the loss

Proof for Theorem 1: Consider the quadratic approximation of
the unconstrained optimization problem (5):

min
u

[uT dT]

[
Juu Jud
Jdu Jdd

][
u
d

]
. (A.1)

The optimal input uopt(d) is found by setting the gradient of the
approximated cost function (A.1):

Ju =
[

Juu Jud

][
u
d

]
= Juuu + Judd, (A.2)

to zero and solving Ju = 0 for the input u. This gives

uopt(d) = −J−1
uuJudd. (A.3)

From [13] it is known that the loss can be written as

L = 1
2

(u − uopt(d))TJuu(u − uopt(d)). (A.4)

Inserting the expression for uopt(d) from (A.3) into (A.4) yields (note
that Juu is symmetric):

L = 1
2

(u + J−1
uuJudd)TJuu(u + J−1

uuJudd)

= 1
2

(uT + dTJT
udJ−T

uu)Juu(u + J−1
uuJudd)

= 1
2

(uTJuu + dTJT
ud)J−1

uu(Juuu + Judd)

= 1
2

JT
uJ−1

uuJu

= 1
2

∣∣∣
∣∣∣J− 1

2
uu Ju

∣∣∣
∣∣∣2

2
.

(A.5)

Appendix B. Relationship between the gradient and the
null space method

Consider the quadratic approximation of the unconstrained
optimization problem (5):

min
u

[uT dT]

[
Juu Jud
Jdu Jdd

] [
u
d

]
. (B.1)

Differentiating the cost J with respect to u gives

Ju =
[

Juu Jud

][
u
d

]
. (B.2)

The linear model (11) can be rewritten as

y = G̃
y
[

u
d

]
. (B.3)

If we assume that we  have a sufficient number of measurements,

ny ≥ nu + nd, then the model may  be inverted, and substitution into
(B.2) gives

Ju =
[

Juu Jud

]
[G̃

y
]†y, (B.4)

http://www.nt.ntnu.no/users/skoge
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here (·)† denotes the pseudo inverse of (·). At the optimum, we
ave Ju = 0, or equivalently c = Hy = 0, where

 = [Juu Jud][G̃
y
]†. (B.5)

his is the same expression for H as derived in [3].  And indeed, if
e evaluate HF using F in (15), we get HF = 0. This follows since F

n (15) may  be rewritten as

 = G̃

[
−J−1

uuJud
I

]
. (B.6)

lso note that the loss L and gradient are related by Appendix (A)

 = 1
2

Ju
TJ−1

uuJu, (B.7)

o Ju = 0 is equivalent to L = 0. In summary, we see that the null space
ethod is identical to controlling the gradient, Ju = 0.
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