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Abstract—H∞ control theory is usually associated with high-
order controllers. In this paper, simple tuning rules (extending
the well-known SIMC) for the Proportional-Integral (PI) al-
gorithm are derived analytically based on H∞ Weighted Sen-
sitivity. The presented approach deals with stable, integrating
and unstable plants in a unified way, avoiding any notion of
coprime factorization. The final tuning involves two adjustable
parameters, λ and γ, with clear engineering meaning: λ selects
the Robustness/Performance compromise, whereas γ allows to
balance the Servo/Regulator performance. Based on this, several
application scenarios are considered. First, a One-Degree-Of-
Freedom (1-DOF) PI controller is assumed. Second, 2-DOF and
switched implementations are investigated.

I. INTRODUCTION

The most widely used control algorithm in indus-

try still corresponds to the Proportional-Integral-Derivative

(PID) controller, commonly simplified in practice to the

Proportional-Integral (PI) type. On the other hand, the mod-

ern control literature has been dominated by optimal and ro-

bust control theories, including the H2 and H∞ optimization-

based paradigms [1], [2], [3]. Influenced by the control

theory mainstream, PID design methods have received a

revived interest during the last two decades [4], resulting into

a considerable number of analytically derived tuning rules as

for example [5], [6], [7], [8], [9], [10], to cite just a few.

For stable plants, PID tuning rules based on Internal Model

Control (IMC) [1] appeared in [5], and have since then

become very popular. However, for lag-dominant or inte-

grating processes, the associated input disturbance response

is sluggish. To circumvent this problem, Horn and coworkers

[6] proposed alternative IMC filters. A similar idea was

applied later in [7]. As the overshoot after a set-point change

in the revised methods [6], [7] can be considerably high,

a reference prefilter is recommended to avoid an excessive

overshoot.

Adopting a different viewpoint, Skogestad [9] suggested to

augment the integral gain in the original IMC-based tuning

rules [5], and obtained remarkably simple and effective

expressions for the PI(D) parameters with a good tradeoff

between Servo and Regulator operation. One limitation of

the so-called SIMC rule in [9] is that it does not consider

∗This work was prepared during a research stay of the first author at the
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unstable plants, as recently reported in the closely-related

work [11].

In this communication, we focus on PI control and look

for a simple tuning of the controller along the lines of [9], but

also including unstable plants. The tuning rules are obtained

analytically using H∞ optimization, and represent both an

extension and a simplification of those in the previous works

[10], [12], where the full PID structure is used to deal with

stable plants only. A previous H∞ approach to PI control

can be consulted in [13], where, however, no tuning rules

are finally provided.

The presented approach stems from considering the H∞

Weighted Sensitivity Problem [14], [3], posed in terms of

a two-parameter weight: the first parameter (λ) adjusts the

Robustness/Performance tradeoff, whereas the second one

(γ) is used to balance the performance between the set-point

and disturbance responses. A distinguishing feature of our

H∞ method is the usage of a possibly unstable weight, which

unifies the treatment of the stable/unstable plants, avoiding

any notion of coprime factorization [15], [3].

After deriving the tuning rules, the SIMC rule is revisited

to fix γ for balanced Servo/Regulator operation. In addition,

as extreme values of γ yield Servo-type and Regulator-type

tunings, a switched scheme to integrate them is investigated

as an alternative to the more common 2-DOF PI controller.

The organization for the rest of the paper is as follows.

Section II reviews the H∞ Weighted Sensitivity Problem.

Afterwards, the analytical solution is obtained based on the

usage of a possibly unstable weight. Section III applies the

latter result to PI control, and tuning rules are obtained

for the simplest stable, integrating and unstable models.

Section IV gives tuning guidelines for linear and switched

implementations. Section V evaluates the presented design

through simulation examples. To conclude the paper, in

Section VI we summarize the main ideas.

Notation:

RH∞ is the set of stable transfer functions.

C is the set of internally stabilizing controllers K . This

means that, for any K ∈ C, all the closed-loop transfer

functions in Fig. 1 are stable [1], [3].

