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Abstract

A method for deriving computationally efficient reduced nonlinear

distillation models is proposed, which extends the aggregated modeling

method of Lévine and Rouchon (1991) to complex models. The column

dynamics are approximated by a low number of slow dynamic aggrega-

tion stages connected by blocks of steady-state stages. This is achieved by

simple manipulation of the left-hand sides of the differential equations. In

order to reduce the computational complexity of the resulting DAE sys-

tem, the algebraic equations resulting from the reduction procedure are

replaced by interpolation in tables or polynomial approximations. The

resulting reduced model approximates the original dynamic model very

accurately, and increases the simulation speed by about an order of mag-

nitude. This makes the reduced models attractive for real-time optimizing

control applications. The numerical properties of the models and possible

improvements are discussed.
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1 Introduction

(shortened) This study describes and analyzes a model reduction method for

staged distillation column models. Reduced models are used for system analy-

sis and controller design, and for speeding up simulations. The latter is much

desired for model predictive control (Allgöwer and Zheng 2000, Qin and Badg-

well, 2003) and dynamic real-time optimization (Schlegel, 2005) applications.

Numerous model reduction methods for linear (Antoulas, 2005) and nonlinear

systems (Marquardt, 2001, van den Berg, 2005) have been described in litera-

ture.

The model reduction method presented in this work extends the aggregated

modeling method of Lévine and Rouchon (1991). The original method was de-

veloped as an improvement of the compartmental modeling method of Benallou

et al. (1986), and used a very simple distillation model assuming constant stage

holdups, constant molar flows and constant relative volatility. The column is

partitioned into compartments, each of which comprises a number of consecu-

tive stages. The dynamics of a compartment is approximated by one dynamic

stage, which is assigned the total compartment holdup, while the remaining

stages of the compartment are treated as in steady-state. This is achieved by

a state transformation for the compartment variables, and a subsequent quasi-

steady-state approximation of the fast equations of the transformed system.

This approach has been used recently by Khowinij et al. (2004, 2005), and Bian

et al. (2005) to derive reduced models of a distillation column with variable

stage holdups, with the objective of obtaining reduced models that increase the

simulation speed. They conclude that a tailor-made DAE solver is necessary to

significantly speed up the simulations.

Likewise, it was shown by Linhart and Skogestad (2009) that applying the orig-

inal method in combination with an ordinary DAE solver does not increase the

simulation speed. The reason for this is that the method converts the major-

ity of the dynamic equations of the full model into algebraic equations, which
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does not change the overall size of the system. Since in a DAE solver, dynamic

and algebraic equations are treated very similarly (Hairer and Wanner, 2002,

Ascher and Petzold, 1998), no gain in computation speed can be expected. Al-

ternatively, Linhart and Skogestad (2009) show that the algebraic equations

resulting from the reduction procedure can be eliminated from the model due

to the banded Jacobian structure of the reduced model, which yields a much

smaller ODE or DAE system. This model now yields a significant improvement

in computational performance. In addition, it was shown that the method of

Lévine and Rouchon can be interpreted to be basically compartment-free. This

means that only the dynamic aggregation stages have to be specified, but no

partition of the column into compartments is necessary.

The model reduction method presented in this study extends the original method

of Lévine and Rouchon (1991) and the extension of Khowinij et al. (2005) and

Bian et al. (2005) in the following aspects:

1. The notion of “compartments” is abandoned; only the specification of

“aggregation stages” is necessary. The aggregated holdup factor multiply-

ing the left-hand sides of their dynamic equations can be chosen freely to

obtain optimal dynamic approximation of the original dynamics.

2. The method can be applied to all kinds of staged processes with mass and

energy balances, and complex hydraulic and thermodynamic relationships.

No simplification of the original system prior to the model reduction pro-

cedure is needed.

3. The algebraic equations resulting from the reduction procedure are elim-

inated from the reduced model and replaced by table interpolation or

polynomial approximations. This is the crucial step to obtain computa-

tionally superior reduced models. Elimination is, however, only practical

if there is a relatively low number of dynamic variables on each stage,

which generally means a low number of components in the process.
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4. The physical interpretation of the reduction principle is different. Instead

of comparing the different time-scales of the slow compartment dynamics

and fast stage dynamics, the method can be interpreted by making sig-

nal transport through the steady-state stages infinitely fast, and slowing

down the column dynamics by assigning large aggregated holdup factors

to the aggregation stages. Although related, the method is no true singu-

lar perturbation method ( Kokotovic et al., 1986, Linhart and Skogestad,

2009).

