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Abstract

A method for deriving computationally efficient reduced nonlinear

distillation models is proposed, which extends the aggregated modeling

method of Lévine and Rouchon (1991) to complex models. The column

dynamics are approximated by a low number of slow dynamic aggrega-

tion stages connected by blocks of steady-state stages. This is achieved

by simple manipulation of the left-hand sides of the differential equa-

tions. The algebraic equations resulting from the reduction procedure are

replaced by interpolation in tables or polynomial approximations. The

resulting reduced model approximates the original dynamic model very

accurately, and for a realistic case study increases the simulation speed

several times. This makes the reduced models interesting for real-time

applications. The numerical properties of the models and possible im-

provements are discussed.
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1 Introduction

This study describes and analyzes a model reduction method for staged distilla-

tion column models. Reduced models are used for system analysis and controller

design, and for speeding up simulations. The latter is much desired for model

predictive control (Allgöwer and Zheng 2000, Qin and Badgwell, 2003) and dy-

namic real-time optimization (Schlegel, 2005) applications. Numerous model

reduction methods for linear (Antoulas, 2005) and nonlinear systems (Mar-

quardt, 2001, van den Berg, 2005) have been described in the literature.

The model reduction method presented in this work extends the aggregated

modeling method of Lévine and Rouchon (1991). The original method was de-

veloped as an improvement of the compartmental modeling method of Benallou

et al. (1986). The approach of Lévine and Rouchon has been used recently by

Khowinij et al. (2004, 2005), and Bian et al. (2005) to derive reduced models

of a distillation column with variable stage holdups, with the objective of ob-

taining reduced models that increase the simulation speed. They conclude that

a tailor-made DAE solver is necessary to significantly speed up the simulations.

However, it was shown by Linhart and Skogestad (2009) that applying the orig-

inal method in combination with an ordinary DAE solver does not increase the

simulation speed. The reason for this is that the method converts the major-

ity of the dynamic equations of the full model into algebraic equations, which

does not change the overall size of the system. Since in a DAE solver, dynamic

and algebraic equations are treated very similarly (Ascher and Petzold, 1998,

Hairer and Wanner, 2002), no gain in computation speed can be expected. Al-

ternatively, Linhart and Skogestad (2009) show that the algebraic equations

resulting from the reduction procedure can be eliminated from the model due

to the banded Jacobian structure of the reduced model, which yields a much

smaller ODE or DAE system. This model now yields a significant improvement

in computational performance. In addition, it was shown that the method of

Lévine and Rouchon can be interpreted to be basically compartment-free. This
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means that only the dynamic aggregation stages have to be specified, but no

partition of the column into compartments is necessary.

The model reduction method presented in this study extends the original method

of Lévine and Rouchon (1991) and the extension of Khowinij et al. (2005) and

Bian et al. (2005) in the following aspects:

1. The notion of “compartments” is abandoned; only the specification of

“aggregation stages” is necessary. The ”holdup” is a free tuning parameter

of the reduced model.

2. The method can be applied to all kinds of staged processes with mass

and energy balances, and complex hydraulic and thermodynamic rela-

tionships. The assumptions of constant molar flows, constant relative

volatility and constant holdup used in the original method by Lévine and

Rouchon (1991) are not needed.

3. The algebraic equations resulting from the reduction procedure are elimi-

nated from the reduced model and replaced by functions, which are sub-

stituted in the dynamic aggregation stage equations. This is the crucial

step to obtain computationally superior reduced models.

4. The physical interpretation of the reduction principle is different. In the

original derivation (Lévine and Rouchon, 1991), a singular perturbation

argument (Kokotovic et al., 1986) that relies on the different time-scales

of the slow compartment dynamics and fast stage dynamics is employed.

In the proposed method, the spatial transport through the column is ap-

proximated by fast transport through steady-state stages, which is slowed

down by assigning large “aggregated holdup factors” to the aggregation

stages that connect the blocks of steady-state stages. Although related,

the method is not a singular perturbation method (Linhart and Skogestad,

2009).
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This paper is organized as follows. In section 2, a full distillation model that is

used to demonstrate the reduction method is introduced. Important structural

and implementation issues of the model are discussed. Section 3 describes the

derivation of the reduced model from the full model. In a first step, by a sim-

ple manipulation of the left-hand sides of the differential equations of the full

column, a reduced model of the same size as the original model is obtained. In

a second step, the resulting algebraic equations are eliminated from the model

and replaced by more efficient approximations such as table interpolations. As

the second step is crucial for the performance of the reduced model, this part

is described in more detail. In section 4, the approximation quality and com-

putational performance of the reduced model is investigated. For this purpose,

simulations with fast changes in the input variables of the models over a range

of simulation tolerances are performed. The accuracy of the reduced models

is compared with the original model, and is set into relation with the simula-

tion speed. An analysis of the numerical behavior and of the distribution of

computational complexity in the models and the solver is given. Finally, the

advantages and disadvantages of the stage aggregation method, possible im-

provements and applications, and a brief comparison to other model reduction

methods for distillation models are discussed in section 5.

2 Full model

2.1 System and modeling assumptions

The distillation column used in this study to demonstrate the reduction method

is a high-purity distillation column with 92 stages, a reflux drum with a total

condenser, and a reboiler. The case-study model in this study uses a binary

mixture of i-butanol and n-butanol, but the model description and the model

reduction procedure is for a multi-component mixture. Ideal stages with perfect

mixing and vapor-liquid equilibrium on each stage are assumed.
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2.2 Mathematical description

For notational convenience, the reflux drum and reboiler are written as stages

1 and N , respectively.

For a mixture with Nc components, the state of each stage is described by Nc+1

dynamic variables: M tot
i (total mole number on stage i), Mi (vector of Nc − 1

component moles on stage i), and U tot
i (total internal energy on stage i). Since

the sum of the Nc components gives the total holdup M tot
i , this formulation

is equivalent to including all Nc components in the Mi vector. The dynamic

evolution of each state is governed by a differential balance equation. In addi-

tion, there is a large number of algebraic equations, including thermodynamic

relationships for the vapor-liquid equilibrium.

2.2.1 Dynamic balance equations

On each stage, Nc + 1 balance equations can be formulated. The balance equa-

tions for the stages except the reboiler, condenser and feed stage (2 ≤ i ≤

N − 1, i 6= iF ) read

Ṁ tot
i = Li−1 + Vi+1 − Li − Vi, (1)

Ṁi = Li−1xi−1 + Vi+1yi+1 − Lixi − Viyi, (2)

U̇ tot
i = Li−1h

L
i−1 + Vi+1h

V
i+1 − Lih

L
i − Vih

V
i − Qhl

i . (3)

The balance equations for the feed stage iF read

Ṁ tot
iF

= LiF −1 + ViF +1 − LiF
− ViF

+ F, (4)

ṀiF
= LiF −1xiF −1 + ViF +1yiF +1 − LiF

xiF
− ViF

yiF
+ FzF , (5)

U̇ tot
iF

= LiF −1h
L
iF −1 + ViF +1h

V
iF +1 − LiF

hL
iF

− ViF
hV

iF
− Qhl

iF
(6)

+FhF .

The balance equations for the reflux drum with total condenser (i = 1) read

Ṁ tot
1 = Vtop − (R + D), (7)
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Ṁ1 = Vtopy2 − (R + D)x1, (8)

U̇ tot
1 = Vtoph

V
2 − (R + D)hL

1 + Qc. (9)

The balance equations for the reboiler (i = N) read

Ṁ tot
N = LN−1 − B − VN , (10)

ṀN = LN−1xN−1 − BxN − VNyN , (11)

U̇ tot
N = LN−1h

L
N−1 − BhL

N − VNhV
N + Qr. (12)

The variables used in the above equations are explained in table 1. Note that

Mi, xi, yi and zF are vectors of length Nc −1, except in the binary case, where

they are scalars.

2.2.2 Algebraic relations for sum of phases

The intensive variables for the individual phases xi, yi, hL
i , hV

i must satisfy

some algebraic relations, since the sum of the phases make up the total holdup.

