
Chapter 1

Measurement Polynomials as Controlled
Variables

Johannes Jäschke, Sigurd Skogestad

Abstract In this chapter we present a method for finding controlled vari-
ables, which are nonlinear combinations of measurements. The procedure
extends the concept of the null-space method (Alstad and Skogestad, 2007)
to processes described by polynomial equations. The method consists of three
main steps. First, the active constraints are determined. If the disturbance
causes the set of active constraints to change, regions of constant active con-
straints are defined in the disturbance space. Second, optimally invariant
variable combinations are determined for the remaining unconstrained de-
grees of freedom in each region. Third, unknown internal variables (states)
and disturbances are eliminated to obtain new invariant variable combina-
tions containing only known variables (measurements). Furthermore we show
that if the disturbance causes the active constraints to change, the invariants
may be used to identify, and switch to the right region. This makes the
method applicable over a wide disturbance range with changing active sets.
The procedure is applied to a case study, a four component isothermal CSTR.

1.1 Introduction

For continuous processes, which are operated in steady state most of the
time, an established method to achieve optimal operation in spite of varying
disturbances is real-time optimization (RTO) (Marlin and Hrymak, 1997).
The real-time optimizer generally uses a nonlinear steady state model in
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order to recompute new optimal setpoints for the controlled variables in the
control layer below. This concept has gained acceptance in industry and is
increasingly used for improving plant performance. However, installing an
RTO system and maintaining it generally entails large costs.

A second approach for optimizing plant performance is to use a process
model off-line to find a self-optimizing control structure. The basic concept of
self-optimizing control was conceived by Morari et al (1980), who write that
we“want to find a function c of the process variables which when held constant
leads automatically to the optimal adjustments of the manipulated variables”,
but they did not provide any method for identifying this function. The idea
is to use this function as a controlled variable and keep it at a constant
setpoint by simple control structures, e.g. PID controllers, or by more complex
model predictive controllers (MPC). Using this kind of controlled variables
disburdens the real-time optimizer, or may even make it unnecessary (Jäschke
and Skogestad, 2010).

The term“self-optimizing control”was defined in the context of controlled
variable selection with the purpose of describing the practical goal of finding
“smart” controlled variables c. Skogestad (2000) writes:

Self-optimizing control is achieved if a constant setpoint policy results in an
acceptable loss L (without the need to re-optimize when disturbances occur).

Many industrial processes are operated using self-optimizing control, al-
though it is not always called that. For example, optimally active constraints
may be viewed as self-optimizing variables, e.g. maximum cooling of an air
stream before entering a compressor. However, the more difficult problem
is to identify self-optimizing control variables associated with unconstrained
degrees of freedom. In most cases, engineering insight and experience leads to
the choice of self-optimizing controlled variables, and the optimization prob-
lem is not formulated explicitly. An example for the unconstrained case is
is controlling the air/fuel ratio entering a combustion engine at a constant
value.

It has been noted previously (Halvorsen and Skogestad, 1997; Bonvin et al,
2001; Cao, 2003; Halvorsen et al, 2003), that the gradient of the cost func-
tion with respect to the degrees of freedom u would be the ideal controlled
variable, c = Ju. However, the gradient Ju is usually not directly measur-
able, and analytical expressions for the gradient generally contain unknown
disturbances. Therefore, the methods in self-optimizing control theory can be
thought of as an approximation (in some “best” way) of the gradient using a
measurement model.

In the last decade, several contributions have been made on the sys-
tematic search of controlled variables which have self-optimizing properties
(Halvorsen et al, 2003; Alstad and Skogestad, 2007; Kariwala et al, 2008; Al-
stad et al, 2009; Heldt, 2009), but to the authors knowledge, self-optimizing
control has only been considered locally, that is, using linear process models
and a quadratic approximation of the cost function. This results in linear
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measurement combinations c = Hy as controlled variables. In cases where
a strong curvature is present at the optimum, the loss imposed by using lin-
ear measurement combinations may not be acceptable any more, and the
controlled variables are not self-optimizing.

The main contribution of this work is to extend the ideas of self-optimizing
control, in particular the concept of the null-space method (Alstad and Sko-
gestad, 2007) to constrained systems described by multivariable polynomials.
This results in controlled variables which are polynomials in the measure-
ments, c = c(y).

Second, we show that under some assumptions, the controlled variables
can be used to determine when the set of active constraints changes and
which set to change to.

1.2 Overview

The procedure for achieving optimal operation is summarized in Fig. 1.1. In
steps 1 and 2 we formulate the optimization problem and determine regions
of constant active constraints, also called critical regions. This is done by
offline calculations, for example, by gridding the disturbance space with a
sufficiently fine grid and optimizing the process for each grid point.

In step 3, for each critical region, the optimality conditions are formulated,
and the Lagrangian multipliers are eliminated. Then the unknown variables,
i.e. the disturbances and the internal state variables are eliminated from
the optimality conditions to obtain an invariant variable combination which
contains only measured variables and known parameters.

Optimal operation is achieved in each critical region by controlling the
active constraints and the invariant measurement combinations.

Finally, we monitor the active constraints and the invariants of the neigh-
bouring regions to determine when to switch to a new region.

1.3 Achieving Optimal Operation using Measurement
Invariants

1.3.1 Problem Formulation

Optimal operation is defined as minimizing a scalar cost index J(u,x,d)
subject to satisfying the model equations, g = 0, and operational constraints,
h ≤ 0:

min
u,x

J(u,x,d) s.t

{
g(u,x,d) = 0
h(u,x,d) ≤ 0

(1.1)
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1. Formulate optimization problem
2. For the expected set of disturbances, find all regions with different sets of active

constraints Ai

3. For each region of active constraints Ai

i Formulate optimality conditions
ii Eliminate:

a Lagrangian multipliers λ from optimality conditions to obtain invariants
Jz,red (reduced gradient)

b Unknown variables to obtain measurement invariants c(y), such that

c(y) = 0 ⇐⇒ Jz,red = 0

iii In each region Ai, control the
a Active constraints
b Invariants c(y)

4. Use controlled variables and measured constraints for changing regions

Fig. 1.1 Procedure for finding nonlinear invariants as controlled variables

Here u, x, d denote the manipulated input variables, the internal state
variables, and the unmeasured disturbance variables, respectively. We as-
sume that, in addition, we have measurements y satisfying the relation,
m(u,x,d,y) = 0, which provide information about internal states, inputs,
and disturbances. To simplify notation, we combine state and input variables
in a vector z = [u ,x]T .