This paper is organized as follows. In section 2, the full distillation model is

introduced. Important structural and implementation issues of the model are

discussed. Section 3 describes the derivation of the reduced models from the

full model. In a first step, by a simple manipulation of the left-hand sides of the

differential equations of the full column, a reduced model of the same size as the

original model is obtained. In a second step, the resulting algebraic equations

are eliminated from the model and replaced by more efficient approximations

such as table interpolations. As the second step is crucial for the performance

of the reduced model, this part is described in more detail. In section 4, the

approximation quality and computational performance of the reduced model

is investigated. For this purpose, simulations with fast changes in the input

variables of the models over a range of simulation tolerances are performed. The

accuracy of the reduced models is compared to the original model, and is set into

relation with the simulation speed. An analysis of the numerical behavior and

of the distribution of computational complexity in the models and the solver

is given. Finally, the advantages and disadvantages of the stage aggregation

method, possible improvements and applications, and a brief comparison to

other model reduction methods for distillation models are discussed in section

5.
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2 Full model

2.1 System and modeling assumptions

The distillation column investigated in this study is a high-purity distillation

column with 92 stages, a reflux drum with a total condenser, and a reboiler.

The case-study model in this study uses a binary mixture, but the model de-

scription and the model reduction procedure is for a multi-component mixture.

Ideal stages with perfect mixing and vapor-liquid equilibrium on each stage are

assumed.

2.2 Mathematical description

For notational convenience, the reboiler and reflux drum are written as stages

1 and N , respectively.

For a mixture with Nc components, the state of each stage is described by Nc+1

dynamic variables: M tot
i (total mole number on stage i), Mi (vector of Nc − 1

component moles on stage i), and U tot
i (total internal energy on stage i). Since

the sum of the Nc components gives the total holdup M tot
i , this formulation

is equivalent to including all Nc components in the Mi vector. The dynamic

evolution of each state is governed by a differential balance equation. In addi-

tion, there is a large number of algebraic equations, including thermodynamic

relationships for the vapor-liquid equilibrium.

2.2.1 Dynamic balance equations

On each stage, Nc + 1 balance equations can be formulated. The balance equa-

tions for the stages except the reboiler, condenser and feed stage (2 ≤ i ≤

N − 1, i 6= iF ) read

Ṁ tot
i = Li−1 + Vi+1 − Li − Vi, (1)

Ṁi = Li−1xi−1 + Vi+1yi+1 − Lixi − Viyi, (2)

U̇ tot
i = Li−1h

L
i−1 + Vi+1h

V
i+1 − Lih

L
i − Vih

V
i − Qhl

i . (3)
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The balance equations for the feed stage iF read

Ṁ tot
iF

= LiF −1 + ViF +1 − LiF
− ViF

+ F, (4)

ṀiF
= LiF −1xiF −1 + ViF +1yiF +1 − LiF

xiF
− ViF

yiF
+ FzF , (5)

U̇ tot
iF

= LiF −1h
L
iF −1 + ViF +1h

V
iF +1 − LiF

hL
iF

− ViF
hV

iF
− Qhl

iF
(6)

+FhF .

The balance equations for the reflux drum with total condenser (i = 1) read

Ṁ tot
1 = Vtop − (R + D), (7)

Ṁ1 = Vtopy2 − (R + D)x1, (8)

U̇ tot
1 = Vtoph

V
2 − (R + D)hL

1 + Qcondenser. (9)

The balance equations for the reboiler (i = N) read

Ṁ tot
N = LN−1 − B − VN , (10)

ṀN = LN−1xN−1 − BxN − VNyN , (11)

U̇ tot
N = LN−1h

L
N−1 − BhL

N − VNhV
N + Qreboiler. (12)

The variables used in the above equations are explained in table 3. Note that

Mi, xi, yi and zF are vectors of length Nc −1, except in the binary case, where

they are scalars.

2.2.2 Algebraic relations for sum of phases

(shortened) The intensive variables for the individual phases xi, yi, hL
i , hV

i must

satisfy some algebraic relations, since the sum of the phases make up the total

holdup. The sum of the total mass, component masses, energy and volume of

the phases on stage i can be written as

M tot
i = ML

i + MV
i , (13)

Mi = ML
i xi + MV

i yi, (14)
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U tot
i = ML

i hL
i + MV

i hV
i − piVi, (15)

Vi = ML
i vL

i + MV
i vV

i , (16)

where Vi is the total volume of stage i (which is assumed constant), and ML
i

and MV
i the stage liquid and vapor masses, respectively. To reduce the number

of algebraic equations that need to be solved by the DAE solver, note that

equations (13) and one of equations (14)-(16) may be solved to obtain explicit

expressions for ML
i and MV

i . The simplest choice is to combine eqs. (13) and

(16), to get

ML
i = (Vi − M tot

i vV
i )/(vL

i − vV
i ), (17)

MV
i = M tot

i − ML
i , (18)

where vL
i and vV

i are the specific volumes of liquid and vapor phase, respectively.