The sum of the total mass, component masses, energy and volume of the phases

on stage i can be written as

M tot
i = ML

i + MV
i , (13)

Mi = ML
i xi + MV

i yi, (14)

U tot
i = ML

i hL
i + MV

i hV
i − piVi, (15)

Vi = ML
i vL

i + MV
i vV

i , (16)

where Vi is the total volume of stage i (which is assumed constant), and ML
i and

MV
i are the stage liquid and vapor masses, respectively. To reduce the number

of algebraic equations that need to be solved by the DAE solver, equation (13)

and one of equations (14)-(16) can be combined to obtain explicit expressions

for ML
i and MV

i . The simplest choice is to combine equations (13) and (16) to
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get

ML
i = (Vi − M tot

i vV
i )/(vL

i − vV
i ), (17)

MV
i = M tot

i − ML
i , (18)

where vL
i and vV

i are the specific volumes of liquid and vapor phase, respectively.

The remaining Nc algebraic equations are then (14) and (15).

2.2.3 Algebraic thermodynamic relationships

The vapor-liquid equilibrium on stage i gives Nc algebraic relations (one for

each component):

fL
i (xi, pi, Ti) = fV

i (yi, pi, Ti). (19)

In this study, the thermodynamic quantities fL
i , fV

i , hL
i , hV

i , vL
i , vV

i , ρL
i and

ρV
i are obtained by means of the Soave-Redlich-Kwong equations of state (Reid

et al., 1997).

2.2.4 Algebraic hydraulic relationships

The liquid flows Li are calculated by means of a modified Francis weir equation

(Green and Perry, 2007)

Li = γρL
i |li/β − hW,i|

1.5, (20)

where β and γ are geometry-dependent factors, li the liquid level, and hW,i is

the weir height of stage i, respectively.

The vapor flows Vi are calculated by

Vi = γ
√

|pi − pi−1 − ρL
i−1gli−1|ρV

i , (21)

where g is the standard gravity.
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2.2.5 Algebraic equations for heat loss

The heat loss of a tray to the environment is modeled by a linear heat transfer

equation

Qhl
i = αi(Ti − Tenvironment), (22)

where αi is the heat transduction coefficient through the outer wall of stage i.

The heat loss is frequently neglected (αi = 0) in distillation modeling.

2.2.6 Algebraic equations for condenser cooling

The cooling of the condenser is modeled as

Qc = −Vtop(h
V
2 + β), (23)

where β an adjustable parameter.

2.2.7 Dynamic equations for controllers

The column is stabilized by four base-layer PI-controllers. The controllers with

their controlled variables (CV) and manipulated variables (MV) are listed in

table 2.

2.3 Alternative strategies for solution of the algebraic equa-

tions (full model)

As mentioned, there are (Nc + 1) · N dynamic balance equations, where Nc is

the number of components and N is the number of stages in the column. The

associated dynamic state variables on stage i are M tot
i , Mi (vector of length Nc−

1) and U tot
i . In addition, there is a large number of algebraic equations for the

thermodynamic quantities which are generally not explicit in the dynamic state

variables (M tot
i , Mi, U tot

i ), and therefore need to be solved. Several approaches

for solving the algebraic equations are possible. They can be applied to all or

just a part of the algebraic equations:
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• Approach 1. The algebraic equations are solved separately at each eval-

uation of the right hand sides of the dynamic balance equations using a

nonlinear equation solver.

• Approach 2. The differential and algebraic equations (DAEs) are solved

simultaneously using a DAE solver.

• Approach 3. The algebraic equations are solved beforehand and the

solutions are expressed as functions of suitable variables.

Generally, one tries to minimize the number of algebraic equations and as-

sociated algebraic state variables to be solved by finding the lowest number of

algebraic equations that must be solved to make the rest of algebraic equa-

tion set explicit. In most cases, the algebraic vapor-liquid equilibrium (VLE)

relations (19) are explicit in the variables pressure p, temperature T , liquid com-

position x (vector with Nc − 1 independent variables) and vapor composition y

(vector with Nc − 1 independent variables). In total, this gives 2Nc algebraic

state variables (p, T , x, y). Thus, on each stage the associated 2Nc algebraic

equations given in (14), (15) and (19) (for p, T , x, y) need to be included in

addition to the Nc + 1 differential equations (for M tot
i , Mi, U tot

i ).

If applied exclusively to all algebraic equations, approach 1 is in general numer-

ically not efficient due to the nested solver structure. Approach 2 is numerically

efficient, but requires the computation of relatively complex thermodynamic

expressions. Approach 3 is numerically the most efficient, but requires the rep-

resentation of the relevant solutions (the thermodynamic quantities) as function

of the Nc +1 dynamic state variables (M tot
i , Mi, U tot

i ). Since usually a numeri-

cal solution is necessary, these functions can become very complex and relatively

inaccurate.

In this study, a combination of approaches 2 and 3 is used to obtain a nu-

merically efficient model. From the Gibbs phase rule, it is sufficient to specify

Nc intensive variables for a system in vapor-liquid equilibrium to determine

all remaining thermodynamic quantities. For the binary mixture in this study
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(Nc = 2), pressure p and temperature T are chosen as independent variables.

All remaining thermodynamic quantities are expressed as precomputed func-

tions of these independent variables. The associated Nc algebraic equations are

solved within the DAE solver, yielding a DAE system of 2Nc + 1 variables.

2.4 Final DAE equation set for full model

In this study, a binary mixture is considered with T and p (on each stage) as

algebraic state variables. On each of the N stages, the DAE set includes three

differential equations (see equations (1)-(12)), plus one algebraic equation for

the sum of phases holdup of component 1 (14) and one algebraic equation for

the sum of phases internal energy (15). The 5 associated state variables Xi on

each stage are

Xi = {M tot
i , Mi, U

tot
i , pi, Ti}. (24)

Note that for a binary mixture, Mi is the scalar holdup of component 1. In

addition to these 3N dynamic and 2N algebraic equations, the full DAE model

has one dynamic equation for each controller with integral action. The resulting

full set of equations solved by the DAE solver can be written in the form

M
dX

dt
= F(X,u), (25)

where X are the 5N + 4 state variables used by the DAE solver, u is a input

vector, and M is the diagonal mass matrix with a 1 on the diagonal for a

differential equation and a 0 for an algebraic equation.

The remaining algebraic equations, including equations (17) and (18), and also

the flash equations which are represented by tables, are explicit in X and are

solved at each evaluation of the right hand side F(X,u).
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2.5 Jacobian structure

The DAE set for the full model described by (25) in section 2.4 is highly struc-

tured as can be seen from figure 1a, which shows the Jacobian structure (dF/dX)

of the full model. The Jacobian is basically a banded matrix. However, the tem-

perature controller in the bottom section, which has influence on the tempera-

ture of stage 76 in the bottom section, introduces elements into the Jacobian,

which correspond to the proportional and integral action of the controller and

which lie outside the narrow band. By this, the width of the Jacobian band is

increased several times. The level and pressure controllers at the top of the col-

umn also increase the width of the Jacobian band, but to a much less extent, as

the manipulated and controlled variables are positioned spatially close to each

other. The system including all controllers except the temperature controller in

the bottom section has a Jacobian non-zero entry band of width 19. If the tem-

perature controller is included in the system with the temperature measurement

located at stage 76 (19 stages from the bottom), the width is increased to 94.

The special structure of the Jacobian has to be taken into account for efficiently

solving the linear equations arising during the integration of the model. This is

described in section 2.6.4.

2.6 Implementation of full model

2.6.1 System size

In the present case, with N = 94 stages in the column, the full differential-

algebraic model contains 94 · 3 dynamic and 94 · 2 algebraic variables for the

stages, and 4 dynamic variables for the states of the PI-controllers, adding up

to a total of 474 variables in the state vector X.

2.6.2 Numerical solution

For simulation, the DAE solver DASPK 3.0 (Li and Petzold, 2000) was used.

This solver is implemented in FORTRAN 77. The residual F and the analytic
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Jacobian dF/dX of the model were programmed in C-code. This ensures a fast

implementation for a realistic evaluation of the computational performance.

