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Abstract

When selecting how to control a chemical plant, with optimal operation in mind, it is

important to know the active constraints. It is particularly important to know how the active

set of constraints changes with disturbances. In this paper, we study optimal operation of

a reactor-separator-recycle process. We seek to find how the set of active constraints changes

with varying feed flow rate and energy cost. We explain how to draw a map of active constraints

over a two-dimensional disturbance space by a combination of process insight and solving of

nonlinear optimization problems. The goal is to sketch the active constraint regions sufficiently

accurately, while solving as few optimization problems as possible. For the case study process,

we find five distinct regions with different active sets, as well as the highest feed rate the system

can process.
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Introduction

Motivation

In optimization and control of chemical processes, active constraints play an important role. The

set of active constraints influence both on plant economy and plant control. If one does not control

the active constraints, one will have to accept economical loss.1 Also, knowing which variables

are optimally at their constraint value is crucial for control structure design. If a manipulated

variable which is optimally at a constraint, is used to control another variable, we can not keep it

at its optimal value at all times. Thus it is necessary to know how the active constraints vary with

disturbances. It is also useful to know which active constraints are important for plant economy

and which are not. Say, for example, that a variable is optimally unconstrained in a particular

region, and we decide to use this variable for control. Now if this variable is constrained in a

neighboring region, we may have to replace it in our control scheme. However, if backing off from

the constraint gives a small loss, it might be acceptable to keep the same control structure.

Reactor-separator-recycle systems have been researched actively over the years and is a widely

used example in control literature.2,3,4,5,6 These articles mainly focus on basic regulatory control.

Little work has gone into identifying economically optimal operating conditions for such systems,

though. Larsson7 focuses on choosing self-optimizing variables8 among the unconstrained vari-

ables. Maarleveld and Rijnsdorp9 offer a study of constraint control on distillation columns, and

discusses how constraints change with different process variables. Except for9 and the recent work

by Jagtap et.al.,10 there is little emphasis on active constraints in the literature.

Contribution and organization of the paper

When one seeks to find the (approximate) regions in which each constraint is active, one will

usually have to carry out at least a few optimizations. In multi-parametric programming one will

typically carry out many optimizations, and if the optimization problem itself is difficult, this may

be a time-consuming process. In this paper, we address how one can use knowledge about the
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optimization problem and process model to simplify this work, and obtain approximate active

constraint regions using few optimizations. Part of the purpose is to explain what we can find out

just using process knowledge, and what we must solve for numerically. We suggest a step-by-step

method for sketching the active constraint regions for a two-dimensional disturbance space, and

use this method on a reactor-separator-recycle process. The paper is structured as follows:

• First, we briefly discuss optimal operation in general and discuss the link between the input

space and the disturbance space.

• Then we include some general points about optimization to provide background for the rest

of the paper.

• We outline a method for finding approximate active constraint regions.

• We describe the process we have used for the case study

• We define optimal operation of the process and provide a degree-of-freedom analysis

• We give the results of the case study

• Then we discuss the results and the efficiency of the method, and we compare our results to

those from.10

• Finally we give conclusions and suggestions for future work.

Optimal operation and constraint regions

When optimizing operation of chemical processes, we start with formulating a cost function J

which is to be minimized, and identifying the degrees of freedom u that can be adjusted to minimize

J. Since we consider steady-state optimization, causality is not an issue - thus it does not matter

which variables we select as our degrees of freedom, as long as the remaining variables of the

model form an independent set. For example, when optimizing a distillation column, the degrees
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of freedom could be flows (e.g. reflux L and vapor boilup V , so u = [LV ]) or compositions (u =

[xB xD]). Finally, we need to identify the constraints c on operation (for example L,V > 0, V ≤

Vmax), and the most important disturbances d.

The optimal solution will often be at the intersection of constraints. In Figure 1, we illustrate

how constraints and objectives may change when disturbances change, for a simple example with

the constraints

c1 ≥ c1,min

c1 ≤ c1,max

c2 ≥ c2,min

c2 ≤ c1,max

(1)

and two degrees of freedom u1 and u2. The constraints define a two-dimensional region in the

input space, and the optimal solution may lay in the interior of this region (Figure 1(a)), on one

of its edges (Figure 1(b)) or at one of its corners (Figure 1(c)). Operation outside this region is

infeasible. In this example the feasible set of u is shown as being unchanged as d changes. This

will typically be the case if the disturbance which changes is a price. If it is a process disturbance,

the constraint lines are likely to change as well.