This is the same problem which is solved online at given sample times when
using RTO. In this work, however, we do not wish to solve the optimization
problem online, instead, we analyse the problem using offline calculations, in
order to find good controlled variables which yield optimal operation when
controlled at their setpoints.

1.3.1.1 Optimality Conditions

Let z∗ be a feasible point of the optimization problem (1.1), and assume that
all gradient vectors∇zgi(z

∗,d) and∇zhi(z
∗,d) associated with gi(z

∗,d) = 0
and the active constraints, hi(z

∗,d) = 0, are linearly independent. Then z∗ is
locally optimal if there exist Lagrangian multiplier vectors λ and ν, such that
the following conditions, known as the KKT conditions are satisfied (Nocedal
and Wright, 2006):
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∇zJ(z
∗,d) + [∇zg(z

∗,d)]T λ+ [∇zh(z
∗,d)]T ν = 0

g(z∗,d) = 0

h(z∗,d) ≤ 0

[h(z∗,d)]νT = 0

λ, ν ≤ 0

(1.2)

The condition that the Jacobian of the active constraints has independent
rows (has full rank) is called the linear independence constraint qualification
(LICQ) and guarantees that the Lagrangian multipliers λ and ν are uniquely
defined at the optimum z∗.

When optimizing nonlinear systems, such as polynomial systems, there
are several complications which may arise. The optimality conditions, (1.2),
will in general not have a unique solution. There may be multiple maxima,
minima and saddle points, so finding the global minimum is not an easy task
in itself. When a solution to (1.2) is found, it has to be checked whether it
indeed is the desired solution (minimum). In addition, there may be solutions
which are not physical (complex). So before controlling c(y) to zero, it has
to be assured that the process actually is at the desired optimum.

This and other issues from nonlinear and polynomial optimization are not
addressed in this work, the focus of this paper is rather to present a method
which gives a controlled variable c(y) which is zero for all points that satisfy
the KKT conditions, and which is nonzero whenever the KKT conditions are
not satisfied.

1.3.2 Partitioning into Sets of Active Constraints

Generally, the set of inequality constraints hi(z,d) ≤ 0 that are active varies
with the value of the elements in d. The disturbance space can hence be
partitioned into regions which are characterized by their individual set of
active constraints. These regions will be called critical regions.

The concept of critical regions allows one to decompose the original opti-
mization problem (1.1) into a sequence of equality constrained optimization
problems, which are valid in the corresponding critical region. This idea is
also applied in multi-parametric programming (Pistikopoulos et al, 2007).
However, we do not search for an explicit expression for the inputs u∗, as in
multi-parametric programming. We rather use each subproblem to find good
controlled variables c for the corresponding critical region.

In order to obtain a fully specified system in each region,

1. the active constraints need to be controlled, and
2. a controlled variable has to be controlled for each unconstrained degree

of freedom, nc = nDOF .
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The number unconstrained degrees of freedom, nDOF is calculated according
to

nDOF = nz − ng − nh,active (1.3)

where nz, ng, nh,active denote the number of variables z, the number of model
equations, g, and the number of constraints from h which are active (hi = 0).

In the rest of the paper, by abuse of notation, all active constraints
hi(z,d) = 0 are included in the equality constraint vector g(z,d) = 0. Then
in every critical region, the optimization problem (1.1) can be written as:

min J(z,d)

s.t.

g(z,d) = 0

(1.4)

The KKT first order optimality conditions, (1.2), simplify for problem
(1.4) in each critical region, to

∇zJ(z,d) + [∇zg(z,d)]
Tλ = 0,

g(z,d) = 0.
(1.5)

These expressions cannot be used for control yet, because they still contain
unknown variables, in particular x (in z = [u,x]), d, and the Lagrangian
multipliers λ, which have to be eliminated.

1.3.3 Eliminating the Lagrangian Multipliers λ

We consider one equality constrained sub-problem (1.4) at a time. Every
control structure that gives optimal operation has to satisfy (1.5). Recall that
the LICQ holds, i.e.∇zg(z,d) has full row rank for every value of d within the
critical region. In addition, we assume that we have strict complementarity
(either the constraint is active, or the corresponding value in λ is zero).

Proposition 1.1. Let N(z,d) ∈ R(nz−ng)×ng be a basis for the null space
of ∇zg(z,d). Controlling the active constraints g(z,d) = 0, and the vari-
able combination [N (z,d)]T∇zJ(z,d) = 0 results in optimal steady state
operation.

Proof. Select N(z,d) such that N (z,d)∇zg(z,d) = 0. Since the LICQ are
satisfied, the constraint Jacobian ∇zg(z,d) has full row rank and N(z,d)
is well defined and does not change dimension within the region. The first
equation in (1.5) is premultiplied by [N (z,d)]T to get:
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[N (z,d)]T
(

∇zJ(z,d) + [∇zg(z,d)]
T
λ
)

= [N (z,d)]T∇zJ(z.d) + 0λ

= [N (z,d)]T∇zJ(z,d)

(1.6)

Since N(z,d) and has full rank, we have that (1.5) are satisfied whenever
g(z,d) = 0 and N (z,d)∇zJ(z,d) = 0.

We introduce Jz,red = N (z,d)∇zJ(z,d), and call Jz,red the reduced gra-
dient. By construction, the reduced gradient has nDOF = nz − ng elements.
Controlling

Jz,red = [N(z,d)]T∇zJ(z,d) = 0 (1.7)

together with the active constraints, g(z,d) = 0, fully specifies the system
at the optimum and is equivalent to controlling the first order optimality
conditions (1.5). However, Jz,red cannot be used for control directly because it
still depends on unknown variables, d and x (x enters through z = [u ,x]T ).
For this purpose, the disturbance and the internal states have to be eliminated
from the expression (1.7).

A first naive approach would be to solve the measurement model equations
m(x,u,d,y) = 0 and the active constraints g(z,d) = 0 for the unknowns d
and x, and substitute the solution into Jz,red. As we show, this is straightfor-
ward in case of linear equations, but it becomes significantly more complicated
when working with polynomials of higher degree.