2.6.3 Tabulation of thermodynamic properties

The thermodynamic VLE relations and property relations were programmed as

two-dimensional look-up tables. From these 8 tables, x, y, hV , hL, vV , vL, ρV

and ρL are obtained as functions of T and p by cubic spline interpolation (Press

et al., 2007) of the table entries. Each table has 1 000 x 1 000 entries, where

273 K < T < 350 K and 1 bar < P < 8 bar.

2.6.4 LU-decomposition of Jacobian

The Jacobian is evaluated analytically. Each time the Jacobian is recomputed,

it is decomposed into a lower and an upper triangular matrix. For this, a mod-

ified banded Gaussian LU-decomposition is used. The LINPACK (LINPACK,

1978) routine DGBFA as used in DASPK to LU-decompose a banded matrix

was modified to work with the narrow banded Jacobian matrix as described

in section 2.5. An efficient special treatment of the off-band elements was in-

troduced, where the rows containing the off-band elements are included in the

elimination steps of the in-band rows above them. Correspondingly, the LIN-

PACK routine DGBSL was modified to solve the linear equation system arising

at each integration step using the previously generated LU-decomposition.

2.6.5 Model code

Implementations of the full and reduced models in C and FORTRAN

77 code to be used in combination with DASPK 3.0 (Li and Petzold,

2000) are available on the homepage of Sigurd Skogestad (Skogestad,

2009).
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3 Reduced model

3.1 Summary of reduction method

The model reduction method used in this study is based on the aggregated

modeling method of Lévine and Rouchon (1991). It was shown in a previous

study by Linhart and Skogestad (2009) that the method can actually be de-

rived without the notion of compartments and use of average concentrations.

This is due to an undocumented simplification step in the original derivation

of the method. Although this simplification step deviates from the standard

procedure for deriving singular perturbation models (Kokotovic et al., 1986), it

greatly simplifies the derivation of the reduced model and its structure. For the

application of the method to a given full model, it is sufficient to select some

stages as aggregation stages and multiply the left-hand sides of their dynamic

equations with some factors, while all remaining stages are modeled as “steady-

state stages” by setting their left-hand sides to zero. This way, the original

method can easily be generalized to more complex models including mass and

energy balances; see Linhart and Skogestad (2009) for details.

However, as found previously by Linhart and Skogestad (2009), applying the

reduction procedure as described above does not necessarily improve the com-

putation speed, since the number of differential and algebraic equations in the

reduced model is the same as in the original model. Therefore, in a second step,

the algebraic equations resulting from the reduction procedure are eliminated

from the reduced model by replacing them with precomputed functions where

the block-wise structure of the reduced model is exploited. Note that these

functions are different from the precomputed thermodynamic functions used to

obtain the thermodynamic quantities on each stage. These functions are still

used on the aggregation stages of the reduced model and remain the same as in

the full model.

The complete reduction method can therefore be described as a two-step pro-

cedure:
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Step 1. Select a number of aggregation stages and multiply their left hand sides

by certain factors, which will be called “aggregated holdup factor” in the

following. Convert all remaining stages to steady-state stages by setting

their left-hand sides to zero. The resulting model is a DAE model of the

same size as the original model. It has, however, reduced dynamics.

Step 2. Eliminate the algebraic equations of each block of steady-state stages by

replacing them with precomputed functions. This yields a model with a

reduced number of variables and equations, which can be simulated faster

than the original model. This step can be divided into two sub-steps:

a) Replace all variables of the steady-state stages that appear in the

aggregation stage equations by functions obtained from the solutions

of the steady-state equations in dependence of the variables of the

aggregation stages;

b) Eliminate some of the functions and independent variables to obtain

a final reduced model that is as compact as possible.

Step 1 can be applied immediately to the full model by simple manipulation of

the left-hand sides of the differential equations. This procedure will be described

in section 3.2. Step 2a is necessary to produce a reduced-order model that

increases the simulation speed. The basic procedure is described in section 3.3.1.

The key idea is to replace the algebraic equations resulting from the reduction

procedure by precomputed functions. Due to the complexity of the model, these

functions can become very complex themselves. To obtain efficient reduced

models, in step 2b the number of functions and the number of independent

variables is reduced to a minimum. This is described in section 3.3.2.

Note on notation: In order to stay consistent with the notation used in

Linhart and Skogestad (2009), the variables in the reduced model after step 1,

where the states are partially dynamic and partially algebraic, are marked by

the bar notation M̄ tot
i , M̄i and Ū tot

i . In the full model (1)-(12), the states M tot
i ,

Mi and U tot
i are purely dynamic. In order to simplify notation, the variables
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of the reduced model after step 2 are again denoted as in the full model M tot
j ,

Mj and U tot
j . However, the numbering of the variables (j) is now different from

the full model (i), since the final form of the reduced model consists only of

aggregation stages. The functions that replace the algebraic equations of the

steady-state stages are marked by (). The final form of the reduced model is

shown in table 3.

3.2 Reduction step 1: Introducing aggregation stages and

steady-state stages

Figure 2 illustrates the reduction method: A number of n stages on original

stages sj , j = 1...n are selected as dynamic aggregation stages, see figure 3a.

For example, s3 = 10 means that aggregation stage j = 3 corresponds to original

stage i = 10.

The dynamics of the aggregation stages are slowed down by multiplying the left-

hand sides of the corresponding dynamic equations of each aggregation stage j

by the aggregated holdup factor Hj >> 1:

Hj
˙̄M

tot

sj
= L̄sj−1 + V̄sj+1 − L̄sj

− V̄sj
, (26)

Hj
˙̄Msj

= L̄sj−1x̄sj−1 + V̄sj+1ȳsj+1 − L̄sj
x̄sj

− V̄sj
ȳsj

, (27)

Hj
˙̄U

tot

sj
= L̄sj−1h̄

L
sj−1 + V̄sj+1h̄

V
sj+1 − L̄sj

h̄L
sj

− V̄sj
h̄V

sj
− Q̄hl

sj
. (28)

The equations for the feed stage, the reflux drum and the reboiler are treated

correspondingly.

The remaining stages i = 1...N, i 6= sj (j = 1...n), are converted into steady-

state stages by setting the left hand sides of the respective dynamic equations

to 0:

0 = L̄i−1 + V̄i+1 − L̄i − V̄i, (29)

0 = L̄i−1x̄i−1 + V̄i+1ȳi+1 − L̄ix̄i − V̄iȳi, (30)

0 = L̄i−1h̄
L
i−1 + V̄i+1h̄

V
i+1 − L̄ih̄

L
i − V̄ih̄

V
i − Q̄hl

i . (31)
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3.3 Reduction step 2: Elimination of steady-state stages

In the second step of the reduction procedure, the algebraic equations of the

steady-state stages are eliminated from the model. Despite the large number

of algebraic equations, this is possible because of the structure of the reduced

model, where the steady-state stages are grouped in blocks between the dynamic

aggregation stages.

3.3.1 Step 2a: Replacement of steady-state equations by functions

Figure 3 illustrates the principle. To avoid complicated notation, aggregation

stages j =2 and j =3 are used for demonstration. Table 3 can be used as a

reference for the general form of the equations. A block of steady-state stages is

located between aggregation stages 2 and 3 (figure 3a). It is referred to in the

following as steady-state block 3. It constitutes a system of algebraic equations,

consisting of a set of equations (29)-(31) for each of the steady-state stages with

the indices i = s2 + 1 to i = s3 − 1. It can be solved in dependence on a certain

set z3 of variables of aggregation stages 2 and 3.