In this paper, we focus on how the set of active constraints depends on the disturbances. The

different points indicated in Figures 1(a) - 1(c) would belong in different constraint regions in the

disturbance space. In the case of one disturbance, each region corresponds to a line segment, as

shown in Figure 2. It is worth noticing that "region III" in Figures 1(a) - 1(c) refers to just one

point, whereas in the disturbance space, "Region III" includes all d which makes that particular

point optimal.

In the case of two disturbances, each region is a subset of the now two-dimensional disturbance

space. Later in this paper, we use a two-dimensional example to illustrate the suggested method

for identifying the active constraint regions. Figure 4(a) is thus a two-dimensional equivalent to

Figure 2.
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Figure 1: Constraint lines and objective function as functions of degrees of freedom u
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Figure 2: Constraint regions in one-dimensional disturbance space (one disturbance)
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Optimization theory

General form of the optimization problem

Optimization of chemical processes is typically a nonlinear problem on the form

minimize
u

J(x,u,d)

subject to f (x,u,d) = 0

c(x,u,d)≤ 0

(2)

where J is the economical objective, f (x,u,d) the process model equations and c(x,u,d) the

process constraints. The process model equations may be included in the optimization problem,

or solved separately. The latter gives rise to different (and more complex) shapes of J and c, but

eliminates x from the equations. Which approach to use depends on which is more robust - i.e.

which approach is most certain to return a result. Especially in cases where recycles are involved,

it may be beneficial (or even necessary) to let the optimization solver solve the flowsheet model as

well (for a discussion, see11).

A solution of such a nonlinear optimization problem is characterized by the Karusch-Kuhn-

Tucker conditions12). These are as follows (with X including both x and u, but not the disturbance

d):

∇XL (X?,λ ?) = 0

ci(X?) = 0 for i ∈ E

ci(X?)≤ 0 for i ∈I

λ
?
i ≥ 0 for i ∈I

λ
?
i ci(X?) = 0 for i ∈ E ∪I

(3)

The optimal solution (X?,λ ?) is parametrized by the disturbance d. We seek to find the distur-

bance value for which a constraint switches from active to inactive - let us call this value dactive.
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Here, we take advantage of the fact that for any constraint ci, either the constraint value itself or

its corresponding Lagrange multiplier λi (or both) is zero, and that the sum of the two must be

monotonous at least in a small area around dactive. At dactive, we have that ci + λi = 0. Thus,

finding dactive is equivalent to solving the equation

si(d) = ci(d)+λi(d) = 0 (4)

for d. Since the optimal solution X?(d) is the result of an iterative process, one can not use

an analytic method to solve for si = 0, thus an interpolation method is the simplest option. When

using MATLAB, this will typically be the fzero.m solver. When using this solver, one needs to

give two initial points between which the solver should search for the solution. The sign of ci +λi

must be different at the two initial points in order for the solver to work.

Significance of Lagrange multipliers for active constraints

Knowing the active constraint regions allows us to design a control structure based on the expected

disturbances. However, even though we may find an optimal control structure for each region,

we may be interested in simplifying it, for example by using the same control structure in several

regions even if it is not optimal. If using a control structure different from the optimal one, we may

end up having to back off from a constraint which is optimally active. We may also have to back

off from active constraints due to dynamic reasons (for example, controller overshoot); see Figure

3. This gives rise to a loss, and in a small region the magnitude of the loss (|∆J|) relates to the

Lagrange multiplier as follows:12

|∆J|= λi|∆ci| (5)

where |∆ci| is the distance from the active constraint ci (corresponding to "back-off" in Figure

3) and λi is the corresponding Lagrange multiplier. What this means, is that if we back off from the

active constraint by a small margin ∆ci, we will have a loss which is large when the corresponding
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Lagrange multiplier is large, and small otherwise. Thus, the Lagrange multiplier tells us how hard

we get punished by backing off from a constraint. Obviously, we get punished harder if we back

off from a constraint when we are far from a region where it is inactive, than if we back off from the

same constraint at a point where it becomes active. In economics, |∆J| is called a shadow price,13

in optimal control theory we have the related concept of costate equations.14

Figure 3: Back off from constraint due to imperfect control (illustration taken from1)

Method for finding active constraint regions as function of dis-

turbances

In this section, we consider the two-dimensional case (with two disturbances) unless otherwise

stated. We start this section by defining the terms constraint line and region:

Definition 1 Constraint line: The constraint line corresponding to a constraint c, is the line sepa-

rating the regions where c is optimally active from the regions where c is optimally inactive. 1

Definition 2 Region: In this paper, a region refers to a part of the disturbance space, bounded by

constraint lines, and described by which constraints are active within that region.