1.4 Elimination for Systems of Linear Equations (Zero
Loss Method)

In this section we describe the basic concept of how the unknowns are elimi-
nated form Jz,red. Our procedure is demonstrated step by step for minimizing
a quadratic cost function subject to linear constraints and a linear measure-
ment model. Solving the model and measurement equations for the unknowns
and substituting into Jz,red is avoided, because this is difficult to extend to
the polynomial case. Instead, we search for necessary and sufficient conditions
which guarantee that the measurement model m(x,u,d,y) = 0, the active
constraints and the model g(z,d) = 0, and the reduced gradient Jz,red = 0
are are satisfied at the same time. We require that the necessary and sufficient
condition is a function of measurements y and known parameters, only.

The optimization problem we consider is

J(z,d) = min
[

zT dT
]
[

Jzz Jzd

Jzd
T Jdd

] [
z

d

]

s.t.

Az − b = 0,

(1.8)
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and the linear measurement model is

m(z,d,y) = y − [Gy G
y
d]

[
z

d

]

= 0

= y − G̃
y
[
z

d

]

= 0.

(1.9)

We consider [z ,d]T as unknown and we assume that (1.8) has a solution,
Jzz is positive definite, and A has full row rank. In addition, we assume that
the measurements are linearly independent, and G̃y = [Gy G

y
d] invertible.

The null space of the constraint gradient, N , is a constant matrix which
is independent of z, such that AN = 0. The first order necessary optimality
conditions require that at the optimum

Jz,red = NT∇zJ(z,d) = NT
[
Jzz Jzd

]
[
z

d

]

= 0. (1.10)

If the number of independent measurements (ny) is equal to the number
of unknown variables variables (nz + nd), the measurement relations (1.9)
can be solved for the unknowns and substituted into the gradient expression
(1.10) to obtain

c(y) = NT
[
Jzz Jzd

] [

G̃y
]−1

y. (1.11)

Controlling c(y) = and Az − b to zero, then results in optimal operation.
In the case of polynomial equations of higher degrees, it is generally not

possible to solve for the unknown variables. Therefore, we consider the prob-
lem from a slightly different perspective. Suppose ny = nz +nd, then for any
output and disturbance pair (y,d), there exist a unique z, which satisfies
the measurement equations (1.9). However, an arbitrary pair (y,d) will fail
to satisfy the first order optimality condition (1.10). More accurately, since
Jzz > 0, only one pair (y,d) satisfies the first order optimality conditions.

Consider the elements of the reduced gradient vector (1.10), one at a time,
together with all the measurement equations (1.9). Let the superscript (i)
denote the i-th row of a matrix or a vector. We write the reduced gradient
together with the measurements as a sequence of square linear systems

[
[NJzz]

(i) [NJzd]
(i) 0

Gy G
y
d y

]

︸ ︷︷ ︸

M(i)





z

d

−1



 = 0 (1.12)

Here M (i), i = 1..nDOF are square matrices of size (ny + 1)× (ny + 1).
We want to find a solution [z,d] which satisfies (1.12). For this system to

have a solution for [z,d]T , we must have rank(M (i)) = ny = nz + nd.
The submatrix [Gy G

y
d y] already has rank ny, irrespective of the value of

y (or the control policy that generates the input u which in turn generates
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y). This follows because [Gy G
y
d y] has more columns than rows, and because

rank([Gy G
y
d]) = ny. Therefore, the condition for a common solution is:

det(M (i)) = 0 for all i = 1..nDOF . (1.13)

This condition guarantees that a common solution to (1.12) exists, so the
elements of the controlled variable c are selected as ci = det(M (i)).

It remains to show that controlling the determinants ci = det(M (i)) gives
the inputs which lead to the optimum. Since the system is linear and the
rank of the measurement equations is ny, there is a unique linear invertible
mapping between the measurements y and the vector [z d]T . Therefore every
value of y corresponds uniquely to some value in z.

In the case with more measurements, ny > nz + nd, any subset of nz + nd

measurements may be chosen such that rank([Gy G
y
d])=nz + nd.

Remark 1.1. Actually, in the case of (1.8), we can use the constraint equations
to eliminate the unmeasured internal states x. Then we only ny = nu + nd

measurements, and the matrices (1.12) become:

M (i) =





(NJzz)
(i) (NTJzd)

(i) 0
A 0 b

Gy G
y
d y



 , (1.14)

and we must require, that

rank(

[
A 0
Gy G

y
d

]

) = nz + nd (1.15)

Remark 1.2. When there are no constraints, we have that z = u, and this
method results in the null space method (Alstad and Skogestad, 2007). In
this case, N may be set to any nonsingular matrix, for example the identity
matrix N = i. Then we have that

cNullspace = [Juu Jud][G̃y]−1y, (1.16)

as has been derived in Alstad et al (2009).
The null space method was originally derived by Alstad and Skogestad

(2007) using the optimal sensitivity matrix F = ∂yopt

∂d . However, it escaped
the authors notice then, that controlling c = Hy with H selected such that
HF = 0, is indeed the same as controlling the gradient to zero.

Example 1.1. Consider a system from Alstad (2005). The cost to minimize is

J = (u− d)2, (1.17)

and the measurement relations (model equations) are
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y1 = Gy
1u+Gd,1d

y2 = Gy
2u+Gy

d,2d
(1.18)

where the variables u, d, y denote the input, the disturbance and the mea-
surements, respectively. The values of the gains are given in table 1.1. We are

Variable Value

Gy
1

0.9
Gy

d,1
0.1

Gy
2

0.5
Gy

d,2
-1.0

Table 1.1 Gain values for small example

searching for a condition on y1 and y2 such that the optimality condition is
satisfied. The gradient is ∇uJ = 2(u− d) and Juu = 2, Jud = −2. It is easily
verified that measurements are independent. This gives an equation system
of 3 equations in 2 unknowns:

M





u
d
−1



 = 0 (1.19)

where

M =





Juu Jud 0
Gy

1 Gy
d,1 y1

Gy
2 Gy

d,2 y2



 (1.20)

Equation (1.19) has a solution





u
d
−1



 if and only if

det(M ) = 0 (1.21)

Therefore the necessary and sufficient condition for the existence of a non-
trivial solution is

det









Juu Jud 0
Gy

1 Gy
d,1 y1

Gy
2 Gy

d,2 y2







 = −y1(JuuGy
d,2 −Gy

2Jud) + y2(JuuG
y
d,1 −Gy

1Jud)

= 0

(1.22)

On inserting the parameter values from table 1.1, we obtain

c = det(M ) = y1 + 2y2. (1.23)
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Controlling c = y1 + 2y2 to zero therefore yields optimal operation. This the
same variable combination as found by applying the null-space method in
Alstad (2005).