The remaining Nc algebraic equations that need to be solved are then (14) and

(15).

2.2.3 Algebraic thermodynamic relationships

The vapor-liquid equilibrium on stage i gives Nc algebraic relations (one for

each component):

fL
i (xi, pi, Ti) = fV

i (yi, pi, Ti). (19)

In this study, the thermodynamic quantities fL
i , fV

i , xi, yi, hL
i , hV

i , vL
i , vV

i , ρL
i

and ρV
i are obtained by means of the Soave-Redlich-Kwong equations of state

(Reid et al., 1997).

2.2.4 Algebraic hydraulic relationships

(shortened) The liquid flows Li are calculated by means of a modified Francis

weir equation (Green and Perry, 2007)

Li = γρL
i |li/β − hW,i|

1.5, (20)
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where β and γ are geometry-dependent factors, li the liquid level, and hW,i is

the weir height of stage i, respectively.

The vapor flows Vi are calculated by

Vi = γ
√

|pi − pi−1 − ρL
i−1gli−1|ρV

i , (21)

where g is the standard gravity.

2.2.5 Algebraic equations for heat loss

The heat loss of a tray to the environment is modeled by a linear heat transfer

equation

Qhl
i = αi(Ti − Tenvironment), (22)

where αi is the heat transduction coefficient through the outer wall of stage i.

The heat loss is frequently neglected (αi = 0) in distillation modeling.

2.2.6 Algebraic equations for condenser cooling

The cooling of the condenser is modeled as

Qcondenser = −Vtop(h
V
2 + β), (23)

where β an adjustable parameter.

2.2.7 Dynamic equations for controllers

(shortened) The column is stabilized by four base-layer PI-controllers. The

controllers with their controlled variables (CV) and manipulated variables (MV)

are listed in table 2.
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2.3 Alternative strategies for solution of the algebraic equa-

tions

As mentioned, there are (Nc + 1) · N dynamic balance equations, where Nc is

the number of components and N is the number of stages in the column. The

associated dynamic state variables on stage i are M tot
i , Mi (vector of length

Nc − 1) and U tot
i . In addition, there is a large number of algebraic equations

which are generally not explicit in the dynamic state variables (M tot
i , Mi, U tot

i ),

and therefore need to be solved. Several approaches for solving the algebraic

equations are possible:

• Approach 1. (shortened) The algebraic equations are solved separately

at each evaluation of the derivatives of the dynamic state variables (right

hand side of dynamic balance equations). This is in general not numeri-

cally efficient.

• Approach 2. (shortened) The differential and algebraic equations (DAEs)

are solved simultaneously using a DAE solver. Here, one generally tries to

minimize the number of algebraic equations and associated algebraic state

variables used in the DAE solver by finding the lowest number of algebraic

equations that must be solved to make the rest of algebraic equation set

explicit. In most cases, the algebraic vapor-liquid equilibrium (VLE) re-

lations (19) are explicit in the variables pressure p, temperature T , liquid

composition x (vector with Nc −1 independent variables) and vapor com-

position y (vector with Nc − 1 independent variables). In total, this gives

2Nc algebraic state variables. Thus, on each stage the 2Nc algebraic equa-

tions given in (14), (15), and (19) (for p, T , x, y) need to be included in

addition to the Nc + 1 differential equations (for M tot
i , Mi, U tot

i ).

• Approach 3. (shortened) Solve the algebraic equations off-line and rep-

resent the solution in terms of functions of suitable independent variables.

Note that one can use the same functions for all stages in the column.

There are many possibilities for the choice of the independent variables:
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– 3.1 Use the dynamic state variables also for functions:

A straightforward choice are the Nc+1 dynamic state variables (M tot
i ,

Mi, U tot
i ). Then, the algebraic equations can be solved offline to gen-

erate the required functions in terms of these Nc + 1 variables. How-

ever, this set of variables may not be the best, since high-dimensional

functions with independent variables which can assume values on a

large domain are difficult to implement.

– 3.2 Introduce special algebraic variables for functions:

It is desirable to minimize the number of variables to reduce the

dimension of the functions. From the Gibbs phase rule, it is actu-

ally sufficient to specify Nc (rather than Nc + 1) intensive variables

for a system in vapor-liquid equilibrium. For the binary mixture in

this study (Nc = 2), pressure p and temperature T are chosen as

independent variables.