With the definitions in mind, we can make some general points about how the constraint lines

and regions will behave:

1In an N-dimensional disturbance space, we will have (N-1)-dimensional constraint surfaces instead.
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• Constraint lines may cross each other, so one constraint line may span the border between

more than two regions. Where two constraint lines cross each other, four regions will meet

in a point.

• When one constraint line crosses another, it will generally change slope. This is because the

nature of the optimization problem will change when the set of active constraints changes.

• When there are N constraints, which all may be either active or inactive, there may be as

many as 2N active constraint sets. In simple cases, where constraint lines do not cross each

other more than once, this means we also have a maximum of 2N regions (as illustrated

by Figure 4(a), where we have two constraints and four regions). In more complex cases,

where two constraint lines may cross each other more than once, we may have more than 2N

regions. In that case, some regions will share the same active set. However, the number of

regions is usually smaller than 2N , since some constraint combinations may not occur, for

example because they are physically impossible. For example, we often have both maximum

and minimum constraints on the same variable - these will obviously never be active at the

same time.

• In the one-dimensional case (i.e. one disturbance), each region corresponds to a line segment

on the disturbance axis (x-axis). This is illustrated in Figure 4(b). Here, the y-axis is used to

plot the optimal value of the constraint functions as functions of a single disturbance.

We now want to outline a method for identifying active constraint regions without having to

optimize at a large number of points across the whole disturbance space. As an illustrative example,

let us consider a hypothetical problem with two constraints:

[c1 c2] < [c1,max c2,max] (6)

We have two disturbances, d1 and d2. Both c1 and c2 are continuous functions of the distur-

bances, and we have four regions:
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Figure 4: Example figure illustrating how constraint lines divide the disturbance space into regions,
and how the regions translate to line segments in the one-dimensional case

The regions are shown in Figure 4(a): Constraint c1 is active (c1 = c1,max) below the blue

constraint line, and c2 is active (c2 = c2,max) to the right of the red constraint line. We also show the

one-dimensional case where d1 = 0.5 and d2 is on the x axis (Figure 4(b)). Using this example as

11



an illustration, we now outline a method for finding active constraint regions. First it is reasonable

to make the following assumptions:

1. In a two-dimensional plot with (d1,d2) along the axes, two neighboring regions will only

differ by one active constraint, except when two constraint lines cross each other (in Figure

4(a) this happens in the point (0.6,0.5)). For the opposite to be true, two constraint lines

would have to follow each other exactly (at least along a segment).

2. We assume that the same set of active constraints does not appear in two separate regions of

the disturbance space (thus, two constraint lines will not cross each other twice).

3. We assume that there will always be a maximum feed rate ("bottleneck") above which we

can not satisfy all constraints.

Based on the above definitions, considerations and assumptions, we suggest using the following

procedure to find active constraint regions:

1. Using knowledge about the process model and the optimization problem, find out if any

constraints will be active (or inactive) for all values of the disturbances, thus reducing the

number of possible regions by a factor of 2 for each constraint which is always active.

2. Also use the same insight to predict whether some region borders (part of constraint lines)

will be independent of one of the disturbances. In a 2D graph, these borders will correspond

to vertical or horizontal lines. In the example (Figure 4(a)), the constraint line separating

regions I and III from regions II and IV is horizontal (independent of d1). The line seg-

ment that separates regions II and IV is vertical (notice that this segment is only a part of a

constraint line!)

3. Locate the region borders that are found to be vertical or horizontal, by solving for the

disturbance value at which the corresponding constraint changes between inactive and active.

