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ABSTRACT 

Optimal operation of process plants plays a key role in productive and profitable plant 
operation. In order to facilitate the optimal operation in the presence of process disturbances, 
the optimal selection of controlled variables plays a vital role. In this paper, the optimal 
controlled variable selection is reformulated as a convex QP for a given measurement subset 
and we present a Mixed Integer Quadratic Programming methodology to select controlled 
variables c=Hy as the optimal linear combinations of fewer/all measurements of the process. 
The proposed method is evaluated on a toy test problem and on an evaporator case study with 
10 measurements. 
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1. INTRODUCTION 

To enhance the productivity and profitability of the process plants, optimal operation is 
very important. In the presence of disturbance to facilitate the optimal operation, the optimal 
control structure selection is important. The decision on which variables should be controlled, 
which variables should be measured, which input variables should be manipulated and which 
links should be made between them is called control structure selection. Usually, control 
structure decisions are based on the intuition of process engineers or on heuristic methods. 
This does not guarantee optimality and makes it difficult to analyze and improve the control 
structure selection proposals.  

This paper considers the selection of controlled variables (CVs) associated with the 
unconstrained degrees of freedom. We assume that the CVs cs are selected as a subset or 
combination of all available measurements y. This may be written as 

  c=Hy where ny ≥ nc;  

 ny: number of measurements, nc: number of CVs  = number of unconstrained DOFs.  

where the objective is to find a good choice for the matrix H. In general, we also include 
inputs (MVs) in the available measurement set y.   

Skogestad and coworkers have proposed to use the steady state process model to find 
“self-optimizing” controlled variable as combinations of measurments. The objective is to 
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find ‘H’ such that when the CVs are kept at constant set points, the operation gives 
acceptable steady state loss from the optimal operation in the presence of disturbances. 

The theory for self-optimizing control (SOC) is well developed for quadratic optimization 
problems with linear models. This may seem restrictive, but any unconstrained optimization 
problem may locally be approximated by this. The “exact local method” of Halvorsen et al. 
(2003) handles both disturbances and measurement noise. The problems of finding CVs as 
optimal variable combinations (c=Hy, where H is a full matrix) are found to be difficult to 
solve numerically (Halvorsen, 2003), but recently it has been shown that it may be 
reformulated as a quadratic optimization problem with linear constraints (Alstad et al., 2009).  

The problem of selecting individual measurements as controlled variables (so ‘H’ 
contains ‘nu’ number of columns with ‘1’ and rest of the columns are zero, mathematically 
‘HHT = I’) is more difficult. The maximum gain rule (Halvorsen et al., 2003) may be useful 
for prescreening but it is not exact. Kariwala and Cao (2009) have derived effective branch 
and bound methods for the exact local method. Even though these methods simplify the loss 
evaluation for a single alternative, it requires evaluation of every feasible alternative to find 
the optimal solution. As the number of alternatives increase rapidly with the process 
dimensions, resorting to exhaustive search methods to find the optimal solution is 
computationally intractable. This motivates the need to develop efficient methods to find the 
optimal solution.  

We consider three interesting problems related to finding ‘H’: 

1) Selection of CVs as best individual measurements (select ‘n = nc’ measurements)  
2) Selection of CVs as combination of all (‘ny’) measurements. 
3) Selection of CVs as combination of best subset of ‘n’ measurements. Where 

{ : }n nu ny∈  
We consider the solution of these problems when applied to the exact local method 

formulation of Halvorsen et al. (2003). Problem 2 is the easiest one, Problems 1 and 3 
involve structural decisions (discrete variables) and are therefore more difficult to solve. 
Nevertheless, from a practical point of view Problems 1 and 3 are important as it is not wise 
to use more measurements than necessary to get an acceptable loss. 