Q is the set of internally stabilizing Q’s, assuming the

parameterization K = Q
1−PQ .
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II. H∞ WEIGHTED SENSITIVITY

Consider the basic unity feedback configuration depicted

in Fig. 1: P and K are the plant and the controller, respec-

PK
-

uer y

d

Fig. 1. Basic feedback configuration.

tively, and r, y, u, e, d denote (in the same order) the refer-

ence, output, control, error and input (or load) disturbance

signals. A basic problem in H∞ control is the weighted

sensitivity problem [14], [16], [3]:

min
K∈C

‖N‖∞ = min
K∈C

‖WS‖∞ (1)

where

• ‖N‖∞
.
= sup

ω
|N (jω)|

• S is the sensitivity function: S = 1
1+PK .

• W is a Minimum-Phase (MP) weight responsible for

the shaping of S (the design key point).

As explained in [3], H∞ controllers are usually found numer-

ically by posing the problem in the generalized framework of

Fig. 2. Within this control setup, G denotes the generalized

v

w

u

K

G z

Fig. 2. Generalized control setup.

plant and the objective is to minimize the norm from w to

z. Mathematically, this is expressed as

min
K∈C

‖Tzw‖∞ = min
K∈C

‖Fl (G,K)‖∞ (2)

where Fl(G,K) is the Lower Fractional Transformation

(LFT):

Fl(G,K)
.
= G11 +G12K(I −G22K)−1G21 (3)

For the case at hand,

G =

[

W −WP
1 −P

]

(4)

results into Tzw = Fl(G,K) = WS, making (1) equivalent

to (2). Note, however, that this numerical approach is not

suitable for the purpose of obtaining tuning rules. A more

convenient analytical solution is investigated next. The cel-

ebrated Youla-Kucera parameterization [17] constitutes an

important result for optimization-based controller synthesis,

showing that any K ∈ C can be parameterized as

K =
Y +MQ

X −NQ
(5)

where Q ∈ RH∞ is a free parameter and X,Y,M,N ∈
RH∞ form a coprime factorization of P [15], [3], implying

that P = NM−1 and XM + Y N = 1. The above result

allows to express any closed-loop transfer function affinely

in Q. Therefore, the H∞ synthesis problem (2) turns out to

be a Model Matching Problem [2], [10]:

min
K∈C

‖N‖∞ = min
Q∈RH∞

‖T1 − T2Q‖∞ (6)

where T1, T2 ∈ RH∞. For example, the sensitivity function

can be parameterized as S = M(Y −NQ), and the weighted

sensitivity problem (1) corresponds to T1 = WM,T2 =
WMN , where T1, T2 ∈ RH∞ as long as W ∈ RH∞.

This procedure is the common approach found in [16], [2].

The main problem with the Youla-Kucera parameterization

is the need of calculating a coprime factorization. For our

purposes, we want to avoid this computation. The following

lemma shows that using a possibly unstable weight does the

trick:

Lemma 2.1: Assume that P is purely rational (i.e., there

is no time delay in P ) and has at least one RHP zero. Take

W as a MP weight including the unstable poles of P . Then,

the optimal weighted sensitivity subject to internal stability

(K ∈ C) is given by

N o = ρ
q(−s)

q(s)
(7)

where ρ and q = 1 + q1s + · · · + qν−1s
ν−1 (Hurwitz) are

uniquely determined by the interpolation constraints:

W (zi) = N o(zi) i = 1 . . . ν, (8)

being z1 . . . zν (ν ≥ 1) the RHP zeros of P .

Proof: Let us parameterize K as follows

K =
Q

1− PQ
(9)

As shown in [1], internal stability is then equivalent to

• Q ∈ RH∞

• S = 1− PQ has zeros at the unstable poles of P

The weighted sensitivity WS = W (1 − PQ) = N o in (7)

is achieved by

Q0 = P−1(1−N oW−1) (10)

First, we must verify that Q0 ∈ Q (i.e., internal stability):

• That Q0 ∈ RH∞ follows from the interpolation con-

straints (8) [14], [2], [10].

• On the other hand, S = 1−PQ0 = W−1N o is such that

S = 0 at the unstable poles of P (because W contains

them by assumption).