In Figure 4(a), this corresponds to finding the value of d2 for which c1 becomes active.
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4. Likewise, find the value of d1 for which we go from region II to region IV (that is, for which

c2 becomes active, with d2 lower than the value we found in the previous step), thus locating

vertical part of the constraint line for c2.

5. Find at least one more point along the line separating regions I and III. This means we need

to do find a value of (d1,d2) which makes constraint c2 switch from active to inactive. By

fixing d2 at a higher value than the one we found in step 3, and solving for the value of d1

which makes s1 = 0, we find a point on this line.

6. In the same manner, find at least one more point along the line separating regions III and IV

(with d1 fixed at a value higher than found in step 4).

7. If we are confident the two last region borders are straight lines, or satisfied with it as an

approximation, we do not need more points. However, the true borders will often be curved

(as the border between regions I and III in Figure 4(a)), and if we want to describe them

more accurately, we need to find more pairs (d1,d2).

We have used this approach successfully in a case study which we will go through in the

following sections.

Description of the example process

In this paper, we consider the simple reactor-separator-recycle process shown in Figure 5:

Fresh feed of A (F) is mixed with recycled distillate from the column. The mixture (Fr) goes

to the reactor, which is a continuously stirred tank reactor (CSTR) with two reactions (Equation 7.

The first yields B, which is the desired product, and the second yields C which is an undesired by-

product. A real-life example of such a process could for example be a hydrocarbon isomerization

process, where cracking occurs as a side reaction (this is quite common in hydrocarbon refining

processes).
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Figure 5: Flow sheet of the reactor-separator-recycle system

A → B

A → 2C
(7)

In general, the steady state mass balance of a CSTR with one feed stream and one product

stream can be written as follows:

0 =
dnr

dt
= Fr · xF,r +Mr ·ν · r−Er · xr [mol/s] (8)

where nr [mol] is the reactor holdup vector, Fr [mol/s] is the flow rate entering the reactor, xFR

the reactor feed composition, Er [mol/s] is the reactor exit flow rate, ν is a matrix of stoichiometric

coefficients, r = [r1 r2]T [s−1] is a vector of reaction rates and xr is the composition inside the

reactor, expressed in mole fractions (in a CSTR, the exit stream is assumed to have the same

composition as the reactor contents). Mr [mol] is the total reactor holdup.

We will, for later use, define the reactant conversion X for the reactant and the product yield Yi

for each product i.
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X =
ṅreactant,in− ṅreactant,out

ṅreactant,in
·100% (9)

Yi =
ṅi,out − ṅi,in

ṅreactant,in
·100% (10)

where ṅ indicates molar flowrate of a given component.

The reaction model uses first-order kinetics; the reaction rate of reaction i is given by

ri = kixA (11)

where xa is the mole fraction of A in the reactor and

ki = Aie−
Ea,i
RT (12)

where Ea,i is the activation energy of reaction i (in J/mol), T is the temperature in K and R is

the gas constant (8.3145 J
mol·K ). Kinetic data are shown in Table 1. In this example, reaction 1 has

a lower rate constant (A1 < A2), but also a lower activation energy, thus it is the favored reaction at

lower temperatures.

Table 1: Reaction kinetics parameters

Reaction A ([s−1]) Ea (J/mol)
1 1 ·105 6 ·104

2 5 ·106 8 ·104

The reactor product Er is separated in a column. The distillate D is rich in byproduct (C) and

unreacted A, whereas the bottom product B is rich in the desired product B. .For the distillation

column, we have used a simple column model using the following assumptions: Constant relative

volatilities, constant molar overflow, constant pressure over the entire column, equilibrium at every

stage and negligible vapor holdups. Francis’ weir equation is used to calculate liquid flow rates.

The column data are shown in Table 2.
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Table 2: Distillation column parameters

αAC 0.70
αBC 0.60
Number of stages 30
Feed stage location 15
Feed liquid fraction 1
Vmax 30 mol/s

A fraction of the distillate is recycled (R), the remaining distillate leaves the system as a purge

stream (P).

