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Motivation

Some process variables can not be measured frequently

Example: Composition measurement using online analyzers (like Gas
Chromatograph)

Large measurement delays
High investment/maintenance costs
Low reliability

Sensors:

Temperature
Pressure
Flow rate
etc.

An estimator attempts to approximate the unknown parameters using the
measurements
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Introduction Estimation

Estimators

Di�erent categories: Static / Dynamic, Data-based / Model-based,
Open-loop / Close-loop

Static Estimators

Model-based

Example: Brasilow estimator1

Our method is in this category

Data-based

Example: Partial Least Square (PLS)

Dynamic Estimators

Model-based

Example: Kalman �lter

Data-based

Time variant reliability analysis of existing structures using data

1
R. Weber, C. Brosilow, The Use of Secondary Measurements to Improve Control, AIChE J., 18, 3,

p. 614-623
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Introduction Partial Least Squares

Partial Least Squares

PC regression = weights are calculated from the covariance matrix of
the predictors

PLS = weights re�ect the covariance structure between predictors and
response � mostly requires a complicated iterative algorithm

Nipals and SIMPLS algorithms probably most common

The goal is to maximize the correlation between the response(s) and
component scores

PLS can extends to multiple outcomes and allows for dimension
reduction

No collinearity � Independence of observations not required
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Introduction Partial Least Squares

PLS

Ŷ = BX

PLS: is not optimal for any particular problem

Loss method: optimal for certain well-de�ned problems
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Loss Method

Loss Method

OBJECTIVE

The main objective is to �nd a linear combination of measurements such
that keeping these constant indirectly leads to nearly accurate estimation
with a small loss L in spite of unknown disturbances, d, and measurement
noise, nx .

min
H
‖e‖2 = ‖y− ŷ‖2
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Loss Method

Loss Method

"Open-loop" (for the
purpose of Monitoring):

1 No control (u is a free
variable)

2 Primary variables y are
controlled (u is used to
keep y = ys).

3 Secondary variables z
are controlled (u is
used to keep z = zs).

"Close-loop" (for the
purpose of Control)
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Loss Method

Loss Method

Assumption: Linear models for the primary variables y, measurements x,
and secondary variables z

y = Gyu +Gd
y d

Gy =
(

∂y
∂u

)
d
, Gd

y =
(

∂y
∂d

)
u

x = Gxu +Gd
x d

Gx =
(

∂x
∂u

)
d
, Gd

x =
(

∂x
∂d

)
u

z = Gzu +Gd
z d

Gz =
(

∂z
∂u

)
d
, Gd

z =
(

∂z
∂d

)
u

The actual measurements xm, containing measurement noise nx is

xm = x + nx

The linear estimator is of the form

ŷ =Hxm
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Loss Method

Loss Method
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Loss Method Optimal estimators for di�erent scenarios

Optimal estimators for di�erent scenarios (Loss Method)

"Open-loop" 1

H1 = Y1X
†
1

Y1 =
[
GyWu GdyWd 0

]
X1 =

[
GxWu GdxWd Wnx

]
2

"Open-loop" 3

H3 = Y3X
†
3

Y3 =
[
Gcly Wzs F′yWd 0

]
X3 =

[
Gclx Wzs F′xWd Wnx

]

"Open-loop" 2

H2 = Y2X
†
2

Y2 =
[
Wys 0 0

]
X2 =

[
Gclx Wys FWd Wnx

]
4

"Closed-loop"

min
H

∥∥H[ FWd Wnx
]∥∥

F

s.t.HGx = Gy

* All subject to the constraint of independent variables values
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Loss Method Optimal estimators for di�erent scenarios

Optimal "open-loop" estimator, when y=ys (Loss Method)
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H2 = Y2X
†
2