In order to eliminate the equations of steady-state block 3, the variables ȳs2+1,

h̄V
s2+1 and V̄s2+1 in the dynamic equations of aggregation stage 2 are replaced

by the functions

ȳs2+1 = y
()
3 (z3), (32)

h̄V
s2+1 = h

V ()
3 (z3), (33)

V̄s2+1 = V
()
3 (z3), (34)

and the variables x̄s3−1, h̄
L
s3−1, L̄s3−1 and V̄s3

in the dynamic equations of ag-

gregation stage 3 are replaced by the functions

x̄s3−1 = x
()
3 (z3), (35)

h̄L
s3−1 = h

L()
3 (z3), (36)

L̄s3−1 = L
()
3 (z3), (37)
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V̄s3
= V

b()
3 (z3). (38)

The y
()
3 notation signifies that the respective variable is a function of the vari-

ables of the neighboring aggregation stages 2 and 3; see figure 3b. These func-

tions will be called steady-state functions in the following.

The variables above correspond to the flow rates and intensive properties of the

flows from the steady-state block into the aggregation stages. In addition, the

vapor flow rate V̄s3
from aggregation stage 3 depends on the variables of the

bottom stage of the steady-state block. As a consequence, it is replaced by the

function V
b()
3 . The b indicates that this vapor flow is located at the bottom of

the steady-state block 3, in contrast to the vapor flow V
()
3 , which is located at

the top.

It is assumed here that the liquid flows only depend on the variables of the

departing stage, otherwise the liquid flow L̄s2
departing from aggregation stage

2 would have to be replaced by a function as well.

Aggregation stage j =3 is used for illustration of the the dynamic equations of

the reduced model after the substitution:

H3Ṁ
tot
3 = L

()
3 − V

b()
3 + V

()
4 − L3, (39)

H3Ṁ3 = L
()
3 x

()
3 − V

b()
3 y3 + V

()
4 y

()
4 − L3x3, (40)

H3U̇
tot
3 = L

()
3 h

L()
3 − V

b()
3 hV

3 + V
()
4 h

V ()
4 − L3h

L
3 − Qhl

3 . (41)

Here, the notation is simplified, and M3, L3 etc. signify that the reduced model

after step 2 consists only of equations and variables corresponding to aggregation

stages.

A possible set of independent variables for the functions (32)-(34) and (35)-(38)

is the set

z3 = {M tot
2 ,M2, U

tot
2 , M tot

3 ,M3, U
tot
3 }, (42)
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consisting of 2Nc + 2 variables. However, the complexity of the steady-state

functions depends strongly on the number and selection of the independent

variables. A suitable minimal selection of functions and independent variables

is therefore discussed in the next section.

3.3.2 Step 2b: Minimal selection of steady-state functions and inde-

pendent variables

The functions (32)-(34) and (35)-(38) are 2Nc + 3 functions, while the variable

set (42) contains 2Nc + 2 variables. However, the functions are not completely

independent of each other. Furthermore, not all state variables of both ag-

gregation stages are needed as independent variables. In the following, it will

therefore be shown that

1. The number of independent variables needed is 2Nc+1 (instead of 2Nc+2),

2. The number of functions needed is Nc + 1 (instead of 2Nc + 3).

Minimal number of independent variables:

The following variables that are present in the system of algebraic equations of

steady-state block 3, consisting of the set of equations (29)-(31) for each of the

steady-state stages, depend on the variables of the aggregation stages 2 and 3:

L̄s2
, x̄s2

, h̄L
s2

and V̄s2+1 (43)

depend on variables of aggregation stage 2, and

V̄s3
, ȳs3

and h̄V
s3

(44)

depend on variables of aggregation stage 3 (compare figure 3a). The vapor flow

V̄s2+1 is a variable of steady-state stage s2 + 1, but appears here because of

its dependence on the variables of aggregation stage 2. Except for the liquid

flow L̄s2
, all variables depend only on Nc intensive variables on the respective

aggregation stage. L̄s2
depends on an additional extensive variable due to its
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dependence on the liquid level on aggregation stage 2.

A suitable set of 2Nc + 1 independent variables is therefore, for example,

z3 = {x2, T2, L2,y3, T3}. (45)

Here, the liquid flow from aggregation stage 2, L2, is directly used as an inde-

pendent variable for the functions of steady-state block 3.

For the case-study model with a binary mixture in the present work, it is con-

venient to use set of independent variables

z3 = {T2, p2, L2, T3, p3}. (46)

Minimal number of steady-state functions:

In the steady-state blocks, mass is conserved. Considering the total and Nc − 1

component mass balances around steady-state block 3 (compare figure 3b),

0 = L2 − V
()
3 − L

()
3 + V

b()
3 , (47)

0 = L2x2 − V
()
3 y

()
3 − L

()
3 x

()
3 + V

b()
3 y3, (48)

Nc additional equations are obtained. They can be used to reduce the number

of functions that need to be substituted in the dynamic equations of the ag-

gregation stages (39)-(41). Energy is, however, only conserved if the heat loss

occurring at each stage is neglected:

0 = L2h
L
2 − V

()
3 h

V ()
3 − L

()
3 h

L()
3 + V

b()
3 hV

3 − Q
hl()
3 . (49)

Here, Q
hl()
3 is the accumulated heat loss of steady-state block 3.

Equations (47)-(49) can be rearranged to

L
()
3 − V

b()
3 = L2 − V

()
3 , (50)

L
()
3 x

()
3 − V

b()
3 y3 = L2x2 − V

()
3 y

()
3 , (51)

L
()
3 h

L()
3 − V

b()
3 hV

3 = L2h
L
2 − V

()
3 h

V ()
3 − Q

hl()
3 , (52)
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and can then be used to eliminate the corresponding terms in the dynamic

equations of aggregation stages. The equations for aggregation stage 3 (39)-

(41) then read

H3Ṁ
tot
3 = L2 − L3 + V

()
4 − V

()
3 , (53)

H3Ṁ3 = L2x2 − L3x3 + V
()
4 y

()
4 − V

()
3 y

()
3 , (54)

H3U̇
tot
3 = L2h

L
2 − L3h

L
3 + V

()
4 h

V ()
4 − V

()
3 h

V ()
3 − Q

hl()
3 − Qhl

3 , (55)

where only the vapor flow variables y
()
3 , h

V ()
3 , V

()
3 , and the accumulated heat

loss Q
hl()
3 remain as functions of steady-state block 3 (compare figure 3c). Note

that equation (55) also includes the heat loss term Qhl
3 for aggregation stage 3.

A further reduction of the number of steady-state functions can be achieved

by using the fact that the vapor flow rate V
()
3 depends only on intensive vari-

ables of the topmost steady-state stage s2 + 1 (compare figure 3a and b). It

is therefore sufficient to know Nc intensive variables on this stage, for example

y
()
3 (z3) and p

()
3 (z3), to calculate all other intensive variables of the vapor flow

(i.e. h
V ()
3 ), and the vapor flow rate V

()
3 .

If the heat loss on each tray is not neglected, an additional function

Q
hl()
3 = Q

hl()
3 (z3) (56)

has to be included in the set of functions.

In the case of a binary mixture, it is practical to use the set of functions

T
()
3 (z3), p

()
3 (z3), Q

hl()
3 (z3), (57)

because then y
()
3 (which is scalar in this case) and h

V ()
3 can be conveniently

calculated from the tabulated thermodynamics as described in section 2.6.3.
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3.4 Jacobian structure

The Jacobian of the reduced model as given in table 3 has exactly the same

structure as the Jacobian of the full model, but the reduced model has fewer

stages (see figure 1a and b). Since the temperature controller in the bottom now

only spans over two stages, the width of the Jacobian of the model including

the controller does not differ much from that of the reduced model without

temperature controller.

3.5 Reduced model structure and parameters

The reduced model in this study consists of nine dynamic aggregation stages and

94 − 9 = 85 steady-state stages. The locations and aggregated holdup factors

of the aggregation stages are free tuning parameters. However, the following

recommendations can be given (compare figure 2):

• The sum of all aggregated holdup factors should approximately amount

to the number of stages in the system to obtain similar time constants of

the reduced model.

• Reflux drum (j = 1) and reboiler (j = n) should be chosen as aggregation

stages because of their large capacities. Their aggregated holdup factors

H1 and Hn should be close to 1.

• The feed stage should be chosen as aggregation stage for an easy inclusion

the feed variables in the reduced model equations.