Even though obtaining the invariants via the determinant may seem cum-
bersome, it eliminates the necessity of inverting the measurements and solving
for the unknowns. While this is of little advantage for systems of linear equa-
tions, the concept can be extended to systems of polynomial equations which
cannot easily be solved for the right set of unknowns.

1.5 Elimination for Systems of Polynomial Equations

Let d̂ now denote the vector of all unmeasured variables, d̂ = [x,d], not only
including disturbances, but also unknown states and unknown inputs, and let
y include all measurements and known inputs. Thus, every variable belongs
either to d̂ or y, and we write the optimality conditions as

Jz,red(y, d̂) = 0

g(y, d̂) = 0,
(1.24)

and the measurement relations as

m(y, d̂) = 0. (1.25)

To be able to use the reduced gradient Jz,red for control, all unknown vari-

ables d̂ have to be eliminated from it. For polynomial equations, this is not
as straightforward as in the linear case. Even for the case of a univariable
polynomial of degree 5 and higher, for example d5 − d + 1 = 0, there exist
no general analytic solution formulas, as was proven by Abel (1826). There-

fore we are interested in finding a way to eliminate the unknown variables d̂
from Jz,red(y, d̂) = 0 without solving g and m for them first. This is exactly
what was done in the previous section, where we used the determinant of a
carefully constructed coefficient matrix, which characterizes the existence of
a common solution in d, to replace Jz,red. The determinant is a function of
the known variables only, that is, the measurements y and the parameters
G̃y, Jzz and Jzd.

The generalization of the determinant to systems of polynomial equations
is called resultant. According to Emiris and Mourrain (1999),“the resultant of
an overconstrained polynomial system characterizes the existence of common
roots as a condition on the input coefficients”.

To be more specific, we consider multivariate polynomials f ∈ R[y, d̂],
that is real polynomial functions with coefficients in R, and variables y =
[y1, y2, . . . , yny ] and d̂ = [x,d] = [d̂1, d̂2, . . . , d̂nd̂

]. Given a nd̂-tuple, αi,j =
(
αi,j(1), αi,j(2), . . . , αi,j(nd̂)

)
, we use the shorthand notation
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d̂
αi,j

= d̂
αi,j(1)
1 d̂

αi,j(2)
2 . . . d̂

αi,j(nd̂)
nd̂

.

Then we can write a system of n polynomials in compact form

fi(y, d̂) =

ki∑

j=0

ai,j(y)d̂
αi,j

, i = 1..n (1.26)

where the coefficients aij(y) 6= 0 are polynomials in R[y], that is polynomials
in y with coefficients in R.

We consider the functions ai,j(y) as polynomial coefficients, and d̂ as vari-
ables. For every polynomial fi, we collect the exponent vectors in the set
Ei = {αi,1, . . . , αi,ki}. This set is called support of the polynomial fi.

The support of the polynomial f = d21 + d1d2 − 1, for example, is E =
{(2, 0), (1, 1), (0, 0)}. We denote as Qi the convex hull of the support of a
polynomial, Qi = conv(Ei).

Further, we denote the set of complex numbers without zero as C∗ (that
is C∗ = C \ 0).

Next present some basic concepts from algebraic geometry taken from Cox
et al (2005).

Definition 1.1 (Affine variety). Consider f1, . . . , fn polynomials in C[d̂1, . . . d̂nd̂
].

The affine variety defined by f1, . . . , fn is the set

V (f1, · · · , fn) =
{

(d̂1, . . . , d̂nd̂
) ∈ C

nd̂ : fi(d̂1, . . . d̂nd̂
) = 0 i = 1 . . . n

}

(1.27)

Casually speaking, the variety is the set of all solutions in Cnd̂ .

Definition 1.2 (Zariski closure). Given a subset S ⊂ Cm, there is a small-
est affine variety S̄ ⊂ Cm containing S. We call S̄ the Zariski closure of S.

Let L(Ei) be the set of all polynomials whose terms all have exponents in
the support Ei:

L(Ei) =
{

ai,1d̂
αi1

+ · · ·+ ai,ki d̂
αiki : ai,j ∈ C

}

(1.28)

Then the coefficients ai,j of n polynomials define a point in Cn×ki .
Now let

Z(E1, . . . En) ⊂ L(E1)× · · · × L(En) (1.29)

be the Zariski closure of the set of all (f1, . . . fn) for which (1.26) has a
solution in (C∗)nd̂ (that is the Zariski closure of all coefficients ai,j ∈ C for
which (1.26) has a solution).

For an overdetermined system of nd̂ + 1 polynomials in nd̂ variables we
have following result:
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Theorem 1.1 (Sparse resultant (Gelfand et al, 1994; Cox et al,
2005)). Assume that Qi = conv (Ei) is an nd̂-dimensional polytope for
i = 1, . . . , nd̂ + 1. Then there is an irreducible polynomial R in the coeffi-
cients of the fi such that

(f1, . . . , fnd̂+1) ∈ Z(E1, . . . , End̂+1
) ⇐⇒ R(f1, . . . , fnd̂+1) = 0. (1.30)

In particular, if

f1(d1 . . . dnd̂
) = · · · = fnd̂+1(d1 . . . dnd̂

) = 0 (1.31)

has a solution (d̂1, . . . , d̂nd̂
) in (C∗)nd̂ , then

R(f1, . . . , fnd̂+1) = 0. (1.32)

Remark 1.3. The requirement that Qi has to be nd̂-dimensional is no restric-
tion and can be relaxed, (Sturmfels, 1994). However, for simplicity, we chose
to present this result here.