Now that internal stability has been verified, it remains to be

proved that Q0 is optimal. In [1], it is shown that any Q ∈ Q
has the form Q0+ΥQ1, where Q1 ∈ RH∞ and Υ ∈ RH∞

has (exclusively) two zeros at each closed RHP pole of P
(the exact shape of Υ is not necessary for the proof). Hence,

any admissible weighted sensitivity can be expressed as

W (1− PQ) = W (1− P [Q0 +ΥQ1])

= W (1− PQ0)−WPΥQ1

= N o −WPΥQ1

978-1-4577-0123-8/11/$26.00 ©2011 IEEE 1302



Minimizing ‖N o−WPΥQ1‖∞ is a standard Model Match-

ing Problem [16], [2], [10] with: T1 = N o, T2 =
WPΥ, Q1 ∈ RH∞. The optimal error Ñ o = T1 − T2Q1

is well-known to be all-pass and completely determined by

the RHP zeros of T2, which are those of P . More concretely,

for each RHP zero of P , we have the interpolation constraint

Ñ o(zi) = N o(zi). Obviously, this implies that Ñ o = N o.

Equivalently, the optimal solution is achieved for Q1 = 0,

showing that Q0 is indeed optimal.

Remark 2.1: Note that the assumption ν ≥ 1 is not

restrictive because many processes exhibit inverse response

characteristics or are affected by time delay, which can be

easily approximated by a Non-Minimum Phase rational term.

Furthermore, if ν = 0, then the optimal weighted sensitivity

is identically zero regardless of W .

Once N o = WS has been computed using Lemma 2.1,

the associated feedback controller is

K =
1− S

S
P−1 =

(

1−N oW−1

N oW−1

)

P−1 (11)

III. GETTING THE PI TUNING RULES

In order to obtain PI tuning rules using Lemma 2.1, we

need to specify:

• A simple model for P (this is done in subsection A).

• A simple weight W (this is done in subsection B).

After that, the final tuning rules are obtained in subsection

C.

A. Model

We take a First Order plus Time Delay1 (FOPTD) model

[9], [4]:

P = Kg
e−sh

τs+ 1
(12)

where

• Kg is the (zero frequency) gain.

• h is the (effective) time delay.

• τ is the time constant of the process.

In particular, τ may be negative to account for unstable

plants. We will also assume that P is lag-dominant (h > |τ |).
Note that integrating plants can be treated considering the

limit τ → ∞, as it will be seen later on.

B. Weight

The following possibly unstable weight is proposed

W =
(λs+ 1)(γs+ 1)

s(τs+ 1)
(13)

where λ > 0 and γ ∈ [λ, |τ |] are used as tuning parameters.

The rationale behind the choice is explained below. Start

considering λ = 0, then

• If γ = |τ |, |W | = |1/s|, and the optimization problem

(1), taking P as in (12), is equivalent to min
K∈C

‖S‖∞

subject to integral action. As e = Sr, this choice of

γ yields good results for set-point tracking.

1The time delay will be eventually approximated in subsection C.

• If γ = λ, |W | = 1
|Kg|

|P/s|. Since the constant 1
|Kg|

plays no role, the optimization problem (1) is now

equivalent to min
K∈C

‖PS‖∞ subject to integral action. As

e = −PSd, this choice of γ yields the best disturbance

attenuation.

• For intermediate values of γ, a Servo/Regulator balance

is obtained.

As we increase λ, the minimization of |S| at higher fre-

quencies is emphasized, preventing large peaks on S at the

expense of closed-loop bandwidth. Thus, once γ is fixed, λ
can be used to select a compromise between robustness and

performance as in the IMC procedure [1], [10].

C. Solution

In order to apply Lemma 2.1, we need first to approximate

the time delay in the FOPTD model (12). For simplicity, we

use a first order Taylor approximation:

P ≈ Kg
−sh+ 1

τs+ 1
(14)

Now, applying Lemma 2.1 with P and W as in (14) and

(13), respectively, the optimal weighted sensitivity function

is given by the constant

N o = ρ =
(λ+ h)(γ + h)

τ + h
(15)

From (11) and (14), the corresponding feedback controller

is

K =
χ

Kgρs
, χ = 1 +

τ(h+ λ+ γ)− λγ

τ + h
s (16)

which is of PI type

K = Kc

(

1 +
1

Tis

)

(17)

The expressions for the PI parameters can be consulted

in Table I. Note that the tuning rule for the integrating

TABLE I

PI TUNING RULE FOR THE MODEL P = Kg
e−sh

τs+1
.