2.4 Final DAE equation set for full model

In this study, a binary mixture is considered and approach 3.2 with T and p (on

each stage) as algebraic state variables is used. On each of the N stages, the

DAE set includes three differential equations (see equations (1)-(12)), plus one

algebraic equation for the sum of phases holdup of component 1 (14) and one

algebraic equation for the sum of phases internal energy (15). The 5 associated

state variables Xi on each stage are

Xi = {M tot
i , Mi, U

tot
i , pi, Ti}. (24)

Note that for a binary mixture, Mi is the scalar holdup of component 1. In

addition to these 3N dynamic and 2N algebraic equations, the full DAE model

has one dynamic equation for each controller with integral action. The resulting

full set of equations solved by the DAE solver can be written in the form

M
dX

dt
= F(X,u), (25)

10



where X are the 5N + 4 state variables used by the DAE solver, u is a input

vector, and M is the diagonal mass matrix with a 1 on the diagonal for a

differential equation and a 0 for an algebraic equation.

The remaining algebraic equations, including eqs. (18) and (17), and also the

flash equations which are represented by tables, are explicit in X and are solved

at each evaluation of the right hand side F(X,u).

2.5 Jacobian structure

(shortened) The DAE set for the full model described by (25) in section 2.4

is highly structured as can be seen from figure 1 a, which shows the Jacobian

structure (dF/dX) of the full model. The Jacobian is basically a banded matrix.

However, the temperature controller in the bottom section, which has influence

on the temperature of stage 76 in the bottom section, introduces elements into

the Jacobian, which correspond to the proportional and integral action of the

controller and which lie outside the narrow band. By this, the width of the

Jacobian band is increased several times. The level and pressure controllers at

the top of the column also increase the width of the Jacobian band, but to a much

less extent, as the manipulated and controlled variables are positioned spatially

close to each other. The system including all controllers except the temperature

controller in the bottom section has a Jacobian non-zero entry band of width

19 (see figure 1 b). If the temperature controller is included in the system

with the temperature measurement located at stage 76 (19 stages from the

bottom), the width is increased to 94. In order to avoid a loss in computational

performance, the special structure of the Jacobian has to be taken into account

when decomposing the Jacobian for the solution of the linear equations arising

during the integration of the model. This is described in section 2.6.4.
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2.6 Implementation of full model

2.6.1 System size

In the present case, with N = 94 stages in the column, the full differential-

algebraic model contains 94 · 3 dynamic and 94 · 2 algebraic variables for the

stages, and 4 dynamic variables for the states of the PI-controllers, adding up

to a total of 474 variables in the state vector X.

2.6.2 Numerical solution

For simulation, the DAE solver DASPK 3.0 (Li and Petzold, 2000) is used.

This solver is implemented in FORTRAN 77. The residual F and the analytic

Jacobian dF/dX of the model are programmed in C-code. This guarantees a

simulation speed of the model which is close to the optimum.

2.6.3 Tabulation of thermodynamic properties

The thermodynamic VLE relations and property relations were programmed

as two-dimensional look-up tables. From these 8 tables, the thermodynamic

quantities x, y, hV , hL, vV , vL, ρV and ρL are obtained as functions of T and p

by cubic spline interpolation (Press et al., 2007) of the table entries. Each table

has 1 000 x 1 000 entries, where 273 K < T < 350 K and 1 bar < P < 8 bar.

2.6.4 LU-factorization of Jacobian

The Jacobian is evaluated analytically. Each time the Jacobian is recomputed,

it is factorized into a lower and an upper triangular matrix. For this, a modified

banded Gaussian LU-factorization is used. The LINPACK (LINPACK, 1978)

routine DGBFA as used in DASPK to LU-factorize a banded matrix was modi-

fied to work with the narrow banded Jacobian matrix as described in section 2.5.

An efficient special treatment of the off-band elements was introduced, where

the rows containing the off-band elements are included in the elimination steps

of the in-band rows above them. Correspondingly, the LINPACK routine DG-
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BSL was modified to solve the linear equation system arising at each integration

step using the previously generated LU-factorization.

3 Reduced model

3.1 Summary of reduction method

(shortened) The model reduction method used in this study is based on the stage

aggregation method of Lévine and Rouchon (1991). Their original method was

for a simple column model with only one mass balance per stage. The col-

umn is partitioned into a number of “compartments” of consecutive stages. In

each compartment, an “aggregation stage” is selected, which is assigned the

average concentration of the total compartment. Using a singular perturbation

argument (Kokotovic at al., 1986), the holdups on the aggregation stages are

increased to equal the total holdups of the respective compartments, whereas all

remaining stages are rendered quasi-steady-state with zero holdup. The result-

ing model is therefore of the same size as the original model, but the majority of

the dynamic stage equations are converted into algebraic equations. It assumes

the same steady-state as the original full-order model.