To solve Problem 1, Cao and Kariwala (2008) has developed bidirectional branch and 
bound methods to find the best individual measurements as CVs using minimum singular 
value criterion. To solve Problem 2 Alstad et al. (2009) has reformulated the self optimizing 
control problem as a quadratic optimization problem and developed analytical solution to find 
best measurement combinations as CVs. To solve Problem 3, Kariwala and Cao (2009) 
developed bidirectional branch and bound methods to find best subset of measurements. The 
methods developed by Kariwala and Cao (2009) exploit the monotonic property of objective 
function in SOC problem and these methods are of limited/no use if the objective functions 
are not monotonic.  

In this paper we propose a different method to solve Problems 1 and 3 by reformulating 
the exact local method problem formulation as a Mixed Integer Quadratic Programming 
(MIQP) problem. The MIQP formulation is simple and can easily be extended to other cost 
functions. The developed methods are evaluated on a toy problem and on an evaporator case 
study with 10 measurements, 2 unconstrained degrees of freedom. The developed MIQP 
methods for SOC are generic and can easily be evaluated for any system.  
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2. EXACT LOCAL METHOD 

The “exact local method” formulation from Halvorsen et al. (2003) and its optimal solution 
from Alstad et al. (2009) are reviewed. We want to operate the plant close to optimal steady 
state operation, by using available degrees of freedom { } { }

all acu  = u u∪ . The steady state cost 
function J(uall,d) is minimized for any given disturbance d. The possible process parameter 
variations are also included as disturbances. Few of the available degrees of freedom uac are 
used to implement “active constraints” optimally, so that u contains only the remaining 
unconstrained steady state degrees of freedom. 

The “reduced space” unconstrainted optimization problem then becomes 

  
min ( , )

u
J u d

           (1) 

In this work we want to find a set of nc = nu controlled variables c, or more specifically 
optimal measurement combinations   

   c = Hy           (2) 

such that a constant set point policy (where u is adjusted to keep c constant) yields optimal 
operation (Eq. 1), at least locally. With a given d, solving Eq. (1) for u gives Jopt(d) , uopt(d) 
and yopt(d) . In practice, presence of implementations errors and changing disturbances makes 
it impossible to have u = uopt(d) and results in deviation from optimal operation and this 
deviation is quantified as loss. The resulting loss (L) is defined as the difference between the 
cost J, when using a non-optimal input u, and Jopt(d) as in Skogestad and Postlethwaite 
(2005): 

   L = J(u,d) - Jopt(d)          (3) 

The local second-order accurate Taylor series expansion of the cost function around the 
nominal point (u*; d*) can be written as 

  [ ]* * 1( , ) ( , )
2

T
T uu ud

u d T
ud dd

J Ju u u
J u d J u d J J

d d dJ J
⎡ ⎤Δ Δ Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ Δ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
  (4) 

where ∆u = (u - u*) and ∆d = (d - d*), nu and nd are sizes of ∆u and ∆d. For a given 
disturbance (∆d = 0), the second-order accurate expansion of the loss function around the 
optimum (Ju = 0) becomes  

  21 1 1( ) ( )
2 2 2

opt T opt T
uuL u u J u u z z z= − − = =  where 

1/ 2 ( )opt
uuz J u u−�  (5) 

In this paper, we consider a constant set point policy for the controlled variables which are 
chosen as linear combinations of the measurements as in Eq. (2). 

The constant set point policy implies that u is adjusted to give cs=c+n where n is the 
implementation error for c. Here we assume implementation error is caused by the 
measurement error i.e. n = H*ny. Now we want to express the loss variables z in terms of d 
and ny when we use a constant set point policy. 

The linearized (local) model in terms of the deviation variables is written as  

  y y
dy G u G dΔ = Δ + Δ         (6) 

  dc G u G dΔ = Δ + Δ         (7) 



The 5th International Symposium on   PSE ASIA 2010 
Design, Operation and Control of Chemical Processes  July 25-28, 2010, Singapore 

4 
 

Where yG HG= and y
d dG HG=  and for a constant set point policy (∆cs = 0) (Halvorsen et. 

al. 2003)  1opt
uu udu J J d−Δ = − Δ  1( )opt y y

uu ud dy G J J G d F d−Δ = − − Δ = Δ   (8) 

