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1 INTRODUCTION AND PRELIMINARIES

Consider the linear system

X1 = Ax +Buc+Bgdk, ke {0,1,2,...}

B (1)
Yk = Cx + Dug + Dgdk

with constraints
X EXCR™ yeYCRY, ucc UCR™, (2)

wherexx note statesyx are measurementsy are controlled inputs, andk are disturbances. Further
X,Y,U are polytopes.

In addition we have a “reduced” model

X4 = Aeded L gedy, + BI*Y,, ke {0,1,2,...}

yIr(ed — CredXLed + Dreduk + Daeddk (3)
wherexLed € R%ed with nes < Ny. The reduced model (3) is assumed to be found by some model re-
duction scheme such as balanced truncation, balancediaéization or optimal Hankel norm reduction
[Skogestad and Postlethwaite, 2005].

In this paper we consider model predictive control (MPC) yi& et al., 2000]. The question we want
to answer is:\What is the worst-case difference between an MPC using theanfdlel (1) and an MPC
using the reduced mod@)? This question is related to the problem of “closed loop asialpf reduced
order models for use in MPC".

An important feature of MPC is its possibility to handle cvamts. However, if there are no constraints,
several methods exists to analyse the performance of ¢drased on the reduced order model. In time
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domain one may consider measures such as rise-time, gditfie, overshoot, decay ratio, steady state
offset and total variance [Skogestad and Postlethwait@5]20n frequency domain one may consider
gain and phase margins but also peaks on sensitivity furectie a more general measure. These methods
are however mostly limited to single input single outputiegss (SISO). In the general case of a multiple
input multiple output (MIMO) plant we recommend to use rdtstability and performance, through the
u- analysis, as discussed in detail by Skogestad and Pagdig¢éh[2005].

Hovland et al. [Hovland et al., 2006, Hovland and GravdalD& proprose a scheme to use reduced
model in explicit MPC. They perform a two-step procedurertalgse the reduced order controller: First,
they analyse the model reduction using an open loop evaluati the model mismatch (evaluated by
the 7#-norm). Then, they make a table of model order and resultinglrer of regions, and choose the
model order that gives a satisfactory low number of regimmhined with a low model mismatch.

In this paper we evaluate the performance of the reducegl-awohtroller by addressing the following
problem:

maxdistanceéuy, ue?)
de2

subject toug = argmin{MPC forumlation with full mode} (4)
uied = argmin{MPC formulation with reduced modgl
The goal of problem (4) is to find the maximum difference beéhe full-order controller and the
low-order controller. Note that we do not use an explicitfatation of the controllers, rather we simply
express them as solutions to optimization problems. Weshilw that problem (4) can be rewritten as a
mixed-integer linear program (MILP) and solved using staddsoftware.

Remark 1 In this paper we treat the distance between the controller§ug — ue|.,. However, we
could also have used difference in outputs, \€y(yk — Yi€%]/«, or a combination of both. We use the
infinity norm|| - || because then the problem can be reformulated as an MILP.

1.1 Notation and assumptions

We use “full-order controller” to indicate an MPC based oa fill model (1) and “low-order controller”
for MPC based on the reduced model (3).

In this paper we follow the normal way of letting the initiadhtexy represent the disturbances, i.e. in the
following we do not consider the effect 8f; andCy as they appear in model (1). This is mostly to ease
the presentation, but in general we recommend to keep theloimcesly in the problem formulation.

1.2 Organization of the paper

We first review a model reduction technique that we later wgé in an example. This gives a map
ered = Tixx which represents the model reduction. We then review hoewélloptimization problems
can under some assumptions be reformulated to MILP problants thereafter show how the linear
guadratic MPC fits into this framework, and finally how we camiulate problem (4) as an MILP.
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2 MODEL REDUCTION BY BALANCED TRUNCATION

We here review model reduction by balanced truncation [Mp©881] as an example of a model reduc-
tion scheme that can be analyzed with the proposed methodblid¢d& Dones et al. [2010].

Consider a continuous linear system

X = A°%+BU, y=C%+D

5
xeR™ ye RY, ucR™. ®)

The model reduction by balanced truncation consists of tepss First, we find a balanced representa-
tion of system (5), then we remove the states corresponditigetsmallest Hankel singular values of the
balanced representation.

2.1 Balanced representation

The controllability and observability gramians of a linegstem are defined as
AW, +W.AY +B°BY =0 (6)
AW, +WpAS 4+ CYCE =0 @)
A balanced representation of system (5) is obtained thrauginsformation matriX, such that\, and

W, (of the transformed system) are equal. zefenote the states of the balanced systemzi-eTx. It
can be shown that

Wc = Wo == dla.qo‘l, 0-2, ey O-nX)
W, = TWT 2 (8)
Wo = (T HWpT 2

wheregj, k=1,2,...,n, are the Hankel singular values of the balanced represenjatidered according
to
gy > 02 > -+ > 0p, > 0.