Defining optimal operation of the reactor-separator-recycle pro-

cess

Steady-state operational economy objective

The objective J should cover all economical aspects that are influenced by the steady state opera-

tion. In general, these include cost of raw materials, energy and utilities (like cooling water), and

the value of products. The cost of a product stream may be positive (if the product is sold, or

processed to valuable products later on) or negative (if it is waste which must be disposed of). We

may generalize to write

J = ∑ pF,iFF,i +∑ pU, jFU, j +∑ pP,kFP,k (13)

where FF,i, FU, j and FP,k are the flow rates of feeds, utility streams and product streams, respec-

tively - all in mol/s, except for energy usage which is in [$/kJ]. pF,i, pU, j and pP,k are the prices

of the respective streams). In this example, we use the following objective function:

J = pFF + pVV − pBB− pPP (14)

where F , V , B and P refer to Figure 5, and the prices are given in Table 3. (The value given for
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pV is listed as variable, it is used as a disturbance later on)

Table 3: Prices used in optimization (pV is the nominal value)

Feed pF 1 $/mol
Product pB 2 $/mol
Purge pP 0.5 $/mol
Energy pV variable

Degrees of freedom

For example by using the method outlined by,15 we find that the process shown in Figure 5 has

got six steady-state degrees of freedom. We may also find this number by examining the model,

finding that it has 104 variables and 98 independent equations. When using the method from,15

we relate the six degrees of freedom to:

1. Feed flow rate F

2. Recycle/purge split P/D

3. Reactor holdup Mr

4. Reactor temperature Tr (since the CSTR has a cooling jacket as shown in Figure 5, we may

adjust this)

5. Column reboiler duty QR

6. Column condenser duty QC

However, in simulation, we may specify any six variables as long as the resulting 98-by-98 sys-

tem is not structurally or numerically singular. When initializing the process model, the following

set of specifications was used:

• Reactor temperature Tr

• Feed flow rate F
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• Mole fraction of component B in product stream B, xB,B

• Reactor holdup Mr

• Column reflux L

• Purge/distillate ratio P/D

Constraints

When optimizing a chemical process plant, we will encounter the following types of constraints:

• There are always capacity constraints; maximum levels in tanks and liquid-phase reactors,

maximum available amount of utilities like steam and cooling water, and maximum feed and

product rates.

• There will usually be requirements on product quality, often in terms of maximum content

of impurities.

• In addition, there are typically constraints on pressures (due to limits in piping strength) and

temperatures (for example to limit catalyst degradation).

In this work, we have included maximum limits on reactor temperature Tr, reactor holdup Mr

and column boilup V as well as a minimum limit on the fraction of component B in stream B. In

addition we require that all flow rates are ≥ 0. See Table 4.

Table 4: Constraint values used in optimization

xB,B,min 0.90
Tr,max 390K
Mr,max 11000mol
Vmax 30mol/s
Rmin 0mol/s
Pmin 0mol/s
Bmin 0mol/s
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Disturbances

In a chemical process, there are many possible disturbances. The most important ones are usually

related to feed conditions (flow rate, composition and pressure), as these often depend on the

operation of an upstream process. In addition, the prices of feeds, products and utilities are often

changing on a daily basis.

We may also have changes in process parameters with time. For example, in a catalytic pro-

cess the catalyst activity may degrade with time, so that the value of A in the expression for the

reaction rate constant k decreases. Deposits inside piping may increase pressure drop, and de-

crease heat transfer. Finally, downstream processes may demand changes in product flow rates and

compositions.

In this work, we consider two disturbances:

• Feed flow rate F (nominal value: 1.1mol/s). This is the flow rate which is most likely to be

given by another process unit.

• Energy cost pV in the column (nominal value: 0.01$/mol) (either of the four price parame-

ters could be used - what is really important is the energy price in relation to the difference

in value between feed and products)

Since the feed flow rate is used as a disturbance, we have only got five degrees of freedom in

the optimization problem, compared to six degrees of freedom for initialization.

Results

Initialization

In order to have a feasible starting point for subsequent optimization, we specified six variables as

described above, and used fmincon to solve the model equations. To do this, the model equations

and specifications were included as equality constraints in the optimization problem (correspond-

ing to f (x,u,d) in equation 2), and a dummy objective function with a constant value was used.
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This approach is used with success in.16 Table 5 shows the values used for initialization, plus the

resulting values of other chosen variables (reactor holdups nr,i, conversion XA and yield Yi as well

as product and distillate flow rates and compositions). Notice that the specification on xB,B was set

slightly above the minimum value, this was to give an initial solution with a little margin to the

most important constraint - on the other hand, the reactor holdup was initialized at its maximum

value. 2

Table 5: Initial data for the reactor-separator-recycle system, used as starting point in optimization.