It was shown in a previous study by Linhart and Skogestad (2009) that the

method can actually be derived without the notion of compartments. This

is due to an undocumented simplification step in the original derivation of the

method. Although this simplification step deviates from the standard procedure

for deriving singular perturbation models (Kokotovic et al., 1986), it greatly sim-

plifies the derivation of the reduced model and its structure. For the application

of the method to a given full column model, it is sufficient to select some stages

as aggregation stages, and assign them large aggregated holdup factors, while all

remaining stages are modeled as “steady-state stages” by setting their left-hand

sides to zero. This way, the original method can easily be generalized to more

complex models including mass and energy balances; see Linhart and Skogestad

(2009) for details.
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It was found previously by Linhart and Skogestad (2009) that only applying the

reduction procedure as described above does not necessarily improve the com-

putational performance of the reduced model compared to the original model,

since the number of equations in the reduced model is the same as in the orig-

inal model. Therefore, in a second step, the algebraic equations resulting from

the reduction procedure are eliminated from the reduced model. For this, the

block-wise structure of the reduced model is exploited.

The complete reduction procedure can therefore be described as a two-step pro-

cedure:

Step 1. Select a number of aggregation stages and slow down their dynamics by

assigning them large aggregated holdup factors. Represent all remaining

stages using steady-state equations. The resulting model is a DAE model

of the same size as the original model. It has, however, reduced dynamics.

Step 2. Eliminate the algebraic equations of each block of steady-state stages by

use of precomputed functions or tables. This yields a model with a reduced

number of variables and equations, which can be simulated faster than the

original model. This step can be divided into two sub-steps:

a) Replace all variables of the steady-state stages that appear in the

aggregation stage equations by functions obtained from the solutions

of the steady-state equations in dependence of the variables of the

aggregation stages;

b) Eliminate some of the functions and independent variables to obtain

a final reduced model that is as compact as possible.

Step 1 can be applied immediately to the full model by simple manipulation of

the left-hand sides of the differential equations. This procedure will be described

in section 3.2. Step 2a is necessary to produce a reduced-order model that

increases the simulation speed. The basic procedure is described in section

3.3.1. The key idea is to replace the algebraic equations resulting from the

reduction procedure by pre-computed functions. Due to the complexity of the
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model, these functions can become very complex themselves. To obtain efficient

reduced models, in step 2b the number of functions needed and the number of

independent variables these functions depend on is reduced to a minimum. This

is described in section 3.3.2.

Note on notation: In order to stay consistent with the notation used in

Linhart and Skogestad (2009), the variables in the reduced model of step 1,

where the states are partially dynamic and partially algebraic, are marked by

the bar notation M̄ tot
i , M̄i and Ū tot

i . This is to distinguish them from the

variables in the full model (1)-(12), where the states M tot
i , Mi and U tot

i are

purely dynamic. In order to simplify notation, the variables of the reduced

model of step 2 are not marked in a special way. The numbering is now different

from the full model, since the final form of the reduced model consists only of

aggregation stages. The functions that replace the algebraic equations of the

steady-state stages are marked by (). The final form of the reduced model is

shown in table 3.

3.2 Reduction step 1: Introducing aggregation stages and

steady-state stages

Figure 2 illustrates the reduction method: A number n stages on positions with

the indices sj , j = 1...n, in the column are selected dynamic aggregation stages.

sj is the stage index of aggregation stage j in the reduced model containing

both aggregation and steady-state stages; see figure 3 a. For example, s3 = 10

means that aggregation stage 3 corresponds to stage 10 in the original model.

The dynamics of the aggregation stages are slowed down by multiplying the left-

hand sides of the corresponding dynamic equations of each aggregation stage j

by the aggregated holdup factor Hj >> 1:

Hj
˙̄M

tot

sj
= L̄sj−1 + V̄sj+1 − L̄sj

− V̄sj
, (26)

Hj
˙̄Msj

= L̄sj−1x̄sj−1 + V̄sj+1ȳsj+1 − L̄sj
x̄sj

− V̄sj
ȳsj

, (27)

Hj
˙̄U

tot

sj
= L̄sj−1h̄

L
sj−1 + V̄sj+1h̄

V
sj+1 − L̄sj

h̄L
sj

− V̄sj
h̄V

sj
− Q̄hl

sj
. (28)
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The equations for the feed stage are treated correspondingly. The equations for

the reflux drum and the reboiler are left unchanged, since their dynamics are

slow due to their large holdups.