The F in Eq. (8) is the disturbance sensitivity matrix from disturbances d to measurements y 
at optimal operating points. This F can be evaluated directly from optimal process operating 
data. For illustration, select the process operating data close to optimal operation for the 
possible process disturbances ∆d and for these disturbances ∆yopt are known and disturbance 
sensitivity matrix F can be calculated directly. And this obviates the need to 
calculate yG , y

dG and ,uu udJ J . The magnitudes of the disturbances d and measurement noise ny 
are quantified by the diagonal scaling matrices Wd and Wn

y respectively. And we write  

  dd W d ′Δ =   y
y y

n
n W n ′=              (9,10) 

and by introducing the magnitudes of ∆d and ny, the loss variables z in Eq. (3) can be written 
as   y

y
d n

z M d M n ′′= +                   (11) 

where 1/2 1( )y
d uu dM J HG HFW−=− 1/2 1( ) y

y
n uu n

M J HG HW−=− 1
( )[( ) ]y y

uu ud d d n ny ny ndY G J J G W W−
× += −  (12,13,14) 

Using the Eq.s (12), (13), (14) and (5) the loss can be rewritten as     

  
'

2'
1/ 2 11 ( ( ) )

2
y

uu y

d
L J HG HY

n
−

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
                 (15) 

The loss in Eq. (15) can be minimized with H as the decision variable. Similar to Halvorsen 

et.al. 2003 the norm of d’, ny’ is chosen to be constrained by '

'

1
y

d

n

⎡ ⎤
≤⎢ ⎥

⎢ ⎥⎣ ⎦
, and the opitmization 

problem is formulated to minimize the worst case loss and average loss as in Kariwala and 
Cao (2008).  

  1/ 2 1 21min ( ( ) )
2

y
uuH

J HG HYσ −  
21/ 2 11min ( ( ) )

6( )
y

uu FH
J HG HY

ny nd
−

+
       (16,17)  

For these SOC problems Kariwala et.al. (2008) proved that the combination matrix H that 
minimizes the average loss in Eq. (17) is super optimal and in the sense that the same H 
minimizes the worst case loss in Eq. (16). Hence solving the optimization problem in Eq. (17) 
is considered in the rest of the paper. The scaling factor 1

6( )ny nd+
does not have any effect 

on the solution of the Eq. (17) and hence it is omitted in the problem formulation. 

Lemma 1: The problem in Eq. (17) may seem non-convex, but it can be reformulated as a 
constrained quadratic programming problem (Alstad et al., 2009). 

  2

1 / 2

m in

.

F
H

y
u u

H Y

s t H G J=

                  (18) 

Proof: From the original problem in Eq. (17) the optimal solution H is non-unique. If H is a 
solution then H1 = DH is also a solution as 1/2 -1 1/2 -1

uu y uu 1 y 1(J (HG ) )(HY) = (J (H G ) )(H Y)  for any 
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non-singular matrix D of nu x nu size. This means the objective function is unaffected by the 
choice of D. One implication is that HGy can be chosen freely. We can thus make H unique 
by adding a constraint, for example 1/ 2y

uuHG J= . More importantly this simplifies the 
optimization problem in Eq. (17) to optimization problem shown in Eq. (18). End proof 

The problem in Eq. (18) is a constrained quadratic programming problem in measurement 
combination matrix H. We can further simplify the constrained quadratic programming 
problem Eq. (18) as follows. 

1

2
1

1/ 2
1

min

.

FH

y
uu

H Y

st H G J=
   

2

1/ 2

min

.

F
H

y
uu

DHY

st DHG J=
  

2

1/ 2

min

.

F
H

y
uu

HY

st DHG J=
   (19) 

        (19a)         (19b)   (19c) 

1/2 1 1/2 1 1/2
1 1 1 1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( )T T y T T T y T T y

uu uu uuL Tr HYY H HG J L Tr DHYY H D HG D J L Tr HYY H HG D Jλ λ λ− −= + − = + − = + −
As the constraints in 3 formulations are equality constraints the lagrange multipliers can take 
any –ve or +ve at optimal point.  