2.2 Truncation

LetZ = [Z Z,]. In balanced truncation we simply deletefrom the vector of balanced states

DenoteT, andT; as

- T -
——t
Ty ... T Tl_ll Tl_ﬁl Tlgl
T=1|. . T =L (9)
Tr Trin Tn?L:L Tn?il Ton'
: ; T
L T . Tnn J
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We can now express the balanced and truncated result as

2 = TIAT, + TiBu

_ 10
y=CT"'z+ Du, (10)

and we note that the map from the full state vectto the balanced and truncated system (10) is given
by z; = Tix.

3 BILEVEL OPTIMIZATION

Here we give an introduction to bilevel optimization andusidn methods, following Jones and Morari
[2009]. For more background details the reader is refewwedrecent survey [Colson et al., 2005].

Bilevel problems are hierarchical in that the optimizati@miables(y, z) are split into uppey and lower
z parts, with the lower level variables constrained to be amap solution to a secondary optimization
problem:

min Vy (¥, 2)

subject toGy (y,2) <0

. (11)
z=argminv (y,2)

subject toG (y,z) <0

In this paper we will only consider problems where the lovexel problem has an unique optimizer.
Moreover, we will have two low-level problems, one for thdl-farder controller and one for the low-
order controller.

3.1 Solution methods

If the lower level problem is convex and regular, then it carréplaced by its necessary and sufficient
Karush-Kuhn-Tucker (KKT) conditions, yielding a standardgle-level optimization problem:

min Vy (Y, 2)
y7Z7A

(12)

whereZ(y,z,A) := GL(y,z)+A’GL(y, 2) is the Lagrangian function associated with the lower-Igveb-
lem. For the special case of linear constraints and a quadit, all constraints of (12) are linear and the
complimentary conditiod’Gy (y,z) = 0 is a set of disjunctive linear constraints, which can bedesd
using binary variables, and thus leads to a mixed-integeali problem.
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4 APPLICATION TO ANALYSIS OF MPC CONTROLLERS

4.1 MPC formulation

Consider the following semi-infinite horizon optimal casitproblem [Jones and Morari, 2009]:

. 1 1N
min J(x,u) = §>5NF>><.\|+E i;) uRY +XQx,

subject tox; 1 = A +Bu, Vi=0,...,N—1

xeX, Vi=1...,N—1, (13)
uelu, Vvi=0,....N—1

XN € XN,

X0 = X.

Here Xy = {x | Hx < h} ¢ X is a polytopic invariant set for the systexi = Ax+ Bp(x) for some
given control lawu : R™ — R™. FurtherP € R™*™ andQ € R™*™ are positive definite matrices and
Re R™*™ js a positive semi-definite matrix. We defiri€ c R™ to be the set of statesfor which there
exists a feasible solution to (13).

If u*(x) is the optimal input sequence of (13) for the stgtanduy(x) is the resulting control law, then
stability of the systenx™ = Ax+ By(x) can be established under the assumption\théat) = X Pxis a
Lyapunov function for the systemi = Ax+ Bp(x) and that the decay rate 4 is greater than the stage
costl (u,x) = URu+ X Qxwithin the setXy.

By usingx, = Afxp+ z'j‘;éAj Buk_1-j the MPC problem (13) can be rewritten as [Bemporad et al2R00
1 1 .
V(X) = §>(OY>©+ min {EU’HU +XoFU, subjecttoGU <W +Exy}, (14)
whereU’ = [up Uy -+ Uy_4].

We want to use (14) as a lower-level problem in bilevel pragrang. The following equations define
the KKT conditions for this problem:
HU +F'x%+GA =0
GU-W-Ex<0
A>0 (15)
A <Ms
GU-W-—-Ex>—-M(1-5s)
Heres < {0,1}"™, whereny is the number of inequality constraints in (14). The two legtations
in (15) correspond to the complementary conditid®, (y,z) = 0 in the general bilevel problem, here

described with binary variables M is a constant that is large enough such that the solutionSp (1
corresponds to the solution of (14). (This is called a “Bigformulation.)

4.2 Firstinput analysis problem

Let (R Flul ghill wiull gTully correspond tdH, F,G,W,E) in (15) for an MPC using the full-order
model (1) and further letH"9 Fred Gred wred £ed) pe the corresponding matrices to the reduced-order

5
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model (3).

Further we denote KKIMPCU! &) as the set of equations (15) evaluatedHtF, G,W, E)
= (Hul Ul Glul wiul gfully andxy = x4 € R™. Correspondingly we let KKIMPC™®9, x) describe

the KKT-conditions in equations (15) for the reduced oramrtmller, withx, = x4 € R%".
We define the one-step problem as:

max|BU™ (1 :n,) —U™1:ny) e

XeZ

subject to KKTTMPCU! x) (16)
KKT (MPC® Tx)

The notatiorJ9(1 : ny), 9 € {! ¢4} means the first, elements of the vecta 9. This is the input from
the MPC that is actually implemented in the plant.