Kc Ti
1

Kg

Ti
λ+γ+h−Ti

τ(h+λ+γ)−λγ
τ+h

λ > 0, γ ∈ [λ, |τ |]

model P = Kg
e−sh

s can be obtained as a particular case

by considering the approximation Kg
e−sh

s ≈ Kg
e−sh

s+1/τ =

Kgτ
e−sh

τs+1 in Table I, and taking the limit τ → ∞. The final

tuning rule is given in Table II. Thus, as the FOPTD model

contains the Integrating Plus Time Delay (IPTD) one, in the

remaining of this paper we will only consider the FOPTD

representation.

TABLE II

PI TUNING RULE FOR THE MODEL P = Kg
e−sh

s
.

Kc Ti
1

Kg

Ti
λγ+hTi

h+ λ+ γ λ > 0, γ ∈ [λ,∞)
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IV. EXTENSIONS BASED ON γ-AUTOTUNING

This section outlines possible applications of the tuning

rule in Table I. Although we concentrate on how to fix γ,

tuning guidelines for λ are also given.

A. (Linear) PI Control

We know from Section III.B that if set-point tracking is

the major concern, then γ = |τ | yields the best results.

In particular, note that when τ > 0 (stable case): Kc =
τ

Kg(λ+h) , Ti = τ (the well-known IMC rule [5], [1], [9]). On

the other hand, if disturbance rejection is the most important

thing, the recommended value is γ = λ. The corresponding

extreme tuning rules have been collected in Table III. It

can happen that both set-point and disturbance responses are

important. In a 1-DOF setting, we are forced to seek for

a Servo/Regulator tradeoff. In such a case, the guidelines

below are given:

• If h/|τ | ≥ 1, choose γ = |τ |
• As h/|τ | → 0, select γ → λ (otherwise the disturbance

response would be very sluggish)

For lag-dominant plants, one possibility is to mimmic SIMC

[9] by selecting Ti = 4(λ+ h). This yields:

γ = (3τ + 4h)
λ+ h

τ − λ
(18)

The resulting tuning behaves approximately like SIMC for

stable plants but also applies to slow unstable processes.

Consequently, the third row of Table III can be regarded

as an extended SIMC, or ESIMC for short. Once γ has been

fixed, λ can be adjusted online. The larger the value of λ, the

smoother the control. A good starting point, based on [9], is

to select λ ≈ h for tight control. If the resulting controller

is too aggressive, then increase λ according to [18].

The use of 2-DOF controllers is the most common option

to decouple set-point tracking and disturbance rejection.

For example, the following PI control law is commercially

available

u(t) = Kc

(

br(t)− y(t) +
1

Ti

∫ t

0

e(τ)dτ

)

(19)

where b is the so-called set-point weight. If b = 1, (19)

reduces to the conventional 1-DOF PI controller (17). In

general, the closed-loop system is described by the equation

y =
K2P

1 +K1P
r +

P

1 +K1P
d (20)

where

K1 = Kc

(

1 +
1

Tis

)

K2 = Kc

(

b+
1

Tis

)

(21)

This corresponds to the block diagram of Fig. 3.

As disturbance rejection only depends on the feedback

(or internal) block K1, the following tuning procedure arises

naturally:

• Select Kc and Ti as in the second row of Table III

(corresponding to γ = λ), and adjust λ according to

the guidelines given in Section IV.

P

K1

-

ur y

d

K2

Fig. 3. 2-DOF control configuration.

• If the set-point response exhibits excessive overshoot,

decrease b online (starting at one) until the best com-

promise between rise time and overshoot is achieved.

Remark 4.1: Although this work focuses on input distur-

bances, disturbances occurring at the output of the plant can

be regarded as unmeasured set-point changes. In this sense,

the servo/regulation tradeoff can alternatively be thought of

as an input/output disturbance tradeoff. Thus, if output dis-

turbances are equally important, (18) represents a reasonable

tuning for γ even in the 2-DOF scenario.