Depending on the allowed space for the roots, there are other resultant
types (e.g. Bezout resultants and Dixon resultants for system of homoge-
neous polynomials), with different algorithms to generate the coefficient ma-
trix. Generally they will be conditions for roots in the projective space with
homogeneous (or homogenized) polynomials. For more details on different re-
sultants, we refer to Gelfand et al (1994); Sturmfels (1994); Cox et al (2005).
An overview of different matrix constructions in elimination theory is given
in Emiris and Mourrain (1999).

We choose to use the sparse resultant, because most polynomial systems
encountered in practice are sparse in the supports. That means, for example,
a polynomial of degree 5 in two variables x, y will not contain all 21 possible
combinations of monomials x5, y5, x4y, xy4, . . . , x4, y4, x3y, . . . , y, x, 1. Just as
in linear algebra, this sparseness can be exploited for calculating the resultant.
Another reason for using the sparse resultant is that it gives the necessary
and sufficient conditions for toric roots, that is roots in (C∗)nd̂ , such that the
input polynomials need not be homogeneous (or homogenized), as in other
resultants.

Finally, the sparse resultant enables us to work with Laurent polynomials,
that is polynomials with positive and negative integer exponents.

Generally, resultant algorithms set up a matrix in the coefficients of the
system. The determinant of this matrix is then the resultant or a multiple
of it. Generating the coefficient matrices and their determinants efficiently
is a subject to ongoing research, but there are some useful algorithms freely
available. In this work, we use the maple software package multires Busé
and Mourrain (2003), which can be downloaded from the internet1.

1 http://www-sop.inria.fr/galaad/logiciels/multires
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For more details on the theory of sparse resultants, we refer to Gelfand
et al (1994); Emiris and Mourrain (1999); Sturmfels (2002); Dickenstein and
Emiris (2005).

1.5.1 Finding Invariant Controlled Variables for
Polynomial Systems

After introducing the concepts above, we are ready to apply them in the
context of controlled variable selection and self-optimizing control. As in the
linear case above, we assume that the active constraints and the model equa-
tions, g(y, d̂) = 0, and the measurement relations, m(y, d̂) = 0, are satisfied.

Let J
(i)
z,red denote the i-th element in the reduced gradient expression. To

obtain the nc controlled variables needed for the unconstrained degrees of
freedom we have:

Theorem 1.2 (Nonlinear measurement combinations as controlled

variables). Given d̂ ∈ (R∗)nd̂ , and ny + ng = nd̂, independent relations

g(y, d̂) = m(y, d̂) = 0 such that the system

g(y, d̂) = 0

m(y, d̂) = 0
(1.33)

has finitely many solutions for d̂ ∈ (C∗)nd̂ . Let R(J
(i)
z,red, g,m), i = 1 . . . nc

be the sparse resultants of the nc polynomial systems composed of

J
(i)
z,red(y, d̂) = 0, g(y, d̂) = 0, m(y, d̂) = 0 i = 1 · · ·nc, (1.34)

then controlling the active constraints, g(y, d̂) = 0, and ci = R(J (i), g,m) i =
1, . . . , nc, yields optimal operation throughout the region.

Proof. The active constraints are controlled, so g(y, d̂) = 0 and m(y, d̂) = 0
are satisfied always, and there is no condition on the parameters for this part
of the system.

The system g(y, d̂) = 0,m(y, d̂) = 0 has only finitely many solutions for

d̂, so the set of possible d̂ is fixed. Moreover, we know that a real solution to
the subsystem g(y,d) = m(y,d) = 0 exists, since it is the given disturbance.

From Theorem 1.1, the sparse resultant gives the necessary and sufficient
conditions for the existence of a solution for (1.34) in d ∈ (C∗)nd . Therefore,

whenever J
(i)
z,red = 0, the resultant is zero (necessary condition). On the other

hand if R(Jz,red, g,m) = 0 then the system (1.34) is satisfied, too (sufficient
condition).

This holds for any solution d̂ ∈ (C∗)nd̂ , and in particular the “actual”

values of d̂. Because there are as many resultants as unconstrained degrees of
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freedom, controlling R(J
(i)
z,red, g,m) for i = 1, . . . , nu satisfies the necessary

conditions of optimality in the region.

Remark 1.4. In cases where the d̂ /∈ (C∗)nd̂ , we may apply a variable trans-

formation to formulate the problem such we get d̂ ∈ (C∗)nd̂ . For example a
translation d = d̃− 1.

Remark 1.5. By partitioning the overall optimization problem into several
regions of active constraints, we assume that we have obtained well behaving
systems for each region. In particular it is assumed that there are no base
points (values of ai,j(y), where a polynomial in g or m vanishes for all values

of d̂).

Remark 1.6. In some cases, the matrix of coefficients may be singular, yield-
ing an identically zero determinant. These cases can be handled by a pertur-
bation of the system at that point. This is a standard method of handling
degeneracies in resultants Canny (1990); Rojas (1999).

Example 1.2 (Case with one disturbance). Consider the system of two polyno-
mials in one unknown variable d, with one measurement relationm(y, d) = 0.
At the optimum we must have:

Jz,red = N∇zJ(y, d) = a1,1(y) + a1,2(y)d = 0

m(y, d) = a2,1(y) + a2,2(y)d+ a2,3(y)d
2 = 0

(1.35)

This system of univariate polynomials in d is overdetermined, and does not
have a common solution d∗ for arbitrary coefficients a1,1, a1,2, a2,1, a2,2, a2,3.
The sparse resultant coincides in the case of univariate polynomials with the
classical resultant, which is the determinant of the Sylvester matrix (Cox
et al, 1992), and the vanishing of the resultant is the necessary and sufficient
condition for the existence of a common root. We construct the Sylvester
matrix

Syl =





a1,2(y) a1,1(y) 0
0 a1,2(y) a1,1(y)

a2,3(y) a2,2(y) a2,1(y)



 , (1.36)

and the resultant is (where we omit writing the dependence on y explicitly):

R (Jz,red,m(y, d)) = det(Syl) = a21,2a2,1 − a1,2a1,1a2,2 + a2,3a
2
1,1 (1.37)

For a common root d∗ to exist, the polynomial in the coefficients, Res(f1, f2)
must vanish. Since the model m(y, d) is chosen such that it is always satisfied,
m(y, d) = 0 for any disturbance d ∈ R, controlling the resultant to zero
is the condition for the reduced gradient Jz,red to become zero. So for a
particular given exogenous d ∈ R, the optimality conditions will be satisfied,
and operation will be optimal.
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1.6 Switching Operating Regions

In this section, we present a pragmatic approach for detecting when to change
the control structure, because of changes in the active set. This task is a
research field in itself (Baotić et al (2008) has worked on linear systems with
quadratic objectives), and an exhaustive study is outside the scope of this
paper. However, we would like to present a procedure, which may be used
as starting point for a more thorough investigation of this problem in future
work.