• The stages where a controller is applied, i.e. the pressure-controlled top-

most stage and the temperature-controlled stage in the bottom section,

should be chosen as aggregation stages. This way, the controllers can be

included in the reduced model exactly as in the full model.

• In the full model, the temperature control loop in the bottom section spans

over a relatively large number of stages. To achieve a good approximation

of the control loop behavior in the reduced model, it is therefore advisable
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to increase the dynamic order by including one additional aggregation

stage between the temperature stage and the bottom (reboiler).

In this study, two sets of parameters for the reduced model with nine aggregation

stages are used for evaluating the performance of the reduced models:

1. An “equally-distributed” choice of parameters, where the free aggrega-

tion stages are distributed between the fixed aggregation stages at equal

distances. The aggregated holdup factor of each aggregation stage corre-

sponds to half of the number of steady-state stages between the aggrega-

tion stage and the adjacent aggregation stages on both sides plus one for

the aggregation stage.

2. An “optimized” choice of parameters, where the free parameters were

determined by fitting the top concentration trajectory of the reduced

model on the full model trajectory using the input signal described in

section 4.1. The parameter optimization can be performed conveniently

using the reduced model in DAE form that is obtained after reduction

step 1 as described in section 3.2. To find the (locally) optimal parameter

set, discrete and continuous optimizations were performed iteratively.

The equally-distributed parameter set is used to demonstrate the approximation

quality of a reduced model, where no particular effort is undertaken to determine

favorable reduced model parameters. This can be considered the least accurate

approximation quality that can be expected from a reduced model. On the

other hand, the optimized parameter set gives an indication of the best possible

approximation quality, which is, however, specific for the given case the param-

eters were optimized for. The equally-distributed and optimized parameter sets

are given in table 4.
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3.6 Implementation of steady-state functions by table in-

terpolation

In the reduced model, the steady-state functions (57) are used to calculate the

vapor flow variables in the dynamic equations of the aggregation stages (53)-

(55). These functions are the solutions of the steady-state blocks described by

equations (29)-(31) between the aggregation stages that depend on the set of

independent variables (46) as described in section 3.3.2. The solutions can only

be obtained numerically due to the nonlinear nature of the equations. The con-

tinuous functions (57) have therefore to be generated from discrete numerical

solutions on the domain of the independent variables.

In this study, a five-dimensional look-up table is used for this purpose. The func-

tion values are calculated numerically on a grid of a certain resolution spanning

the input domain. Function values at arbitrary points on the input domain can

then be retrieved by interpolating between neighboring table entries.

The following issues are important when generating and using the table:

1. The simplest way to obtain continuous function values is multi-dimensional

linear interpolation (Press et al., 2007) between the discrete table entries.

For a five-dimensional interpolation, 25 = 32 table look-up operations and

proportionally many calculations are needed. This is computationally rel-

atively expensive, compared to other calculations in the column model.

Possible simplifications are discussed later in section 5.

2. The table needs a certain resolution to achieve a sufficient approximation

accuracy using linear interpolation. It is therefore advisable to restrict

the domain of the independent variables. This can be done by determin-

ing the maximal and minimal values of these variables during a suitable

simulation.

3. Some safety margin should be added to the domain of the independent

variables to take situations into account, when the independent variables
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leave their previously calculated operating domain due to unexpected dy-

namic behavior of the system.

4. There are many possibilities for choosing the set of independent variables.

A good choice may yield a significant decrease in table size for a given

accuracy. This is illustrated in figure 4. Depicted are trajectories of the

temperatures T and pressures p of two neighboring aggregation stages.

While the temperatures assume values on large parts of the domain, the

pressures are tighter correlated and move only on a narrow band of the

whole domain. This can be explained by the fast nature of the pressure

dynamics, which is due to the immediate dependence of the vapor flow

on the pressure difference between two stages. It is therefore advisable to

choose the pressure pj of one dynamic stage j, and the pressure difference

∆p = pj+1 − pj as independent variables, instead of the two pressures

pj and pj+1. This reduces the domain of the independent variables and

thereby the size of the table several times.

5. In order to make optimal use of the available memory, the table resolution

along each dimension and thereby the total table size can be adapted to

the accuracy requirements. This can be done in two steps:

(a) The interpolation error for a given table resolution is estimated. For

this, the function value at a test point is calculated numerically. Sym-

metrically around this point, 25 grid points with a distance in each

dimension corresponding to the table resolution are calculated nu-

merically, and the interpolated function value at the test point is

determined. This can be repeated for a number of test points to scan

the domain of independent variables systematically, because the de-

gree of curvature of the functions might vary over the domain. Either

the average or the maximum of the absolute differences between ex-

act and interpolated function values can be taken as a measure for

the interpolation error.
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(b) The effect of the interpolation error on the outputs of interest in

steady-state is estimated. The two outputs of primary interest of the

model are the top and bottom product concentrations of component

1. The sensitivity of these concentrations to the error in one function

can be calculated by perturbing the corresponding function value

and calculating the finite-difference quotient. It was found that the

sensitivities do not change significantly when different steady-states

(corresponding to different constant inputs) are used to calculate the

difference quotient.

The interpolation error of a function multiplied by the corresponding sen-

sitivity gives an estimate for the effect of the interpolation error on the

outputs. Appropriate table dimensions can now be found by minimizing

a certain norm of the vector of the interpolation error effects for a given

total storage space. The resulting dimensions of the tables used in this

study are shown in table 5.

4 Reduced model performance

In this section, the performance of the reduced model is compared with the

performance of the original model. The performance of a model always depends

on the application the model is intended for. The objective of the performance

assessment in this study is to give general insight into the approximation qual-

ity and the numerical performance of the reduced model in comparison with

the original model. For this, simulations with fast continuous changes in the

different inputs are performed.

4.1 Test input trajectories

Figure 5 shows the six sequential input trajectories used for the performance

assessment. The inputs F , zF and hF describe the feed into the column, and

are disturbance variables as be seen from a control perspective. The model
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includes some basic control loops and the inputs ps, T s and R are the pressure

controller setpoint, the temperature controller setpoint, and the reflux rate,

respectively. They can be used as manipulated variables for higher-level control

of the column. The input changes are implemented as continuous cubic-spline

functions with a transition time of 10s. After each change, the inputs are kept

constant for 15 · 104s, allowing the system to approach steady state again.

4.2 Accuracy of reduced model

Figures 6-11 show snapshots of the responses of the top and bottom concentra-

tions of the full (94 stages including reflux drum and reboiler and 474 states)

and the reduced models (9 aggregation stages and 49 states) to changes in the

different inputs. In relative terms, the deviations of the bottom concentrations

of the reduced models are larger than the deviations of the top concentrations

from the original model. In absolute terms, however, the bottom concentration

deviations are small compared to the top concentration deviations, due to the

action of the temperature controller in the bottom section. The parameters of

the optimized reduced model have been determined by fitting the top concen-

tration trajectories only. This explains the fact that the approximation of the

bottom concentration is not more accurate for the optimized reduced model

than for the equally-distributed model.

Generally, in terms of top concentration approximation accuracy, the optimized

reduced model is superior to the equally-distributed reduced model. This is not

the case for input changes in the feed concentration (figure 7), where both mod-

els are approximating the original dynamics very accurately, but the equally-

distributed model is slightly more accurate. This is because the optimized re-

duced model has been optimized to approximate the original model over the

whole simulation domain, which lowers the approximation quality at some points

to gain a larger improvement at others.

It can be observed that the equally-distributed reduced model is generally faster

than the full model. This suggests that the infinite fast signal transport through
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the steady-state blocks in the reduced model is not fully compensated by the

large aggregated holdup factors of the aggregation stages, such that the reduced

model can possibly be improved by slightly increasing the aggregated holdup

factors. Interestingly, the aggregated holdup factors of the optimized reduced

model are even smaller (compare table 4), indicating that the locations of the

aggregation stages have a considerable influence on the approximation accuracy.

4.3 Computational performance of reduced model

In order to compare the original and the reduced model, both were simulated

at the simulation tolerances

θabs = θrel = 10i/2, i = 2, ..., 8, (58)

where θabs and θrel are the absolute and relative simulation tolerances, respec-

tively. For simplicity, the same value was used for both during one simulation.