B. Switched PI Control

Another strategy to combine both good set-point and dis-

turbance processing is to switch between suitable controllers

for each purpose. The potential advantages of switched linear

control have been reported in [19], among others. Consider

the following scheme:

P

K1

-

ur y

d

K2

Fig. 4. Switched feedback scheme.

• By default, the system operates in Regulator mode.

Thus, K1 is tuned as before using Table III (γ = λ).

• When a set-point change is signaled, we commute to

K2, which is tuned using Table III with γ = |τ |. This

way, during the set-point tracking, a Servo-type tuning

is used.

• After tsp seconds, the system switches back to K1.

The role of tsp is analogous to b in the linear 2-DOF case. If

tsp = 0, there is no switching and the scheme reduces to the

conventional PI controller given by K1 (K2 is never active).

By increasing tsp, K2 will be active for a longer period

of time, reducing the overshoot after a reference change.

Obviously, tsp should be chosen, at maximum, equal to the

settling time of the set-point response.

Recently, PI control with reset action — or PI+CI, fol-

lowing the nomenclature introduced in [20]—, has been

proposed in different articles [20], [21], [22]. As depicted in

Fig. 5, the PI+CI controller can be regarded as a conventional

PI compensator with two possible integral gains. Instead of

using impulsive reset action based on the error signal as in

[20], [21], [22], two alternative tunings based on switching

978-1-4577-0123-8/11/$26.00 ©2011 IEEE 1304



TABLE III

TUNING RULES FOR EXTREME AND INTERMEDIATE VALUES OF γ .

γ Kc Ti Objective

|τ | 1
Kg

Ti

λ+|τ |+h−Ti

τ(h+λ+|τ |)−λ|τ |
τ+h

Set-point tracking

λ 1
Kg

τ
λ+h

(

h+2λ−λ2/τ
h+λ

)

τ(h+2λ)−λ2

τ+h
Disturbance attenuation

(3τ + 4h)λ+h
τ−λ

1
Kg

4(τ−λ)
4h+3λ

4(λ+ h) Servo/Regulator tradeoff (ESIMC)

P
-

ur y

d

1-a

a

Kc

1

Ti

reset

1

s

1

s

Fig. 5. Unity feedback scheme using the PI+CI controller.

and the proposed design are suggested in Table IV. By

assuming positive logic and that set-point changes occur at

t = 0, the reset signal is:

reset(t) =

{

1 if 0 ≤ t ≤ tsp
0 if t > tsp

(22)

The rationale behind Table IV is explained next. Note that

the PI+CI controller offers only a restricted implementation

of the general switched scheme, since the reset mechanism

just acts over the integral term. Therefore, Ti is chosen as in

Table III (γ = λ) when the reset is inactive, and α is such that
α
Ti

is equal to the other extreme value of Ti given in Table III

for γ = |τ |. The idea is to recover the largest possible value

of Ti when the reset is active. This way, during the set-point

transient the integral gain is reduced to improve the tracking

(diminishing the overshoot). As Kc is not altered by the

reset mechanism, the two options in Table IV correspond

to selecting Kc using γ = λ or γ = |τ |. The first option

chooses a Servo-type tuning rule (Table III, case γ = |τ |)
when the reset is active, and increases the integral gain for

regulation purposes when the reset is inactive. On the other

hand, option 2 uses a Regulator-type tuning rule (Table III,

case γ = λ) for normal operation, and reduces the integral

gain to improve the set-point response.

V. SIMULATION EXAMPLES

In this section, we go through two simulation examples. In

the first one, the SIMC and ESIMC rules are compared. The

second one applies the proposed method to the 2-DOF PI and

the PI+CI controllers. The main purpose of these examples is

to briefly sketch possible applications of the proposed design,

rather than illustrating completely established results.