Let YYT = Fn; , 1
,

1

( ) ( )( )
y y

nu ny ynu nu nu nu
nu ny

nu ny nu ny

H G H GP J G
H H

× ×

× ×

∂ ∂= = =
∂ ∂

. KKT conditions for these formulations 

1 1 1 2 3
1/ 2 1 1/ 2 1 1/ 2

1

0 0 0

0 0 0

T T T T T
n n n n n n

y y y
uu uu uu

H F H F P D DHF D DHF P HF HF P

H G J HG D J HG D J

λ λ λ
− −

+ + = + + = + + =

− = − = − =
     (20) 

        (20a)         (20b)   (20c) 

The formulations in Eq. (19a,19b) are exactly the same as H1 = DH and 
1/2 -1 1/2 -1
uu y uu 1 y 1(J (HG ) )(HY) = (J (H G ) )(H Y) for any non-singular matrix D of nu x nu size. And 

the KKT conditions of Eq. (20b, 20c) are same as premultiplying first KKT condition of Eq. 
(20c) with DTD results in first KKT condition of Eq.(20b) as lagrange multiplers can take 
either +ve or –ve values in equality constrained problems and the 2nd KKT condition for 
(20b,20c) are same. For equality constrained QP the solution satisfying the KKT conditions is 
the optimal solution, the formulations in Eq. (19b,19c) gives same optimal point even though 
the objective function values in Eq. (19b,19c) are different. And by selecting (i) 1/ 2

uuD J= , (ii) 
1 1/ 2

uuD Q J−= ; Q any non-singular matrix, then Eq. (19c) results in  

  
2min

.

F
H

y

HY

st HG I=
    

2min

.

F
H

y

HY

st HG Q=
 (21) 

    (21a)      (21b) 

This formulations in Eq. (21a, 21b) are very useful reformulations of the non-convex problem 
in eqaution (17) as it obviates the need for second derivative (Juu) calculation of the economic 
objective function J and HGy can be chosen as any non-singular matrix and still the 
reformulated problem gives a solution to the non-convex problem in Eq. (17). 
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We further reformulate the problem in (18) by vectorizing the decision matrix H to a vector x 
as described in Alstad et al., (2009). First X is introduced as TX H� . The matrices X and 

1/ 2
uuJ  are split into vectors as 1 2 1 2[ ] ; [ ] ;T

n u n uX x x x Q q q q= =" "

Then the optimization problem (18) for finding the optimal H can be written as a constrained 
quadratic programming problem in the variables Xδ as follows. Note here that Xδ is a stacked 
vector of all the columns in X or HT.  

  m in

.

T T

X

T

X Y Y X

st G X Q
δ

δ δ δ δ

δ δ δ=
                 (22) 

Where 
1 1

2 2

( * ) 1 ( * ) 1

;

nu nunu ny nu ny

x q
x q

X Q

x q

δ δ

× ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

# #

and

( * ) ( *( ))
( * ) ( * )

0 0 0 0
0 00 0 ;

0 00 0

T

T

T

y

y
T

y
nu ny nu nu nd

nu nu ny nu

G Y
YGG Y

YG

δ δ

× +
×

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

" "
""

# # # %# # # %
""

 

3. MIXED INTEGER QUADRATIC PROGRAMMING 

The Mixed Integer Quadratic Programming (MIQP) approach provides a different method to 
solve Problems 1 and 3 described in introduction. Note here that Problem 1 and Problem 2 
may be considered as special cases of Problem 3. The main advantages with the MIQP 
formulation are that these are simple, easily extendable and are exact.  

We start from the formulation given in (22) to find the optimal loss for the exact local 
method. Then we address this best measurement subset selection problem by formulating the 
problem in Eq. (19) as a MIQP problem as described below. Let 1 2, , nyσ σ σ" { }0,1∈  be binary 
variables and let rest of the variables be the same as in Eq. (19). For the chosen measurement 
subset in the ny measurements, the decision variables associated to those binary variables are 
chosen to be bounded in a range of   -M to M. And these bounds are formulated as big-M 
constraints. Thus the MIQP problem with big-M constraints can be written as in Eq. (23)

( )

{ }
( 1)*

min

.