From a pure optimization perspective, there is no difference between a
constraint and a controlled variable c(y), as the controlled variable may be
simply seen as an active constraint, and, similarly, an active constraint may
be considered a variable which is controlled at its constant setpoint. From
this perspective, there is no difference between an active constraint and the
model equations, either.

However, from an implementation point of view, there are differences be-
tween the model, the active constraints, and the controlled variables c(y).
First of all, the active constraints and the controlled variables c(y) = 0 are
not satisfied automatically, that is one has to control them to their setpoints.
Secondly, since their values are known (or calculated using known measure-
ments) they may be used for detecting when to switch control structures. The
basic idea is to monitor the controlled variables and the active constraints of
all neighbouring regions.

The main assumptions are that the regions are adjacent, that the distur-
bance moves the system continuously from one region to another, and that
the system cannot jump over regions. In addition, we assume that controlling
c(y) = 0 is equivalent to controlling the gradient to zero, as shown in the pre-
vious section. To determine when the control structure should be switched,
we propose two rules:

1. (A new constraint becomes active) When a new constraint becomes ac-
tive, change the control structure to the corresponding region

2. (A constraint becomes inactive) As soon as the controlled variable c in one
of the neighbouring regions becomes zero (reaches its optimal setpoint),
change the control structure to the corresponding region.

However, since we are working with systems of polynomial equations, there
are some potential pitfalls here. The first one is that we are assuming that the
regions of active constraints are adjacent, and that a changing disturbance
moves the system continuously to from one region into another. Although
this is the case for many systems in practice, it has to be confirmed that this
holds for the particular case in consideration.

The second pitfall is that since our controlled variables are derived from the
optimality conditions, this method will give optimal operation (and switch-
ing), as long as the same optimality conditions cannot be satisfied at two
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distinct d. This will hold if the optimization problem is convex in the distur-
bance space of interest.

1.7 Case Study

We consider an isothermal CSTR with two parallel reactions, as depicted in
Fig. 1.2, taken from Srinivasan et al (2008). The reactor is fed with two feed
streams FA and FB which contain the reactantsA and B in the concentrations
cA and cB. In the main vessel, the two components react to the desired
product C, and the undesired side product D. The reactants A and B are
not consumed completely during the reaction, so the outflow contains all four
products. The CSTR is operated isothermally, and we assume that perfect
temperature control has been implemented.

The products C and D are formed by the reactions:

A + B
k1−→ C

2 B
k2−→ D

(1.38)

We wish to maximize the amount of desired product (FA+FB)cC , weighted
by a yield factor (FA+FB)cC/(FAcA,in) (Srinivasan et al, 2008). The amount
of heat to remove and the maximum flow rate are limited by the equipment,
and we formulate the mathematical optimization problem as follows (Srini-
vasan et al, 2008):

max
FA,FB

(FA + FB)cC
FAcAin

(FA + FB)cC (1.39)

subject to

FAcAin − (FA + FB)cA − k1cAcBV = 0

FBcBin − (FA + FB)cB − k1cAcBV − 2k2c
2
BV = 0

−(FA + FB)cC + k1cAcBV = 0

FA + FB ≤ Fmax

k1cAcBV (−∆H1) + 2k2cBV (−∆H2) ≤ qmax

(1.40)

Here, k1 and k2 are the rate constants for the two reactions, (−∆H1) and
(−∆H2) are the reaction enthalpies, qmax the maximum allowed heat, V
the reactor volume, and Fmax the maximum total flow rate. The measured
variables (y), the manipulated variables (u), the disturbance variables (d),
and the internal states are given in table 1.2, and the parameter values of the
system are listed in table 1.3.
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A

B

ABCD

Fig. 1.2 CSTR with two reactions

Table 1.2 Overview of variables

Symbol Description Comment

FA Inflow stream A measured input
FB Inflow stream B measured input
F total flow measured variable
q heat produced measured variable
cB concentration of B measured variable
cA concentration of A unmeasured variable
cC concentration of C unmeasured variable
k1 rate constant reaction 1 unmeasured disturbance

Table 1.3 Parameters

Symbol Unit Value

k1 l/(mol h) 0.3 - 1.5
k2 l/(mol h) 0.0014
(−∆H1) J/mol 7× 104

(−∆H2) J/mol 5× 104

cA,in mol/l 2
cB,in mol/l 1.5
V l 500
Fmax l 22
qmax kJ/h 1000

We write the combined vector of states x = [cA, cB , cC ] and manipulated
variables u = [FA, FB ] as

z =
[
cA, cB, cC , FA, FB

]T
. (1.41)
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1.7.1 Identifying Operational Regions

Following the procedure from Section 1.3, the system is optimized off-line
for the range of possible disturbances d = k1. This shows that the system
can be partitioned into three adjacent critical regions, defined by their active
constraints.

The critical regions are visualized in Fig. 1.3, where the normalized con-
straints are plotted over the disturbance range. In the first region, for dis-
turbances below about k1 = 0.65 l

mol h , the flow constraint is the only active

constraint. The second critical region for values between about k1 = 0.65 l
mol h

and k1 = 0.8 l
mol h is characterized by two active constraints, i. e. both the flow

constraint and the heat constraint are active. Finally, in the third region,
above about k1 = 0.8 l

mol h only the heat constraint remains.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02
Constraints

disturbance k1

q/
qm

ax
 a

nd
 F

/fm
ax

 

 

F/Fmax
q/qmax

Fig. 1.3 Optimal values of the constrained variables

1.7.2 Eliminating λ

In each critical region, the set of controlled variables contains the active
constraints (we know that they should be controlled at the optimum). This
leaves the unconstrained degrees of freedom, which is the difference between
the number of manipulated variables and the active constraints, nDOF =



20 Johannes Jäschke, Sigurd Skogestad

nz − ng. For each of the unconstrained degrees of freedom one controlled
variable is needed.