Y2 =
[
Wys 0 0

]
X2=

[
Gclx Wys FWd Wnx

]
Initial
Equations

y = Gyu+Gdy d
x = Gxu+Gdx d
xm = x+nx

ŷ =Hxm

u =G−1y ys −G−1y G
d
y d

ŷ =H
[
GxG

−1
y ys +

(
G
d
x −GxG

−1
y G

d
y

)
d+nx

]

e =
[ (
I−HGcl

x

)
Wys −HFWd −HWnx

]︸ ︷︷ ︸
M

ol
(H)

 y’s
d’
nx
′



‖e(H)‖2 =
1

2
‖Mol (H)‖2F

min
H

‖
[
Wys 0 0

]
−H

[
Gcl
x Wys FWd Wnx

]
‖=min

H

‖Y2−HX2‖
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Optimal "open-loop" estimator, when y=ys (Loss Method)
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(
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T
ME

[
d̃d̃T

])
E
[
d̃d̃T

]
= Cov

(
d̃, d̃
)
+µµ

T

min
H
‖
[
Wys 0 0

]
−H

[
Gcl
x Wys FWd Wnx

]
‖=min

H
‖Y2−HX2‖
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Loss Method Optimal estimators for di�erent scenarios

Optimal "close-loop" estimator (Loss Method)
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Loss Method Optimal estimators for di�erent scenarios
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Loss Method Optimal estimators for di�erent scenarios

Optimal "close-loop" estimator (contd.)

The prediction error e

e = y− ŷ = y−ys =−Gy (HGx)−1H(Fd + nx) +
[
Gy (HGx)−1− I

]
ys

Introducing the normalized variables:

e =−Gy (HGx)−1H
[
FWd Wnx

][ d′

nx
′

]
︸ ︷︷ ︸

e1

+
[
Gy (HGx)−1− I

]
ys︸ ︷︷ ︸

e2

Degree of Freedom

e1 (H) = e1 (DH)
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Loss Method Optimal estimators for di�erent scenarios

Optimal "close-loop" estimator (contd.)

If F̃=
[
FWd Wnx

]
is full rank, which is always the case if we include

independent measurement noise, then 2

H=D

((
XoptX

T
opt

)−1
Gx

)T

where

D= Gy

(
G
T
x

(
XoptX

T
opt

)−1
Gx

)−1

2
Alstad et al. (2009), Optimal measurement combinations as controlled variables, J. Proc. Control,

19 (1), 138-148
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Loss Method Necessary data for the task of estimation

Necessary data for the task of estimation (Model-based)

Model-Based Estimation

Yall =

[
Y

X

]
=

[
Gy 0
Gx Xopt

]
where Xopt =

[
FWd Wnx

]
a
a

Y =
[
Ynon−opt 0

]
X =

[
Xnon−opt Xopt

]
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Loss Method Necessary data for the task of estimation

Necessary data for the task of estimation (Data-based)

Theorem

Closed Loop Regressor (CLR) a. The data matrices can be transformed to the
�optimal � non-optimal� structure by

1 Performing a singular value decomposition on the data matrix Y

2 Multiplying the data matrices X and Y with the unitary matrix V

YV=
[
Ynon−opt 0

]
XV=

[
Xnon−opt Xopt

]
a
Skogestad et al (2011). Selected Topics on Constrained and Nonlinear Control Workbook

Proof.

Since V is unitary, so ‖YV−HXV‖F = ‖Y−HX‖F
Writing the unitary matrix U in block form as U=

[
U1 U2

]
, we will have

YV=US=
[
U1 U2

][ S1
0

]
=
[
U1S1 0

]
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Examples

Example 1: Results

Binary Distillation (Col. A), 41 trays, 8 measurements

Secondary variables: Re�ux, temperature in 25th tray

The mean prediction error of the model-based estimators applied to four
operation scenarios

Validation Data

C
a
li
b
er
a
ti
o
n
D
a
ta S1 S2 S3 S4
S1 0.0085 0.2749 0.0215 0.0506
S2 0.0591 0.0093 0.0104 0.0104
S3 0.0599 0.0166 0.0098 0.0132
S4 0.0099 0.0099 0.0099 0.0099
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Example 1: Results
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Example 2: Multi-component distillation
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Examples