0 0 0 0
0 0 0 0

1,2, ,
0 0 0 0

0,1

aug

T

T
aug augx

y
new aug

aug

i

ny i
i i

nu ny i

i

x Fx

st G x Q

Px n

xM M
xM M

fori ny
M Mx

δ

σ σ

σ

+

− +

=

=

⎧ ⎫⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥−⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥≤ ≤⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥ =⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥⎪ ⎪− ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎪ ⎪
⎪ ⎪∈⎩ ⎭

" "
" "

# # %% # # %%# "
" "

 
where

1

2

( * ) 1

aug

ny nu ny ny

X

x

δ

σ
σ

σ
+ ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#

and 

[ ( , )]; [ ( * , )];
[ (1, * ) (1, )]

TT y T
newF YY zeros ny ny G G zeros nu ny ny

P zeros nu ny ones ny
δ δ δ= =

=
      (23)

and n is the measurement subset size.  

In MIQP formulations, selection of a higher value for M in big-M constraints guarantee 
optimal solution, when bounds on decision variables are unknown. But higher M requires 
increases computational time in finding the optimal solution. Hence to find the suitable M 
value in finding optimal solution in an acceptable computational time, the Q matrix in         
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Eq. (21) can be chosen to have smaller entities to use smaller M values in MIQP formulation 
in Eq. (23). For example, if MIQP requires M value of 1000 for HGy = Q ; then M value of 
10 is sufficient for HGy = Q1 (i.e. Q1=0.01*Q); so M, Q can be chosen to reduce the 
computational time. But caution needs to be taken as very small entities of Q results in small 
entities in optimal H and the CPLEX solver tolerances may creep in solving the MIQP 
problem. Then MIQP problem in Eq. (23) is solved for different values of n between nu to ny. 
Later, the optimal measurement subset size n can be selected for the concerned process. 

Lemma 2: The best individual measurements in exact local method (Problem 1) can be 
obtained from the MIQP problem formulation (Eq. 20) solution for measurement subset size 
equal to nc. 

Proof: As mentioned in the proof of Lemma 1, if H is a solution then H1 = DH is also a 
solution for any non-singular matrix D of size nuxnu as 

-1/2 -1 -1/2 -1
uu y uu 1 y 1(J (HG ) )(HY) = (J (H G ) )(H Y) . Hence the objective function is unaffected by the 

choice of D.   

Let Hnc be the optimal solution to this MIQP problem (Eq. 20) for best nc measurements 
combination matrix.  Now by choosing 1

ncD H −= and we find the best indiviual measurements 
Him.(Solution to Problem 1) End proof 

Application to toy test problem. To illustrate the problem formulation, consider the toy 
problem of Halvorsen et a.l. (2003) which has two inputs ( )1 2

Tu u u= , one disturbance d and 

two output measurements ( )1 2
Tx x x= . The cost function is  

2 2
1 2 1( ) ( )J x x x d= − + − ; where the outputs depended linearly on u , d as x x

dx G u G d= + with 
1110 10

; ;
10 9 10

x x
dG G⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 At the optimal point we have 1 2x x d= = and Jopt(d) = 0. Both the inputs 

and outputs are included in the candidate set of measurements y. For the example, the steady 
gain matrix from y to u (Gy), steady disturbance gain matrix from y to d ( y

dG ), hessian of cost 
function with u, d, ,uu udJ J and disturbance, noise weight matrices dW , nW used 

ar 1

2

1

2

11 10 10 1 0 0 0
10 9 10 244 222 198 1 0 0 1 0 0

; ; ; ; ; ; 0.01*
1 0 0 222 202 180 0 1 0 0 1 0
0 1 0 0 0 0 1

y y
d uu ud d n

y
y

C G G J J W W
u
u

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

The resulting 

optimal sensitivity matrix is computed as follows 1
( )[( ) ]y y

uu ud d d n ny ny ndY G J J G W W−
× += − . These 

matrices are used to get the stacked vector Xδ, Jδ, Gδ
Tand Yδ then matrices in Eq. (20) are 