4.3.1 Simulation time versus error

To obtain a measure for the accuracy of a certain model, the trajectories of the

model can be compared with trajectories of the original model simulated at very

tight tolerances (θ = 10−8). The latter can be seen as the “exact” trajectories of

the model. In this study, the average deviation of the top concentrations from

the exact trajectory is used as a measure for the different models:

ε =
1

tend

tend
∫

0

∣

∣xexact
1 (t) − xmodel

1 (t)
∣

∣ dt, (59)

where xexact
1 (t) is the top concentration trajectory of the full model simulated

at very tight tolerances, and xmodel
1 (t) is the top concentration trajectory of

the model the error of which is to be quantified. In practice, the integral is

replaced by the average of sample points at intervals of 50s. Since the bottom

concentration is varying little compared to the top concentration due to the

temperature controller action, it is not included in the accuracy measure. The
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error ε is called the average error in the following. It is a practical measure for

the overall error averaged over time.

The overall error of the full model is only determined by the simulation error,

which is caused by the trade-off between simulation time and simulation accu-

racy governed by the simulation tolerance. The overall error of a reduced model

is in addition to the simulation error affected by the reduction error, which re-

sults from the difference between the full and the reduced dynamics. For a given

reduced model and error measure, the reduction error is constant. A third error

affecting the overall error of a reduced model is the implementation error, which

results from the inexact implementation of the mathematically derived reduced

model equations. For the reduced models in this study, an implementation error

is caused by the implementation of the steady-state functions by interpolated

tables. However, this implementation error is small compared to the reduction

error. In the following, the implementation error is therefore neglected.

Figure 12 shows the simulation time of the full and the optimized reduced model

versus the average error. It can be seen that the simulation times of both the

full and reduced model increase with increasing simulation accuracy (decreas-

ing simulation error). The reduction error of the reduced model is limiting the

maximal achievable accuracy for the simulation with tight tolerances, where

increasing the simulation accuracy does not lead to an increase of the overall

accuracy. The reduction error starts to dominate the overall error from toler-

ances of around θ = 10−2.5 and on. At the maximal achievable accuracy, the

overall error is around 4.7 · 10−4. Below this tolerance, the simulation time of

the reduced model is considerably lower than that of the full model, with a

factor of approximately 6.5 at θ = 10−2.5.

4.3.2 Computational complexity of model and solver

Table 6 shows the contributions of the main model and solver functions and

of their most important subfunctions to the total simulation times of the full

and the reduced model. The numbers were obtained from simulations with the
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simulation tolerance θ = 10−2.5. At this tolerance, the reduced model shows

the best performance (see figure 12).

It can be seen that for the full model, residual and Jacobian evaluation are com-

putationally less intensive than the LU-decomposition and LU-solution func-

tions. The execution time of the residual evaluations is dominated by the ther-

modynamic calculations on every stage, whereas in the Jacobian calculations,

the execution times of the functions for computing the hydraulic quantities and

their derivatives are higher than the thermodynamic calculations.

No function uses much more of the execution time than the other functions.

This means that no significant increase in simulation speed can be achieved by

reducing the execution time of a single function. The most expensive functions

are the linear algebra functions (LU-decomposition and LU-solution). However,

a doubling of execution speed here would still only lead to a 22% decrease in

total simulation time.

For the reduced model, the percentage of the execution time of the residual eval-

uations is significantly higher than for the full model. This is due to the com-

putationally expensive steady-state function look-up tables and interpolations.

They require with ∼ 11% almost half of the execution time of the function. The

situation is similar for the Jacobian evaluations, where the derivative calculation

of the tabulated functions account for ∼ 6% of ∼ 17%. The hydraulic calcu-

lation execution times are not significant in residual and Jacobian calculations

anymore, because the vapor flow is obtained from the steady-state functions.

This is especially the case for the Jacobian, where the computationally intensive

calculations of the vapor flow derivatives are not necessary anymore.

5 Discussion

5.1 Model reduction method

The main theoretical aspects of the model reduction method used in this study

compared to the original method of Lévine and Rouchon (1991) have been dis-
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cussed previously by Linhart and Skogestad (2009). As shown in section 4,

the reduced model is capable of reproducing the dynamic behavior with good

accuracy, and almost perfectly reproduces the steady-states, except for some

negligible implementation error. The computation time is several times lower

than that of the original full model.

The simplified derivation using aggregation stages instead of compartments

makes the method applicable in a straightforward fashion to all kinds of staged

processes. Since in step 1 of the reduction procedure only simple manipula-

tions of the left-hand sides of the dynamic equations of the original model are

needed, it is easy to quickly derive a model with reduced dynamics to test the

suitability for a given application, and to determine a suitable parametrization

and perform a dynamic analysis of the reduced model.

Step 2 of the reduction procedure where the steady-state blocks are replaced

by precomputed functions is conceptually straightforward, but requires more

implementation effort. Due to the high dimensionality of the steady-state func-

tions that are substituted into the dynamic equations, the method is restricted

to systems with a low number of state variables on each stage. This is the main

bottleneck of the method. However, the look-up table with linear interpolation

used in this study is a relatively simple and straightforward approach, which

works very well for the example system. Possible improvements are discussed

in the next section.

In the original method of Lévine and Rouchon (1991), a fast time-scale of the

stage dynamics and a slow time-scale of the compartment dynamics is identi-

fied. Such a time-scale separation is typical in singular perturbation systems.

However, in this case the time-scales are somewhat constructed, since the com-

partments are not present in the real system, but are artificially introduced into

the model. It was shown in Linhart and Skogestad (2009) that only by some

undocumented simplification step that deviates from the normal singular per-

turbation procedure, a reduced model of the same form as the models in this

paper is obtained. The compartment boundaries do not appear in the model
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anymore, which makes the notion of compartments useless. It is therefore mis-

leading to use compartments and time-scale separations to explain the principle

of the method.

To understand and classify the model reduction method of the present work,

it is therefore important to emphasize that the method does not rely on any

time-scale separation in the column, and is therefore no real singular pertur-

bation method. Instead, a different physical interpretation can be given: The

transport of ”signals“ (changes of mass and energy and intensive quantities)

through the steady-state stages is made infinitely fast, which is compensated by

the slow dynamics of the dynamic aggregation stages which are distributed over

the column. The method described in the present work is therefore a specialized

model reduction method for one-dimensionally distributed staged systems.

5.2 Implementation of steady-state functions

The implementation of the steady-state functions as described in section 3.3 is

difficult because of the large number of independent variables. In the example

distillation column in this study, the number of independent variables is five.

This is one less than the total number of dynamic states of the aggregation

stages on both sides of each block of steady-state stages. This is due to the

unsymmetrical flows in the column, where the vapor flow only depends on the

intensive quantities on each stage.

5.2.1 Large number of independent variables

In this study, the steady-state functions were implemented using five-dimensional

look-up tables with multi-linear interpolation. However, as shown in section

4.3.2, the table look-up and interpolation takes only about 17% of the total

simulation time. This means that the reduced model is only insignificantly

slowed down by the additional complexity resulting from the elimination of the

algebraic equations. From a computational performance point of view, it is

therefore possible to apply the method to more complex systems. If, for exam-
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ple, the reduction method is applied to a system with three components, one

dynamic and one algebraic state per stage is added, increasing the number of

states from 5 to 7. In addition, two more independent variables corresponding

to one additional state on each side of each steady-state block have to be in-

cluded in the table and the interpolation. This means that about 17% of the

simulation time which is spent in the table look-up and interpolation will in-

crease by factor 4, while the remaining about 83% of the simulation time will

increase proportionally to increase in the number of states by factor 7/5. Then,

the table look-up and interpolation will take about 37% of the overall time.

Since the computation time of the full model will also increase by factor 7/5,

the reduced model will still be several times faster. For example, if the reduced

model was 8 times faster at the same simulation tolerance, the extended model

with three components will still be 6 times faster.