Variable Value
F 1.1mol/s

xB,B 0.901
Tr 355K
Mr 11000mol
L 25mol/s

P/D 0.2
R 1.512mol/s

nr,A 5064mol
nr,B 4159mol
nr,C 1777mol
XA 67.33%
Y1 61.82%
Y1 5.51%
B 0.7649mol/s

xA,B 0.099
xB,B 0.901
xC,B 0.000
D 1.8901mol/s

xA,D 0.607
xB,D 0.167
xC,D 0.227

Active constraint regions

According to the method outlined earlier in the paper, we start by checking if any constraints will

be active for all (F, pV ). Indeed there are two, namely the constraints on product purity xB,B and

2The reason for having Tr = 355K despite the maximum is shown as Tr,max = 390K in Table 4 is that we increased
the maximum value in order to make the region where the constraint on Tr was inactive, more visible. Originally Tr,max
was 355K, but this made the region very small.
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reactor holdup Mr. The first one follows from the "Avoid Product Giveaway rule", which states that

when the product prices are constant, the minimum purity constraint in the valuable product stream

is always active. The latter is also easy to explain: Reducing the holdup leads to a lower single-

pass conversion, yielding more A in the column feed, without improving selectivity in favour of

the desired product. Thus the column feed will contain more A and less B, meaning we get less

product.

We can also assume that one constraint will never be active - namely, P ≥ 0. This is because

as long as C is produced, we need to provide a way out of the system for it. Since C is the most

volatile component, we will always have some of it in the distillate, thus we must purge some of

the distillate to avoid accumulation of C within the system.

This means we have to find when the following variables are at their constraint values: Tr, R,

V , D and B. Using fmincon.m for optimization and fzero.m for interpolation, we come up with

the regions shown in Figure 6. Each region is referred to by a number, Table 6 lists which variables

are at their constraint value in each respective region. The constraint lines that define the regions

are as follows:

• At the red constraint line, Tr,max becomes active.

• Orange constraint line (left part): Rmin becomes inactive.

• Green constraint line: Vmax becomes active.

• Orange constraint line (right part): Rmin becomes active again.

• The dashed blue line could be seen as a "quasi"-constraint line - it indicates where it is not

economically optimal to increase F any more, so it shows the economic bottleneck of the

process.

In the Discussion, we explain further the shape of the regions. In Table 7, we show the optimal

value of selected model variables at four points in the disturbance space. Variables that are at a

constraint are shown in bold.
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Figure 6: Active constraint regions for the reactor-separator-recycle system
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Table 6: Constrained variables in each region in Figure 6(a)

Region number Constrained variables
I xB,B, Mr, R
II xB,B, Mr, R, Tr, (F)
IIb xB,B, Mr, R, Tr
III xB,B, Mr, Tr, (F)
IIIb xB,B, Mr, Tr
IV xB,B, Mr, Tr, V , (F)

IVb xB,B, Mr, Tr, V
V xB,B, Mr, Tr, V , R

Table 7: Optimal values of selected variables for different values of F and pV . Numbers in bold
indicate active constraints

Region(s) I II IV IIIb
F [mol/s] 0.1 1.0 3.0 3.0
pV [$/mol] 0.02 0.02 0.01 0.07
Fr [mol/s] 0.1000 1.0006 5.4219 3.3829
Er [mol/s] 0.1024 1.0871 5.6584 3.6079

Tr [K] 328.8 390.0 390.0 390.0
xA,r 0.2356 0.0815 0.2229 0.2121
xB,r 0.7168 0.7589 0.4604 0.6225
xC,r 0.0476 0.1596 0.3167 0.1654

Y1 [%] 73.43 82.50 61.11 68.44
Y2 [%] 2.44 8.64 6.30 7.17

B [mol/s] 0.0781 0.9108 2.3696 2.0511
xA,B 0.1000 0.0900 0.0996 0.0996
xB,B 0.9000 0.9000 0.9000 0.9000
xC,B 0.0000 0.0100 0.0004 0.0004

D [mol/s] 0.0243 0.1762 3.2888 1.5569
xA,D 0.6707 0.0375 0.3117 0.3603
xB,D 0.1290 0.0300 0.1436 0.2569
xC,D 0.2003 0.9325 0.5447 0.3828

L [mol/s] 1.6231 2.1365 26.7112 14.0009
V [mol/s] 1.6475 2.3128 30.0000 15.5578

P/D 1.0000 1.0000 0.2636 0.7541
R [mol/s] 0.0000 0.0000 2.4219 0.3829
J [$/s]) -0.035 -0.863 -1.873 -1.378
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Discussion

Shape of active constraint regions

In the following, we will explain the presence of each active constraint region, at least for those

who are not obvious.