The polytopeZ” is the search space for the MILP. This can either be the sefasilfle initial states for
the full-order controller, or a set of initial states tha¢ #ngineer find interesting.

Using the reformulations show earlier this can be rewrittsan MILP.

Remark 2 We observe that the objective function rend@s) non-convex due to the termax||t||c
(where t is a convex function ¢, u®?)) . However, the problem may be converted into a mixed integer
linear program (MILP) using a standard technique (e.gofherg, 2004]), in which we introduce binary
variables n, p; for each element of t and add the condition that the binaryalde p is one if||t||. =t;

and n is one if[t||» = —t;. The method adds only linear and binary conditiong1t6) and therefore the
overall problem remains a MILP [Jones and Morari, 2009].

Remark 3 We evaluate the input difference in the direction B becahiseis the direction a “wrong”
input (due to the reduced model) will influence the states.

5 EXAMPLE: DISTILLATION

We here consider MPC for “column A’ by Skogestad [1997]. Tikia 82-state nonlinear model which
we linearize around a nominal operating point and disaeetith sample timédg = 1. The model has
two inputs (reflux and boilup) and two output (mole fractiamshe top and bottom of the column). The
model of the column is available on Prof. Skogestads honeefgupgle $kogest ad”).

The physical meaning of inputs and outputs is not importantte purpose of displaying the methods
in this paper, hence we will simply treat them as genericaideis

ueR? weR? k=012,.... (17)
In order to simplify calculations we first reduce the lingad model to 16 states, and we consider this

to be our base case. Using balanced truncation, as desdnilsedtion 2, we generate a set of models
consisting of 1 to 15 states.
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Figure 1: Solutions for a set of different reduced order nigde
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Figure 2: Closed loop simulation for the full order conteol(ns, = 16) and low-order controller with
Nred = 6.
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The MPC problem we consider is the following one:

7
min Yays + ;)’{Yi + Ui
Uo,...,U7 s

subject toxg, 1 = A+ Bw, k=0,1,...,7 (18)
ww=Cx, k=01,....7
—1<w<1, k=0,1,...,7

Herel = [1 1]. The only difference between the MPC using full order mochel ®IPC using reduced
order model is the internal model represented by the mat(igeB,C) and the dimension of the state
Vectorx.

Thereafter we use problem (16) to calculate the maximunemiffice||B(u? — u")||,, applied to the
plant. The search spac¥’ is given by the box constraint

2 = {xe R16 ( X[ < 10}. (19)

The resulting differences are shown in figure 1. In figure 2 Wwewsa closed loop simulation for a
reduced controller using 6 internal states together wighctintroller using 16 states. The system we are
simulating is the 16-state system. We start the simulatiomfthe worst possible initial state, which in
this case was

X=10[-111 -111 -111 -1 -1 -1 1 1 1 -1 (20)

We observe that for this initial point the maximum input diince is M905, which is in agreement with
figure 1. Further, the performance of the two controllersvarg similar in terms of bringing the system
from this initial state to the reference poit 0.

We used Yalmip [Lofberg, 2004] under Mati&h to set up the optimization model ad Pk to solve
the problem. For this example, using a PC with 2000 MHz CPW &itGB memory, it took about 1-2
seconds to solve each problem.

6 DISCUSSION

Infinity norm We used the infinity norm in the calculation of the differefdmm@ween the full- and the
reduced- order controller. Using this norm we can rewritegloblem as an MILP, and hence renders
the problems solvable. Further this norm should be a nahowah in order to evaluate thmaximum
difference between two functions, as discussed by JoneMarati [2009].

Implicit representation of MPC We use the KKT conditions to describe the MPC controllersthas
solution to the KKT system contains the optimal input frora MPC controller. An alternative method
could be to find the MPC controllers explicitly by solving a@aetric program [Kvasnica et al., 2004].
However, this would be a lot more complicated (need a binamyable for each region in the MILP
formulation), and for the example discussed in this reptgtates with an input horizon of 8) it would
most likely take a very long time even to find an explicit reygnetation of the controller.

1can be found at t p: / / www. gnu. or g/ sof t war e/ gl pk/
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Planned activity In the near future we want to investigate different ways dfisg this problem, rather
than formulating it as an MILP [Bard, 1998]. In addition wenw#o extend the method to check trajec-
tories of inputs, rather than only the first input. This candbee simply by stacking problems on the
type of the “first-input difference” in equation (16).

Perhaps more interesting is that rather than treating flialistate vector as a disturbance, we include
only disturbances that have a physical meaning (i.e. adigadrbances to the system). This should fit
into the formulation quite easily as long as the disturbarader linearly as is the case for system (1).

In a recent paper [Manum et al., 2009] we tried to use the sawldgm as described in this paper in
order to show nominal stability of a low-complexity conteslby comparing it to a robust MPC for the
same system. The same methodology could be used to provktystalboMPC with a reduced order
model.

7 CONCLUSIONS

An MILP framework for analysis of closed-loop performandeMiPC using reduced order model has
been presented. The method was demonstrated on a 16-s&sedystem.
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