5.2.2 Large number of components

For systems with many components the dimension of the tables may get large

and unmanageable. An alternative is to use individual tables for the low-

concentration components. The justification is that in each column section there

is usually only a few dominant components that affect the overall behavior. A

low-concentration component will affect itself but not the other components.

5.2.3 Reduction of table complexity

To reduce the complexity of the tables, the following ideas can be considered:

• The function to be approximated can be partially linearized in the follow-

ing way:

f(x1, x2, x3) ≈ f1(x1, x2) + f2(x1, x2)x3. (60)

This can be done when, for example, the function depends on the concen-

tration of a component that has a very low concentration compared to the
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other components. Then, the nonlinear function that has to be tabulated

is of lower dimension.

• Cubic spline interpolation can be used instead of linear interpolation along

dimensions which require a high resolution. For example, table 5 shows

that the table dimension corresponding to the independent variable δP

requires a high resolution. This is due to a more nonlinear dependence

of the function values on this variable. Cubic spline interpolation is easy

to implement, but requires four look-up operations per dimension. If one

table dimension is interpolated with cubic splines instead of linear inter-

polation, the computational complexity of the interpolation will therefore

double. However, since the interpolation error is of higher order, the size

of the tables can be reduced several times.

• The table resolution can be adapted locally to the curvature of the tabu-

lated function. A simple way to do this is to use non-uniform table grids.

A more sophisticated method is the use of sparse grids, where the table

resolution is adapted locally (Barthelmann et al., 2000).

5.2.4 Polynomial functional approximation

As an alternative to tables, functional approximation using polynomials or other

suitable basis functions can be used. Their coefficients can be determined by, for

example, least-square fits to sample data on a certain domain of the independent

variables. However, also here the resulting expressions can be rather complex

due to the high number of independent variables, and the approximation accu-

racy can be unsatisfactory due to the global nature of the approximation. If,

for example, polynomials up to third order are used, the resulting expression

will consist of 56 terms.
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5.2.5 Model robustness considerations

For all implementations of the steady-state functions, it is advisable to choose

the domain of the independent variables as small as possible to achieve a high

function accuracy. However, the independent variable domain has to be large

enough to cover the operating domain the reduced model is intended for. Ap-

proximate domain boundaries can be determined by simulation, where maximal

and minimal values of the different inputs are used. To increase the model

robustness, the independent variable domain should be increased by a certain

safety margin to account for situations where the model states leave the expected

operating domain. In case the safety margin of a certain steady-state function

is not sufficient, the function could be temporarily replaced by a less accurate

steady-state function that has a larger independent variable domain. Since the

functions affect only the flows between the aggregation stages, continuity of the

state evolutions is guaranteed. If even this is not enough, a reduced model af-

ter step 1 of the reduction method, that means a model which still explicitly

contains the steady-state stages, can be used. Since there is no computational

advantage of such a reduced model over a full model, it should be used only as

backup.

5.3 Selection of reduced model parameters

In section 3.5, some guidelines on how to select the reduced model pa-

rameters, namely the number and locations of the aggregation stages

and the aggregated holdup factors, were given. The guidelines are

not sufficient to determine all reduced model parameters. While an

”equal distribution“ of the free aggregation stages and the aggregated

holdup factors yields models with satisfactory approximation quality,

it was shown that better reduced models can be obtained by selecting

the parameters using a more specialized procedure. In the present

study, the free reduced model parameters were determined by fitting
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the top concentration trajectories of the full and the reduced models.

Clearly, the reduced model will be optimized for the input sequence

used to generate the fitting trajectory, but this does not guarantee

that the approximation quality is close to optimal when a significantly

different input is applied.

It would be desirable to have an extended set of rules at hand to derive

near-optimal reduced model parameters without the need of simula-

tion data and optimization. An analytical derivation of such rules is

probably difficult due to the nonlinear and multiple-input multiple-

output character of the system. However, since the reduced model

is structurally similar to the original model, it should be possible in

most cases to choose the number and locations of the aggregation

stages using some physical insight into the dynamics of the column.

To determine any remaining parameters, especially the aggregated

holdup factors, it seems most practical to fit the model to available

process data or some carefully designed reference trajectory. When

fitting, care should be taken that the optimization criterion is selected

with the intended application of the reduced model in mind. For ex-

ample, when the accuracy of the reduced model after a certain time

after excitation (long-term or short-term response) is important, the

error should be weighted accordingly in the optimization criterion.

An alternative to determining the parameters ”off-line“ could be

some adaptive procedure during simulation or application of the model.

Similar to adaptive mesh methods for partial differential equations

(Baker, 1997), the number of aggregation stages could be adapted

locally to the dynamic activity in the different parts of the column.

Here, the ”density“ of aggregation stages should locally match the

dynamic activity in the different parts of the column. The residu-

als of the dynamic aggregation stage equations could be taken as a

measure for the dynamic activity of the corresponding part of the
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column, and aggregation stages could be added or removed to change

their density. To simplify implementation, a limited number of pos-

sible aggregation stages should be fixed beforehand. This procedure

requires the calculation of additional steady-state functions for the

different possiblities of active aggregation stages.

A different adaptive approach can be used when the model is used

repeatedly with similar inputs during dynamic optimization. Prior to

the optimization iterations, a suitable model could be selected from a

bank of precalculated reduced models. The selection can be based on

the optimal inputs that have been calculated from the previous opti-

mization, and are now used as starting guess for the new optimization.

One reduced model with a large number of aggregation stages can be

used to generate a reference trajectory. From the remaining models,

the model which has the lowest number of aggregation stages (low-

est order) at an acceptable deviation from the reference trajectory is

selected for the optimization. As a refinement, the model could be

changed repeatedly during one simulation. This procedure is rather

generic, and not restricted to models derived with the method pro-

posed in this paper.

5.4 Application of reduced model in real-time optimizing

control

It was shown in section 4.3 that the reduced models can increase the simulation

speed by a factor of about 7.5 when the same tolerance θ = 10−2.5 is used. This

makes the models interesting for model predictive control and dynamic real-time

optimization applications. However, the performance of the reduced models was

assessed only in open-loop simulations with long intervals between changes in

the inputs. In real-time optimizing control applications, input changes occur

at much higher frequencies. Due to their structure, the reduced models ap-

proximate the long-term dynamics, which asymptotically approach the correct
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steady-state, with good accuracy. The short-term dynamics are not necessarily

approximated equally well. The suitability of a reduced model of this kind for

MPC and other real-time optimization applications will largely depend on how

well the time-scales of the application and the model are matched, that means

if the reduced model is capable to follow the changes in control and disturbance

inputs at the frequency and speed they occur in the closed loop application.

This issue has to be addressed in a separate study, where the reduced model is

applied in a closed-loop optimizing control application.

5.5 Alternative model reduction methods for distillation

models

There exist several alternative model reduction methods for distillation models.

Collocation methods (Cho and Joseph, 1983, Dalaouti and Seferlis, 2006, Stew-

art et al., 1984) are probably the most similar methods in terms approximation

accuracy and gain in simulation speed. While they are not restricted to a low

number of components as the method described in the present study, they pos-

sibly lose some approximation accuracy by approximating staged columns by

continuous equations and applying collocation methods to the resulting partial

differential equations.

Wave propagation methods (Hankins, 2007, Kienle, 2000, Marquardt, 1990)

are so far restricted to distillation models with rather strict assumptions such

as constant molar flows, since they make use of analytic solution of wave pro-

file equations. The resulting models can therefore be expected to have limited

approximation accuracy when used as reduced models for complex distillation

models. However, they result in models of very low order, which promise very

fast simulations.