In the first critical region this gives nDOF,1 = 5 − 4 = 1 unconstrained
degrees of freedom, so apart from the active constraint, which is the first
controlled variable, we need to control one more variable (invariant).

To obtain the reduced gradient, we calculate the null space of Jacobian of
the active set NT

z and multiply it with the gradient of the objective function
∇zJ(z,d) to obtain Jz,red,1 = NT

z ∇zJ . Depending on the algorithm to
compute the null space, this may become a fractional expression, but since
we want to control the process at the optimum, i. e. we control Jz,red,1 to
zero, it is sufficient to consider only the numerator of Jz,red,1. This is possible
because a fraction vanishes if the numerator is zero (provided the denominator
is nonzero which is the case here because ∇zg has full rank). For the critical
region 1, we obtain from (1.7) the invariant

Jz,red,1 = −(FA + FB)
2cC

[
−3cCF

2
BFA − 3cCF

2
AFB

− 4cCcBF
2
Ak2V − 4cCk2V

2k1c
2
BFA − cCF

3
A

− cCF
3
B − 4cCk2V

2k1c
2
BFB − cCcBF

2
Ak1V

− 4cCcBF
2
Bk2V − cCcBF

2
Bk1V − cCF

2
AcAk1V

− cCF
2
BcAk1V − 8cCFAcBFBk2V

− 2cCFAcBFBk1V − 2cCFAFBcAk1V

+ 8FAk1V
2cA,ink2c

2
B + 2F 2

Ak1V cBcA,in

+ 2FAk1V FBcBcA,in − 2F 2
Ak1V cB,incA

−2FAk1V FBcB,incA]

(1.42)

which should be controlled to zero. This expression may be simplified slightly,
since it is known that (FA + FB)

2cC 6= 0. It is therefore sufficient to control
the factor in square brackets in (1.42) to zero.

Similarly, in the second critical region nDOF,2 = 5 − 5 = 0, and here we
simply control the active constraints, keeping q at qmax and F at Fmax.

In the third critical region nDOF,3 = 5 − 4 = 1, and we use one of the
manipulated variables control the active constraint (q = qmax) while the
other one is used to control the invariant measurement combination Jz,red,3,
which is an expression similar to (1.42).

1.7.3 Eliminating Unknown Variables

The invariant variable combinations for the first and the third critical region
Jz,red,1 and Jz,red,3 still contain unknown variables, namely k1, cA and cC ,
and cannot be used for feedback control directly.
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To arrive at variable combinations which can be used for control, we in-
clude all known variables into y, and all unknown variables into d̂, such that
d̂ = [k1, ca, cC ]. Then we write the necessary conditions for optimality as for
each region as

Jz,red(y, d̂) = 0

g(y, d̂) = 0.
(1.43)

Considering the known variables y as parameters of the system, we want to
find conditions on these parameters such that (1.43) is satisfied. The system
has nd̂ = 3 unknown variables, k1, ca and cc, which we know that they are not
zero. This corresponds to solutions [k1, cA, cC ] ∈ (C∗)3. According to section
1.5 we have that (1.43) is satisfied if and only if the sparse resultant is zero.

In critical region 1 and 3, the number of equations neq = 5 (model equa-
tions+active constrains+invariant), and the number of unknowns nd̂ = 3.
So we have more equations than necessary. Since we assume no measure-
ment noise, all measurements are equally good, and we may select a subset of
nd̂ + 1 equations from (1.43) to compute the sparse resultant for the subset
of equations. Obviously, the reduced gradient must be contained in this set
of equations. Alternatively, as we do in the following, we can eliminate one
more variable from the invariant.

For the first region, we use the sparse resultant of the system consisting of
the invariant (1.42), the model equations (the first three equality constraints
in (1.40)) and the first (active) inequality constraint in (1.40) to eliminate
k1, cA, cC and FB and to calculate the controlled variable combination. The
computations were performed using the multires software (Busé and Mour-
rain, 2003). After division by nonzero factors, the controlled variable for re-
gion 1 becomes:

c1 = −c2b,inF 2
A − F 2

AcA,incb,in + 6FAcA,ink2c
2
bV + 2FAcA,inFmaxcb

− FAcA,inFmaxcb,in + F 2
maxc

2
b + c2b,inF

2
max + 4V 2k22c

4
b

− 2cb,inF
2
maxcb − 4V k2c

2
bcb,inFmax + 4V k2c

3
bFmax

(1.44)

In the second critical region, control is simple; the two manipulated vari-
ables are used to control the two active constraints F = Fmax and q = qmax.

The third critical region is controlled similar to the first one. One input
variable is used to control the active constraint, and the second input is
used to control the resultant. The model equations (the first three equations)
together with the energy constraint) in (1.40) and the reduced gradient are
used to compute the resultant. Thus the unknown variables k1, cA, cC , and FB

are eliminated from the reduced gradient. The controlled variable for region
3 is:
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c3 = −4V c2Bk2∆H2FAcA,incB,inqmax∆H1 + FAc
2
B,inq

2
max∆H1

+ 4V 2c4Bk
2
2∆H2FAcA,incB,in∆H

2
1 − 4V 2c4Bk

2
2∆H

2
2FAcA,incB,in∆H1

− 2V c2Bk2FAcA,incB,in∆H
2
1qmax − 4V c2Bk2∆H2FAc

2
B,in∆H1qmax

− 2V c2Bk2∆H2F
2
AcA,inc

2
B,in∆H

2
1 + 8V c3Bk2∆H2∆H1FAcA,inqmax

− 8V 2c4Bk
2
2∆H2cB,in∆H1qmax − 12V 2c4Bk

2
2FA∆H

2
2 c

2
B,in∆H1

− 8V 2c5Bk
2
2∆H2FAcA,in∆H

2
1 + 8V 2c5Bk

2
2∆H

2
2∆H1FAcA,in

+ 8V 2c5Bk
2
2FA∆H

2
2 cB,in∆H1 − q3maxcB,in + 2cBq

3
max

−∆H1cB,inFAcA,inq
2
max + 2cBFAcA,inq

2
max∆H1 + F 2

AcA,inc
2
B,in∆H

2
1 qmax

− 2cBFAcB,inq
2
max∆H1 + 8V c3Bk2∆H2q

2
max + 8V 2c5Bk

2
2∆H

2
2qmax

+ 8V 3c6Bk
3
2∆H

3
2 cB,in − 2cBF

2
AcA,incB,in∆H

2
1qmax

− 2V c2Bk2∆H1q
2
maxcB,in − 2V c2Bk2∆H2q

2
maxcB,in

+ 4V 2c4Bk
2
2∆H

2
2 cB,inqmax − 8V 3c6Bk

3
2∆H

2
2 cB,in∆H1

(1.45)