The remaining stages i = 1...N, i 6= sj (j = 1...n), are converted into steady-

state stages by setting the left hand sides of the respective dynamic equations

to 0:

0 = L̄i−1 + V̄i+1 − L̄i − V̄i, (29)

0 = L̄i−1x̄i−1 + V̄i+1ȳi+1 − L̄ix̄i − V̄iȳi, (30)

0 = L̄i−1h̄
L
i−1 + V̄i+1h̄

V
i+1 − L̄ih̄

L
i − V̄ih̄

V
i − Q̄hl

i . (31)

3.3 Reduction step 2: Elimination of steady-state stages

(shortened) In the second step of the reduction procedure, the algebraic equa-

tions of the steady-state stages are eliminated from the model. Despite the large

number of algebraic equations, this is possible because of the structure of the

reduced model, where the steady-state stages are grouped in blocks between the

dynamic aggregation stages.

3.3.1 Step 2a: Replacement of steady-state equations by functions

Figure 3 illustrates the principle. To avoid complicated notation, aggregation

stages 2 and 3 are used for demonstration. Table 3 can be used as a reference

for the general form of the equations. A block of steady-state stages is located

between aggregation stages 2 and 3 (figure 3 a). It is referred to in the following

as steady-state block 3. It constitutes a system of algebraic equations, consist-

ing of a set of equations (29)-(31) for each of the steady-state stages with the

indices i = s2 + 1 to i = s3 − 1. It can be solved in dependence on a certain set

z3 of variables of aggregation stages 2 and 3.

In order to eliminate the equations of steady state block 3, the variables ȳs2+1, h̄
V
s2+1 and V̄s2+1
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in the dynamic equations of aggregation stage 2 are replaced by the functions

ȳs2+1 = y
()
3 (z3), (32)

h̄V
s2+1 = h

V ()
3 (z3), (33)

V̄s2+1 = V
()
3 (z3), (34)

and the variables x̄s3−1, h̄
L
s3−1, L̄s3−1 and V̄s3

in the dynamic equations of ag-

gregation stage 3 are replaced by the functions

x̄s3−1 = x
()
3 (z3), (35)

h̄L
s3−1 = h

L()
3 (z3), (36)

L̄s3−1 = L
()
3 (z3), (37)

V̄s3
= V

b()
3 (z3). (38)

The y
()
3 notation signifies that the respective variable is a function of the vari-

ables of the neighboring aggregation stages 2 and 3; see figure 3 b.

The variables above correspond to the flow rates and intensive properties of the

flows from the steady-state block into the aggregation stages. In addition, the

vapor flow rate V̄s3
from aggregation stage 3 depends on the variables of the

bottom stage of the steady-state block. As a consequence, it is replaced by the

function V
b()
3 . The b indicates that this vapor flow is located at the bottom of

the steady-state block 3, in contrast to the vapor flow V
()
3 , which is located at

the top.

It is assumed here that the liquid flows only depend on the variables of the

departing stage, otherwise the liquid flow L̄s2
departing from aggregation stage

2 would have to be replaced by a function as well.

Aggregation stage 3 is used for illustration of the the dynamic equations of the

reduced model after the substitution:

H3Ṁ
tot
3 = L

()
3 − V

b()
3 + V

()
4 − L3, (39)

H3Ṁ3 = L
()
3 x

()
3 − V

b()
3 y3 + V

()
4 y

()
4 − L3x3, (40)
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H3U̇
tot
3 = L

()
3 h

L()
3 − V

b()
3 hV

3 + V
()
4 h

V ()
4 − L3h

L
3 − Qhl

3 . (41)

Here, the notation is simplified, and M3, L3 etc. signify that the reduced model

after step 2 consists only of equations and variables corresponding to aggregation

stages.

As independent variables for the functions (32)-(34) and (35)-(38), in principle

the variable set

z3 = {M tot
2 ,M2, U

tot
2 , M tot

3 ,M3, U
tot
3 } (42)

consisting of 2Nc + 2 variables is valid. However, as mentioned before, it is

crucial to keep the complexity of these functions to a minimum to obtain an

efficient reduced model. A suitable minimal selection of functions and indepen-

dent variables is therefore discussed in the next section.