Example I. (Revisiting SIMC) For FOPTD systems, the

SIMC rule [9], [3] is

Kc =
τ

Kg(λ+ h)
Ti = min {τ, 4(λ+ h)} (23)

and, as already commented, was devised in a 1-DOF setting

for balanced servo/regulation operation of stable plants. From

Section IV.A, the proposed ESIMC tuning rule in the third

row of Table III represents an extended version of the

SIMC tuning. To illustrate this, let us consider P = e−s

20s+1
(Kg = 1, h = 1, τ = 20) and λ = h = 1. The corresponding

time responses for SIMC and ESIMC are depicted in Fig.

6 (top). As it can be seen, the two methods yield very

similar results (indeed, the same happens in general for any

ratio between the time delay and the time constant). More

precisely, the PI parameters are Kc = 10, Ti = 8 (SIMC)

and Kc = 10.8571, Ti = 8 (ESIMC). If we now consider

0 10 20 30 40 50 60
0

0.5

1

1.5

t

y

 

 

0 10 20 30 40 50 60
0

0.5

1

1.5

t

y

 

 

SIMC

Proposed (ESIMC)

Fig. 6. Time responses for P = e−s

20s+1
(top) and P = e−s

−20s+1
(bottom).

P = e−s

−20s+1 (Kg = 1, h = 1, τ = −20, λ = 1) , Fig.

6 (bottom) shows that the ESIMC tuning rule leads to an

acceptable response with Kc = −12, Ti = 8. However, the

original SIMC rule (Kc = −10, Ti = −20) produces an

unstable pole/zero cancellation between the plant and the

controller and renders the closed-loop internally unstable.

Although in Fig. 6 (bottom) the closed-loop goes unstable

after the load disturbance (which excites the unstable mode),

in practice instability would occur earlier.

Example II. (2-DOF vs switched PI+CI) Following

Section V, here we compare the common 2-DOF control

strategy (19) with the recently proposed PI+CI controller.

For the plant P = e−s

10s+1 , Fig. 7 (bottom) displays the

results obtained using conventional 1-DOF and 2-DOF PI

controllers, and the PI+CI controller using Option 1 in

Table IV. In all the cases, the feedback tuning is the same:

Kc = τ
Kg(λ+h) , Ti = τ(h+2λ)−λ2

τ+h (γ = λ = 1.2). Substi-

tuting the concrete values into the tuning expressions, we

get Kc = 4.545, Ti = 0.6512. Regarding the 2-DOF PI

978-1-4577-0123-8/11/$26.00 ©2011 IEEE 1305



TABLE IV

TUNING RULES FOR THE PI+CI CONTROLLER.

Option Kc Ti α

1 1
Kg

Ti
λ+|τ |+h−Ti

τ(h+2λ)−λ2

τ+h
τ(h+2λ)−λ2

τ(h+λ+|τ |)−λ|τ |

2 1
Kg

τ
λ+h

(

h+2λ−λ2/τ
h+λ

)

τ(h+2λ)−λ2

τ+h
τ(h+2λ)−λ2

τ(h+λ+|τ |)−λ|τ |

controller, b = 0.25 (decreasing b further does not reduce

the overshoot significantly). As for the PI+CI controller,

α = τ(h+2λ)−λ2

τ(h+λ+|τ |)−λ|τ | = 0.1087 according to Table IV, and

tsp = 3. In this particular example, it seems that the PI+CI

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

y

 

 

1−DOF PI 

2−DOF PI (b=0.25)

PI+CI (Option 1, t
sp

=3)

Fig. 7. Time responses for 1-DOF PI, 2-DOF PI and PI+CI schemes.

controller may be advantageous with respect to the 2-DOF PI

controller. In particular, a set-point response with shorter rise

time and lower overshoot is attained. However, to establish

this thesis completely, a more thorough study is necessary.

VI. SUMMARY AND CONCLUSIONS

Tuning rules for PI control have been obtained from an

analytical H∞ methodology. The resulting tuning expres-

sions take into account set-point tracking and disturbance

attenuation and are valid for both stable and unstable plants.

As reported in [23], even in the stable case, there is some

room to improve the SIMC rule. In this line, the presented

design constitutes a good framework to improve the SIMC

settings, including unstable plants in the discussion. The

presented tuning rules have also been applied to systematic

tuning of the PI+CI controller, which has been compared

with the more common 2-DOF PI control law.
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