Other methods are more suitable for nonlinear controller design than for fast

simulations (Kumar and Daoutidis, 2003). An overview of further reduction

and simplification methods for distillation column is given by Skogestad (1997).
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6 Conclusions

A simplification of the aggregated modeling method of Lévine and Rouchon

(1991) and an extension to complex distillation models is presented. The method

is applicable in a straightforward fashion by manipulating the left-hand sides

of the differential equations. It was shown that if the resulting algebraic equa-

tions are eliminated from the reduced model, the reduced model yields a gain

in computational speed of a factor of around 7.5 over an efficient implementa-

tion of the full model. The elimination of the algebraic equations is conceptually

straightforward, but requires the approximation of functions of five independent

variables. In this study, look-up tables combined with multi-linear interpola-

tion were used for this purpose. The approximation quality of the reduced

models was shown by simulations to be very accurate. In this study, a binary

distillation model was investigated. The extension of the method to systems

with a larger number of components is possible, but is limited by the increasing

complexity of the function approximations. For systems with a low number of

components, the resulting fast and accurate reduced models are promising for

real-time optimizing control applications.
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Figure 1: Jacobian structures of the full (plot a) and reduced (plot b) models.

Shown are the dependencies of the right-hand sides F on the states X. The solid

lines mark the width of the non-zero Jacobian elements, when the elements

corresponding to the temperature controller are excluded. The dashed lines

mark the width when these elements are included.

Figure 2: Schematic diagram of reduced column model.

Figure 3: Schematic illustration of a block of consecutive steady-state stages

between aggregation stages 2 and 3. Part a) shows the structure after reduction

step 1. Part b) shows the structure after elimination of the steady-state stages

by substitution of functions (32)-(34) and (35)-(38). Part c) shows the structure

after elimination of the flows on the bottom of the steady-state block by mass

conservation.

Figure 4: Temperature and pressure correlations of aggregation stages 2 and 3.

Figure 5: Input trajectories used for model performance assessment.

Figure 6: Top and bottom concentration trajectories of the full and the reduced

models. The feed flow rate F is changed from 155 to 140 (left part) and back

(right part).

Figure 7: Top and bottom concentration trajectories of the full and the reduced

models. The feed concentration zF is changed from 0.34 to 0.19 (left part) and

back (right part).

Figure 8: Top and bottom concentration trajectories of the full and the reduced

models. The feed enthalpy zh is changed from 0.2098 to 0.2598 (left part) and

back (right part).

Figure 9: Top and bottom concentration trajectories of the full and the reduced

models. The pressure setpoint psp is changed from 4.8 to 4.75 (left part) and
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back (right part).

Figure 10: Top and bottom concentration trajectories of the full and the reduced

models. The temperature setpoint T sp is changed from 322.35 to 321.35 (left

part) and back (right part).

Figure 11: Top and bottom concentration trajectories of the full and the reduced

models. The reflux rate R is changed from 370 to 340 (left part) and back (right

part).

Figure 12: Simulation time versus average error. The numbers along the data

points are the simulation tolerances used during the corresponding simulations.
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Table 1: Full model variables (binary case, Nc = 2).
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Table 3: Final form of reduced model.

Table 4: Positions and aggregated holdup factors of the aggregation stages of

the reduced models. A model with equally-distributed aggregation stages and

holdups, and a model with optimized aggregation stage positions and holdups

is shown.

Table 5: Dimensions of look-up tables for approximation of the steady-state

stage functions.

Table 6: Percentage of simulation time spent in the main solver functions and

the most important subfunctions.
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Table 1:

Variable Description SI-Unit typical values
stage reflux drum reboiler

i stage index
iF index of feed stage
M tot

i total mole number mol 3500 49000 100000
Mi total mole number of component 1 mol 3300 45500 1500
U tot

i total internal energy kJ -5.7·104 -1.0·106 -1.7·106

xi liquid concentration of component 1 0.34 0.94 0.015
yi vapor concentration of component 1 0.40 0.96 0.019
hL

i liquid enthalpy kJ/mol -18 -22 -18
hV

i vapor enthalpy kJ/mol 1.2 1.6 1.8
Li liquid outflow mol/s 500
Vi vapor outflow mol/s 500 500
Vtop vapor flow from top stage into reflux drum mol/s 425
D liquid distillate outflow of reflux drum mol/s 55
B liquid bottom product outflow of reboiler mol/s 100
R reflux flow out of reflux drum mol/s 370
F feed flow into feed stage mol/s 155
zF concentration of component 1 in feed 0.34
hF feed enthalpy kJ/mol -22
Qc heat flow into condenser kW -9500
Qr heat flow into reboiler kW 10000
Qhl

i heat loss from stage to environment kW 2.4

Table 2:

Controller CV MV
Level controller reflux drum l1 D
Pressure controller top stage p2 Vtop

Temperature controller stage 76 T76 Qr

Level controller reboiler lN B
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Table 3:

reflux drum (aggregation stage 1):

H1Ṁ
tot
1 = Vtop − (R + D)

H1Ṁ1 = Vtopy2 − (R + D)x1

H1U̇
tot
1 = Vtoph

V
2 − (R + D)hL

1 + Qc

aggregation stage 2 (below reflux drum):

H2Ṁ
tot
2 = R − L2 + V

()
3 − Vtop

H2Ṁ2 = Rx1 − L2x2 + V
()
3 y

()
3 − Vtopy2

H2U̇
tot
2 = RhL

1 − L2h
L
2 + V

()
3 h

V ()
3 − Vtoph

V
2 − Qhl

2

aggregation stage j:

HjṀ
tot
j = Lj−1 − Lj + V

()
j+1 − V

()
j

HjṀj = Lj−1xj−1 − Ljxj + V
()
j+1y

()
j+1 − V

()
j y

()
j

HjU̇
tot
j = Lj−1h

L
j−1 − Ljh

L
j + V

()
j+1h

V ()
j+1 − V

()
j h

V ()
j − Q

hl()
j − Qhl

j

feed stage jF :

HjF
Ṁ tot

jF
= LjF −1 − LjF

+ V
()
jF +1 − V

()
jF

+ F

HjF
ṀjF

= LjF −1xjF −1 − LjF
xjF

+ V
()
jF +1y

()
jF +1 − V

()
jF

y
()
jF

+ FzF

HjF
U̇ tot

jF
= LjF −1h

L
jF −1 − LjF

hL
jF

+ V
()
jF +1h

V ()
jF +1 − V

()
jF

h
V ()
jF

− Q
hl()
jF

− Qhl
jF

+ FhF

aggregation stage n − 1 (before reboiler):

Hn−1Ṁ
tot
n−1 = Ln−2 − Ln−1 + Vn − V

()
n−1

Hn−1Ṁn−1 = Ln−2xn−2 − Ln−1xn−1 + Vnyn − V
()
n−1y

()
n−1

Hn−1U̇
tot
n−1 = Ln−2h

L
n−2 − Ln−1h

L
n−1 + VnhV

n − V
()
n−1h

V ()
n−1 − Q

hl()
n−1 − Qhl

n−1

reboiler (aggregation stage n):

HnṀ tot
n = Ln−1 − B − Vn

HnṀn = Ln−1xn−1 − Bxn − Vnyn

HnU̇ tot
n = Ln−1h

L
n−1 − BhL

n − VnhV
n + Qr
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Table 4:

Equally-distributed: Optimized:
aggregation stage sj Hj sj Hj

1 (Reflux drum) 1 1 1 1
2 2 8 2 8.42
3 17 14.5 13 10.93
4 31 14.5 26 16.22
5 (Feed) 46 15 46 19.51
6 61 15 65 12.34
7 (Temp. controlled) 76 16 76 14.46
8 93 9 93 6.99
9 (Reboiler) 94 1 94 1

Table 5:

Steady-state block j Tj pj Lj Tj+1 ∆pj

2 10 11 14 20 55
3 15 14 17 15 44
4 23 17 25 15 92
5 22 15 29 15 70
6 12 13 16 12 78
7 12 13 17 10 200

Table 6:

full model reduced model
main functions (A) important subfunctions (B) A B A B
residual thermodynamics 16.3% 11.4% 24.0 % 8.1%

hydraulics 3.1% 1.1%
steady-state block table interpolation 10.9%

Jacobian thermodynamics 18.9% 5.4% 16.6% 5.5%
hydraulics 10.4% 1.8%
steady-state block table interpolation 5.9%

LU-decomposition row scaling and addition 28.4% 12.6% 22.00% 9.8%
LU-solution row scaling and addition 13.9% 6.7% 12.7% 6.6%

53