3.3.2 Step 2b: Minimal selection of functions and independent vari-

ables

(shortened) The functions (32)-(34) and (35)-(38) are 2Nc + 3 functions, while

the variable set (42) contains 2Nc + 2 variables. However, the functions are not

completely independent of each other. Furthermore, not all state variables of

both aggregation stages are needed as independent variables. In the following,

it will therefore be shown that

1. The number of independent variables needed is 2Nc+1 (instead of 2Nc+2),

2. The number of functions needed is Nc + 1 (instead of 2Nc + 3) .

Minimal number of independent variables:

The following variables that occur in the system of algebraic equations of steady-

state block 3, consisting of the set of equations (29)-(31) for each of the steady-

state stages, depend on the variables of the aggregation stages 2 and 3:

L̄s2
, x̄s2

, h̄L
s2

and V̄s2+1 (43)
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depend on variables of aggregation stage 2, and

V̄s3
, ȳs3

and h̄V
s3

(44)

depend on variables of aggregation stage 3 (compare figure 3 a). The vapor

flow V̄s2+1 is a variable of steady-state stage s2 + 1, but appears here because

of its dependence on the variables of aggregation stage 2. Except for the liquid

flow L̄s2
, all variables depend only on Nc intensive variables on the respective

aggregation stage. L̄s2
depends on an additional extensive variable due to its

dependence on the liquid level on aggregation stage 2.

A suitable set of 2Nc + 1 independent variables is therefore, for example,

z3 = {x2, T2, L2,y3, T3}. (45)

Here, the liquid flow from aggregation stage 2, L2, is directly used as an inde-

pendent variable for the functions of steady-state block 3.

For the case-study model with a binary mixture in the present work, the it is

convenient to use set of independent variables

zj+1 = {Tj, pj, Lj , Tj+1, pj+1}. (46)

Minimal number of functions:

Using the fact that mass is conserved in the steady-state blocks and considering

the total and Nc − 1 component mass balances around steady-state block 3

(compare figure 3 b),

0 = L2 − V
()
3 − L

()
3 + V

b()
3 , (47)

0 = L2x2 − V
()
3 y

()
3 − L

()
3 x

()
3 + V

b()
3 y3, (48)

Nc additional equations are obtained to reduce the number of functions needed

to be substituted in the dynamic equations of the aggregation stages (39)-(41).

Energy is, however, only conserved if the heat loss occurring at each stage is
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neglected:

0 = L2h
L
2 − V

()
3 h

V ()
3 − L

()
3 h

L()
3 + V

b()
3 hV

3 − Q
hl()
3 . (49)

Here, Q
hl()
3 is the accumulated heat loss of steady-state block 3.

Equations (47)-(49) can be rearranged to

L
()
3 − V

b()
3 = L2 − V

()
3 , (50)

L
()
3 x

()
3 − V

b()
3 y3 = L2x2 − V

()
3 y

()
3 , (51)

L
()
3 h

L()
3 − V

b()
3 hV

3 = L2h
L
2 − V

()
3 h

V ()
3 − Q

hl()
3 , (52)

and can then be used to eliminate the corresponding terms in the dynamic

equations of aggregation stages. The equations for aggregation stage 3 (39)-

(41) then read

H3Ṁ
tot
3 = L2 − L3 + V

()
4 − V

()
3 , (53)

H3Ṁ3 = L2x2 − L3x3 + V
()
4 y

()
4 − V

()
3 y

()
3 , (54)

H3U̇
tot
3 = L2h

L
2 − L3h

L
3 + V

()
4 h

V ()
4 − V

()
3 h

V ()
3 − Q

hl()
3 − Qhl

3 , (55)

where only the vapor flow variables y
()
3 , h

V ()
3 , V

()
3 , and the accumulated heat

loss Q
hl()
3 remain as functions of steady-state block 3 (compare figure 3 c). Note

that equation (55) also includes the heat loss term Qhl
3 for aggregation stage 3.

A further reduction of the number of functions can be achieved by using the fact

that the vapor flow rate V
()
3 depends only on intensive variables of the topmost

steady-state stage s2 + 1 (compare figure 3 a and b). It is therefore sufficient

to know Nc intensive variables on this stage, for example y
()
3 (z3) and p

()
3 (z3),

to calculate all other intensive variables of the vapor flow (i.e. h
V ()
3 ), and the

vapor flow rate V
()
3 .

If the heat loss on each tray is not neglected, an additional function

Q
hl()
3 = Q

hl()
3 (z3) (56)
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has to be included in the set of functions.

In the case of a binary mixture, it is practical to use the set of functions

T
()
3 (z3), p

()
3 (z3), Q

hl()
3 (z3), (57)

because then y
()
3 (which is scalar in this case) and h

V ()
3 can be conveniently

calculated from the tabulated thermodynamics as described in section 2.6.3.

3.4 Jacobian structure

The Jacobian structure of the reduced model as given in table 3 is exactly the

same as the structure of the full model, but the reduced model has fewer stages

(see figure 1 b). Since the temperature controller in the bottom now only spans

over two stages, the width of the Jacobian of the model including the controller

does not differ much from that of the reduced model without controller.