• The dashed blue line in 6(a) indicates where it is no longer optimal to increase production.

That is, if F was a degree of freedom and Fmax was specified instead, the blue line shows

where the constraint F < Fmax would no longer be active. We illustrate this further with

Figure 7(a), where the value of the objective function J at the optimal solution is given as a

function of F at three different energy prices.

• We notice that the right part of the orange constraint line in Figure 6(a), separating regions

IVb and V, is vertical. This is easily explained; Vmax is active here, and once the optimal

value of V reaches Vmax, the next region boundary must be independent of pV , thus it is

vertical.

• We also see that for very low F , where no capacity constraints are active, we have a region

(region 1 in Figure 6(a)) where the maximum reactor temperature (Tr,max) is not an active

constraint. This is because when the overall conversion is very high (as it is at low flow

rates), we benefit from increasing the reaction selectivity in favor of the desired reaction,

this compensates for the lower overall conversion. As mentioned in the process description,

reaction 1 has a lower activation energy, and thus will be favored by low temperatures.

• Rmin is active (R = 0) at low F : If F is sufficiently low, the reactor exit stream contains very

little unreacted A. Thus there is no benefit from recycling, as we would only be recycling

by-product C. If the value of the purge stream was zero, however, we would recycle as long

as there is any A in the distillate at all.

• Rmin is active at high F : As F increases, the reactor conversion goes down (Figure 8(a)) and
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the product stream will contain more unreacted A. This must be compensated by increasing

V or decreasing L in the column. If V = Vmax, we cannot increase it further and our only

option is to reduce L, meaning the distillate flow rate increases and the bottoms flow rate

decreases (see Figure 8(b). In this situation, we have nothing to earn from recycling more,

so the entire increase in distillate flow rate goes into the purge stream P, leading to a higher

purge ratio P/D. For higher pV , we may find the same even when V < Vmax, because an

increase in V costs more than it gives. We discuss this further below.

• To the right of the constraint line for boilup rate V , all other constraint lines (including the

"quasi-constraint line" for Fmax) are vertical, because when V is fixed at Vmax, the objective

function is independent of pV , and thus the optimal solution is also independent of pV .
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Figure 7: Optimal objective function value J and column bottom product flowrate B as function of
feed flow rate F at three values of pV

That Mr,max is always active, means that Mr should be controlled at this constant value Mr,max.

However,7 argues that if energy is cheap (i.e. pV is small) and Vmax is large, it could be beneficial,

for control purposes, to let the holdup vary, giving better disturbance rejection.

The "physical quasi-bottleneck" indicated in Figure 6(b) is reached when the optimal value of

B reaches zero: As we increase the feed rate, less of the reactant is converted to products. Thus,

in order to satisfy the constraint on xB,B we need to decrease B (see also Figure 7(b)) until it can
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not be decreased further, by reducing the reflux flow rate L. The full set of active constraints at the

physical quasi-bottleneck is:

2 2.5 3 3.5 4 4.5 5
35

40

45

50

55

60

65

70

75

Feed rate (mol/s)

C
on

ve
rs

io
n 

(%
)

(a) Conversion as function of F

2 2.5 3 3.5 4 4.5 5
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Feed rate (mol/s)

B
ot

to
m

s 
flo

w
ra

te
 (m

ol
/s

)
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Figure 8: Reactor conversion X and bottoms flow rate B as functions of F when Mr, xB,B, Tr, V
and P/D are fixed.

xB,B = xB,B,min

Mr = Mr,max

Tr = Tr,max

V = Vmax

B = 0

R = 0

However, it would be possible to take in more feed to the system - we could take in Vmaxmol/s,

and boil up and purge the entire stream. This could for example be necessary if this process was

the only way out for the product of an upstream process. This is why we refer to it as a quasi-

bottleneck.
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More on the effect of recycling