Example 2: Results

H=



0.0004 0.0014
0.0081 −0.0045
−0.005 0.0074
−0.0047 0.0006
0.0062 −0.0104
−0.003 0.0126
−0.0013 0.0051
0.0024 −0.0162
−0.0028 0.0042



a

B=



0.0002 0.0013
0.0087 −0.0041
−0.006 0.0068
−0.0051 0.0003
0.0077 −0.0096
−0.0034 0.0124
−0.0016 0.0049
0.0026 −0.016
−0.0031 0.004


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Figure: Estimated and model Composition values for the case with two
temperature controls and with the consideration of 8 measurements
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Example 3: Kaibel distillation column

 
 
 
 
 
 
 
 

 

Figure 2. Schematic of a 4-product dividing wall column 
 
 

The model used for this study is simulated in UNISIM. The feed stream is an equimolal 
mixture of Methanol, Ethanol, 1-Propanol, 1-butanol and saturated liquid. All the optimal 
operating points for different sets of the disturbances are found by applying an optimisation 
solver in MATLAB with the full non-linear model in UNISIM. 
The right figure in Figure 2 shows the composition profiles in different sections of the 
dividing-wall column. As it is obvious, the most difficult separation is taking place in the 
prefractionator and the other sections are performing close to binary separation with small 
light or heavy impurity. Because of this, the focus of our study is on the prefractionator part.  
 
 
Partial Least Square (PLS) Method 
In chemometrics, partial least squares (PLS) regression has become an established tool for 
modelling linear relations between multivariate measurements (Martens and Næs 1989). This 
biased regression method is used to compress the predictor data matrix 1 2, ,..., pX x x x =   , 
that contains the values of p predictors for n samples, into a set of A latent variable or factor 
scores 1 2[ , ,..., ]AT t t t= , where A p≤ . The factors at , 1, 2,...,a A= , are determined 
sequentially using the nonlinear iterative partial least squares (NIPALS) algorithm [2]. The 
orthogonal factor scores are used to fit a set of n observations to m dependent variables 

1 2[ , ,..., ]mY y y y= . The main attraction of the method is that it finds a parsimonious model 
even when the predictors are highly collinear or linearly dependent. So, the final fitting 

D

S1

S2

B

Feed

DoF

u =
[
RL RV L V S1 S2

]
a
Extra Degrees of Freedom:

Vapor Split (RV )

Liquid Split (RL)

s
Disturbances:

Feed �owrate, composition and
quality

Column Pressure

Setpoints for splits
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Possible Improvement for Loss method: Structured H3

3
Yelchuru et al., MIQP formulation for Controlled Variable Selection in Self Optimizing Control

M. Ghadrdan, C. Grimholt, S. Skogestad, I.J. Halvorsen (Norwegian University of Science & Technology, Department of Chemical Engineering, 7491, Trondheim, Norway, SINTEF ICT, Applied Cybernetics, 7465 Trondheim, Norway)Loss Method AIChE Meeting, 2011 25 / 27



Examples

Conclusion

Loss method is more systematic method to design soft-sensor
compared to PLS

For the example we showed, PLS and Loss method show almost the
same result although two di�erent approaches are used
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Examples

Comment on PLS

Shrinkage properties4

MSE = E (b−β )′S (b−β ) = Σiλi (Eai −αi )
2︸ ︷︷ ︸

Bias term

+ ΣiλiVar (ai )

ai = f (λi )a
0
i

f (λi ) = 0or 1 for OLS, PCR, Ridge
Butler et al.: PLS is not a shrinkage method. PLSR nearly always can be
improved

4
Butler et al, The peculier shrinkage properties of partial least squares regression, J. R. Stat. Soc.,

B 62 (2000) 585-593
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