 2 2 -18 18 0 0 0 0 0 0 0 0
2 2 -18 18 0 0 0 0 0 0 0 0

-18 -18 162 -162 0 0 0 0 0 0 0 0
18 18 -162 162 0 0 0 0 0 0 0 0
0 0 0 0 2 2 -18 18 0 0 0 0

0 0 0 0 2 2 -18 18 0 0 0 0
0 0 0 0 -18 -18 162 -162 0 0 0 0
0 0 0 0 18 18 -162 162 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

F

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢

=

⎣ 12 12×

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 

4 12

11 10 1 0 0 0 0 0 0 0 0 0
10 9 0 1 0 0 0 0 0 0 0 0
0 0 0 0 11 10 1 0 0 0 0 0
0 0 0 0 10 9 0 1 0 0 0 0

Ty
newG

×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

4 1

1 1 . 6
1 0 . 5
1 0 . 5

9 . 6

Q δ

×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

[ ]112

2
0 0 0 0 0 0 0 0 1 1 1 1

M
P ×

=
=
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4. RESULTS  
 
4.1 Toy problem  
 
The minimized loss function with the number of measurements used as CVs (i.e. the 
measurement combinations) is shown in Figure 1. From Figure 1, the loss is minimized as we 
use more number of measurements to find the CVs as the combinations of measurements. 
And the reduction in loss is very small when we increase the measurement subset size from 3 
to 4. Based on the Figure 1, we can conclude that using CVs as combinations of 3 
measurement subset is optimal for this toy problem. 

 

Figure 1. Optimal average loss with best measurement combinations vs no. of 
measurements used. 

4.2 Evaporator Case study 

The evaporator case study and the associated data are directly taken from Kariwala et al., 
2008. More information on the process description and associated model can be found in 
Kariwala et al., 2008. This evaporator process has 10 candidate measurements. Note that we  
included the inputs in the candidate measurements for this case study. We formulated the 
MIQP problem for the evaporator case study with 10 measurements to find the 2 CVs as the 
combinations of 10 measurements.  

Candidate measurements are y = [P2 T2 T3 F2 F100 T201 F3 F5 F200 F1];  u = [F200 F1]; 

An MIQP is set up for this distillation column with an M value of 10 in big-M constraints in 
Eq. (20) and 1/ 20.05* uuQ J= . We solved the MIQP to find the CVs as the combinations of 
best measurement subset size from 2 to 10. The IBM ILOG CPLX solver is used to solve the 
MIQP problem. The same problem is solved by downwards branch and bound, partial 
bidirectional branch bound methods of Kariwala and Cao (2009). The computational times 
(CPU time) taken by MIQP, Downward BAB, PB3 method and exhaustiv|e search method are 
tabulated in Table 1. Note that exhaustive search is not performed and an estimate of CPU 
time assuming 0.01 s for each evaluation is tabulated. From Table 1, it can be seen that the 
MIQP finds optimal solution in 5 times faster than exhaustive search methods in 
computational (CPU) time. MIQP, PB3, Downwards BAB methods find the same 
measurement subsets within few secs. MIQP methods are 2-3 times slower than PB3, 
Downwards BAB methods. In conclusion, even though the MIQP methods are not 
computationally attractive to that of Downwards BAB and PB3 methods; MIQP based 
methods are acceptable as these optimal CVs selection problems are performed offline. 
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Despite these, MIQP method is valuable as the method is simple and can easily be extended 
to any quadratic cost functions to find optimal CVs in SOC framework. The minimized loss 

 
Figure 2. Optimal average loss using MIQP method 
with best measurement combinations vs no. of 
measurements used. 