As mentioned above, we found that for low and high F it was optimal to purge all the distillate

from the column, rather than recycling some of it. In Figure 9(a), we show how the optimal value

of R (the recycle flow rate) varies with F , and Figure 9(b) shows the same for vapor boilup in the

column. As we can see, at the lowest pV the maximum recycle flow rate is reached just as V reaches

Vmax. However, for the two higher pV values, the maximum recycle flow rate is reached before V

reaches Vmax. The explanation for this is: When we increase the reactor throughput, we get a lower

conversion and thus the column feed is leaner in the heavy component B. Thus, to maintain the

desired purity, most of the increased column feed goes out as distillate, not as valuable bottom

product. Thus, we get less revenue for the increased reactor throughput. At some point, we cannot

increase the bottom product flow rate any more, and thus any recycled material would just have to

be boiled up again. Then it is more profitable to purge it, and we reach the point where Roptimal = 0.

If pV is sufficiently high, it will be optimal to have R = 0 for all F - in Figure 6(a) we see that this

happens at pV ≈ 0.1$/mol.
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Figure 9: Selected variables as function of feed flowrate F for three different values of pV
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Efficiency of method

All optimizations were carried out without using analytical Jacobians, so the optimization solver

would typically need 50-100 iterations to converge to a solution. However, each iteration was

quick since calculation of the objective and constraint function values was easy (as they involve

no further equation solving). An interpolation search would typically require about 10 function

evaluations (optimizations). If one should find the active constraint regions by just mapping the

active constraints at a number of points evenly distributed over the disturbance space, it would be

necessary to carry out many more optimizations - even if one kept the assumption that every region

boundary was straight.

The fact that the minimum constraint on R is active for both high and low F , but not for

intermediate, gave rise to an additional challenge. For fzero.m to work, it requires two end points

where the function for which we seek a zero, has different signs. Since the constraint was active

both at high and low F , choosing values near 0 and Fmax would yield two end points where the

function value was positive. Thus we had to carry out a few extra optimizations at intermediate F

to find a point where the optimal R 6= 0.

Comparison with Jagtap et.al.

10 study a process where two reactants A and B react according to the following reaction scheme:

A+B → C

B+C → D (15)

with C being the desired product and D being an unwanted byproduct. Instead of a purge

stream, they use two distillation columns, and the desired product C is taken out in the distillate

stream of the second column (however, the bottoms stream of that column may be seen as a re-

placement for a purge stream as this stream takes care of most of the by-product D). They use
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the "avoid product giveaway" rule to fix three specifications, all are directly related to exit stream

compositions in the distillation columns. However, they use more indirect specifications, namely

the ratio of B to C in the bottom stream from the first column, and the loss of C and D in the bottom

and distillate streams, respectively, in column 2. These seem to be chosen more for the sake of easy

steady-state convergence of the process model.

Like in this work, they find that when fresh feed is a degree of freedom, there is a feed rate at

which the plant profit reaches a maximum, and any further increase in feed rate leads to a decrease

in profit. This is because the increased feed rate does not lead to a sufficiently large increase in the

amount of valuable product. An increased feed flow rate means a lower conversion percentage, so

one gets more of the impurities in the reactor product. Then more needs to be recycled, and the

increase in production rate is not high enough to "pay" for the increase in feed consumption rate.

A notable difference is that the region where the reactor temperature constraint is inactive,

is much larger, and another constraint becomes active before it (Vmax in the first column). This

is probably because the reaction parameters are such that the temperature has a much stronger

influence on reaction selectivity.

Conclusions and future work

Conclusions

In this paper, we have outlined a method for finding active constraint regions for a chemical pro-

cess. We have discussed optimal operation of reactor-separator-recycle systems and applied the

above mentioned method to describe the active constraints of a reactor-separator-recycle process.

We have found that we have 5 distinct active constraint regions, and that there is a flow rate above

which we cannot operate without breaking constraints. For the data used in this work, this flow

rate is 13.2mol/s.
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Future work

After having successfully applied the above mentioned method on distillation columns and a

reactor-separator-recycle system, which are both well researched types of processes, we want to

apply it to an LNG process.
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