Although these expressions are quite involved, they contain only known quan-
tities, and can be easily evaluated and used for control. Before actually using
the measurement combinations for control, they are scaled so that the order
of magnitude is similar. That is, c1 is scaled (divided) by Fmax, and c2 is
scaled by ∆H2

1∆H2FAFB .

1.7.4 Using Measurement Invariants for Control and
Region Identification

Having established the controlled variables for the three critical regions, it
remains to determine, when to switch between the regions. Starting in the
first critical region, the flow rate is controlled such that FA+FB = Fmax, and
the first measurement combination c1 is controlled to zero. As the value of
the disturbance k1 rises, the reaction rate increases and the required cooling
to keep the system isothermal, until maximum cooling is reached, Fig. 1.4.
When the constraint is reached, the control structure is switched to the next
critical region, where the inputs are used to control q = qmax and FA+FB =
Fmax. While operating in the second region, the controlled variables of the
neighbouring regions are monitored. As soon as one of the variables c1 or
c3 reaches its optimal setpoint (i. e. 0) for its region the control structure
is changed accordingly. Specifically, when k1 is further increased, such that
c3 = 0 is reached, we must keep FA +FB < Fmax such to maintain the value
c3 = 0.
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Fig. 1.4 Optimal values of controlled variables

1.8 Discussion

The presented method is based on the same idea as NCO tracking (François
et al, 2005). However in contrast to NCO tracking, where the optimality
conditions are solved for the optimizing inputs, this work focuses on finding
the right outputs which express the optimality conditions. The corresponding
inputs are generated by PI controllers and feedback control.

The method was developed as an alternative derivation and a generaliza-
tion of the existing null space method (Alstad and Skogestad, 2007) for linear
systems.

In the linear case, eliminating the constraints is straight forward, while this
is not trivial in the polynomial case. However, by premultiplying ∇J by the
null space of the constraints NT , we eliminate the Lagrangian multipliers
from the equation set, and obtain the reduced gradient for the nonlinear
case. The elimination of the Lagrangian multipliers can also be done by the
resultant. Under the strict complementarity condition (either λ = 0 or the
constraint is active), the solutions for λ lie in the toric variety, and therefore
the sparse resultant gives necessary and sufficient conditions on the known
variables so that the KKT system has a solution. We chose to apply the two-
step procedure in this work, since this results in lower computational load
when computing the resultants.
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As an alternative to calculating resultants, the controlled variable combi-
nations could be computed using Gröbner bases with an appropriate elimi-
nation ordering (Cox et al, 1992). One could use an appropriate monomial
ordering which eliminates the unknown variables, and then use a polynomial
from the elimination ideal as controlled variable. However, this Gröbner ba-
sis approach has some disadvantages, as it is not straightforward to find an
elimination order which eliminates the unknown variables from the equation
system while not yielding the “trivial solution” (i. e. the invariant is always
zero when the constraints are satisfied). Another problem is that the selected
invariant might give rise to “artificial solutions” which are not solutions of
the original optimality conditions.

A similar approach is to calculate a Göbner basis for the ideal generated by
the active constraints g(y, d̂) and m(y, d̂), and to reduce the N∇zJ modulo
the ideal. This avoids the trivial solution, however, the problem of choosing
a monomial ordering which eliminates all unknown variables, remains.

Another argument against using a Gröbner basis for calculation the in-
variant, is, that it can yield very large and complicated expressions.

Since also the sparse resultants can give large expressions, in practice the
method is best suited for small systems, with few constraints and equations.
This is further emphasized by the fact that calculating the analytical deter-
minant for large matrices is computationally demanding and that the con-
struction of the resultant matrices is based on mixed subdivision, which is a
hard enumeration problem (Cox et al, 2005).

In many cases (and in our case study) there are more polynomial equations
than unknowns. Then the engineer has to chose which model polynomials to
use in the resultant calculations in addition to the reduced gradient. From
a purely mathematical view, this does not make any difference, as long as
the set of model equations has finitely many solutions for d. However the
controlled variables will look quite different for different choices. The best (in
terms of simplicity) choice depends on the structure of the equations, and
is thus specific to the problem. However, as a general guideline, it would be
advisable to keep the degrees of the polynomials low in the unknown variables.
This leads to simpler resultants.

The resultant method, as presented above, does not take into account
errors in the model and measurements. This is beyond the scope of this
work. Our goal was to extend the idea of the null-space method (Alstad and
Skogestad, 2007) and to demonstrate on a small example that the concept of
finding variables which remain constant at optimal operation is possible also
for polynomial systems.

Apart from handling noisy measurements and model mismatch, a further
subject for future research is to find methods which reproduce not all solutions
of the optimality conditions, but only a certain set of interest. This could
be all the real solutions or solutions which reside in some further specified
semialgebraic set.
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1.9 Conclusions

In this chapter we have presented an approach to obtain optimal steady state
operation which does not require online calculations. We have shown that,
after identifying the critical regions, there exist optimally invariant variable
combination for each region. If there are enough measurement/model rela-
tions (ng + nm ≥ nd̂), the unknown variables can be eliminated by measure-
ments and system equations, and the invariant combinations can be used for
control using a decentralized self-optimizing control structure.

Further, we have shown that the measurement invariants can be used for
detecting changes in the active set and for finding the right region to switch
to.

Using methods form elimination theory, we have shown that, in principle,
the idea of using polynomials in the measurements as self-optimizing control
variables can be used to control the process optimally.
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