 

No. 
Meas

Optimal 
 Measurements 

MIQP
cpu 
time 
(sec)

Downwards 
BAB 

cpu time 
(sec) 

PB3 
cpu time 

(sec) 

Exhaustive 
Search 

cpu time 
(sec) Loss 

2 [F3 F200] 0.0938 0.0781 0.0600 0.45 3.7351 

3 [F2 F100 F200] 0.1406 0.0000 0.1406 1.2 0.6501 

4 [F2 T201 F3 F200] 0.1250 0.0313 0.0313 2.1 0.4515 

5 [F2 F100 T201 F3 F200] 0.2188 0.0000 0.0313 2.52 0.3373 

6 [F2 F100 T201 F3 F5 F200] 0.1406 0.0000 0.0313 2.1 0.2857 

7 [P2 F2 F100 T201 F3 F5 F200] 0.1094 0.0313 0.0000 1.2 0.2532 

8 [P2 T2 F2 F100 T201 F3 F5 F200] 0.1250 0.0000 0.0781 0.45 0.2296 

9 [P2 T2 F2 F100 T201 F3 F5 F200 F1] 0.0938 0.0000 0.0000 0.1 0.2100 

10 [P2 T2 T3 F2 F100 T201 F3 F5 F200 F1] 0.0000 0.0313 0.0000 0.01 0.1936 

* Note that exhaustive search is not performed and an estimate of CPU time is 
tabulated assuming 0.01 s for each evaluation. 

Table 1. Comparsion of computation times of MIQP, 
Downwards BAB, PB3 and exhaustive search 
methods 

function with the number of measurements used for CVs (i.e. the measurement combinations) 
is shown in Figure 2. From Figure 2, it can be seen that the loss decreases rapidly when the 
number of measurements increased from 2 to 3, and from 3 loss decreases very slowly. Based 
on the Figure 2, we can conclude that using CVs as combinations of 3 measurements subset 
is optimal for this 10 measurement evaporator case study. MIQP formulations are easy than 
the BAB methods and structural constraints such as selection of certain type of measurements 
can be done easily. 

4.3 Evaporator case study with structural constraints 

For this evaporator case study there are 3 temperature measurements, 6 flow measurements 
and 1 pressure measurement. If the plant operation management decides to procure only 5 (1 
pressure, 2 temperature, 2 flow) sensors then these can easily be incorporated as structural 
constraints in MIQP formulations, whereas it might take some effort to incorporate these 
structural constraints in Downwards BAB, PB3 based methods. For this case the MIQP 
formulation is  1 (1, * ) 1 0 00 0 0 0 0 0 0

2 ; (1, * ) 01 1 0 01 0 0 0 0
2 (1, * ) 0 0 011 011 1 1

aug

zeros nu ny
Px P zeros nu ny

zeros nu ny

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

               (24) 

then the optimal loss with these structural constraints as choosing 1 pressure, 2 temperature, 2 
flow sensors is 0.5379 and the optimal measurements are [P2 T2 F2 F100 T201] where as the 
loss without any structural requirement is 0.3373 and the optimal measurements are [F2 F100 
T201 F3 F200]. Note that the optimal measurement subset found with these structural 
constraints as (2 temperature, 1 pressure, 2 flow sensors) is different than any 5 optimal 
sensors. 

5. CONCLUSIONS 

Optimal CV selection as measurement combinations to minimize the loss from the optimal 
operation is solved. The CV selection problem in self optimizing control framework is 
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reformulated as a QP and CVs selection as combinations of measurement subsets is 
formulated as an MIQP problem. The calculation of second derivative (Juu) of the cost 
function can be difficult/restrictive for many processes in the exact local method of SOC. The  
reformulated problem in this paper obviates the Juu requirement and aids in wide applicability 
of SOC based exact local method.. The developed MIQP based methods are easier compared 
to the bidirectional branch and bound methods reported in literature to find the CVs as 
combinations of measurement subsets. And MIQP methods cover wider spectrum of 
quadratic based objective functions whereas bidirectional branch and bound methods are 
limited to objective functions with monotonic properties. MIQP based methods takes slightly 
longer time than bidirectional branch and bound methods, but this is acceptable as the 
optimal CV selection problem is an offline task. The easiness to incorporate few structural 
constraints in MIQP formulations is discussed with an example, where as incorporation of 
structural constraints take some time and effort in Downwards BAB, PB3 methods . 
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