3.5 Reduced model structure and parameters

(shortened) The reduced model in this study consists of nine dynamic aggre-

gation stages and 94 − 9 = 85 steady-state stages. There is a considerable

freedom in choosing the locations and aggregated holdup factors of the ag-

gregation stages. However, the choice of some stages as aggregation stages is

straightforward (compare figure 2):

• Reboiler and reflux drum: This is a natural choice because their dynamics

are usually slow due to their large capacities. Their aggregated holdup

factors H1 and Hn are set to 1.

• Feed stage: This makes inclusion of the feed into the reduced model

straightforward.

• Stage below the reflux drum: This makes the application of the top pres-

sure controller to the reduced model straightforward.
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• Last stage above the reboiler: It was found that the dynamic behavior

of the temperature control loop is improved considerably by introducing

an additional aggregation stage between the measurement stage and the

reboiler, increasing the dynamic order of the control loop by one.

The positions of all other aggregation stages (three in the present case) are

degrees of freedom that can be used to adapt the reduced model to the dynamic

requirements of the application it is intended for. The same applies to the

aggregated holdup factors.

In this study, two sets of parameters for the reduced model with nine aggregation

stages are compared:

1. An “equally-distributed” choice of parameters, where the free aggrega-

tion stages are distributed between the fixed aggregation stages at equal

distances. The aggregated holdup factor of each aggregation stage corre-

sponds to half of the number of steady-state stages between the aggrega-

tion stage and the adjacent aggregation stages on both sides plus one for

the aggregation stage.

2. An “optimized” choice of parameters, where the free parameters are de-

termined to give the best least-squares fit of the top concentration tra-

jectories of the reduced model and a reference trajectory generated with

the input signal described in section 4.1. The parameter optimization can

be performed conveniently using the reduced model in DAE form that is

obtained after reduction step 1 as described above.

Table 4 shows the position and aggregated holdup factors of the reduced

models used in this study.

3.6 Functional approximation of steady-state stages by ta-

ble interpolation

(shortened) For a numerical approximation of the functions (57), a five-dimensional

look-up table is used. The function values are calculated numerically on a grid
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of a certain resolution spanning the input domain. Function values at arbitrary

points on the input domain can then be retrieved by interpolating between the

adjacent table entries.

The following issues are important when generating and using the table:

1. The simplest way to obtain continuous function values is multi-dimensional

linear interpolation (Press et al., 2007) of the discrete table entries. For

a five-dimensional interpolation, 25 = 32 table look-up operations and

proportionally many calculations are needed. This is computationally rel-

atively expensive, compared to other calculations in the column model.

Possible simplifications are discussed later in section 5.

2. The table needs a certain resolution to achieve a sufficient approximation

accuracy using linear interpolation. It is therefore advisable to restrict the

domain of the independent variables. This can be done by determining

the extremal values of these variables during a suitable simulation, and by

adding some safety margin.

3. There are many possibilities for choosing the set of independent variables.

A good choice may yield a significant decrease in table size for a given

accuracy. This is illustrated in figure 4. Depicted are trajectories of the

temperatures T and pressures p of two neighboring dynamic aggregation

stages. While the temperatures assume values in large parts of the domain,

the pressures are tighter correlated and move only in a narrow band of the

whole domain. This can be explained by the fast nature of the pressure

dynamics, which is due to the immediate dependence of the vapor flow

on the pressure difference between two stages. It is therefore advisable to

choose the pressure pj of one dynamic stage j, and the pressure difference

∆p = pj+1 − pj as independent variables, instead of the two pressures

pj and pj+1. This reduces the domain of the independent variables and

thereby the size of the table several times.

4. The choice of independent variables does not only affect the size of their
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domain, but also the shape of the functions in general. The functions

might depend more linearly on some variables than on others. In that

case, a lower resolution for the corresponding table dimension is required.

5. In order to make optimal use of the available memory, the table resolution

along each dimension and thereby the total table size can be adapted to

the accuracy requirements. This can be done in two steps:

(a) The interpolation error for a given table resolution is estimated. For

this, the function value at a test point is calculated numerically. Sym-

metrically around this point, 25 grid points with a distance in each

dimension corresponding to the table resolution are calculated nu-

merically, and the interpolated function value at the test point is

determined. This can be repeated for a number of test points to scan

the domain of independent variables systematically, because the de-

gree of curvature of the functions might vary over the domain. Either

the average or the maximum of the absolute differences between ex-

act and interpolated function values can be taken as a measure for

the interpolation error.

(b) The effect of the interpolation error on the outputs of interest in

steady-state is estimated. The two outputs of primary interest of the

model are the top and bottom product concentrations of component

1. The sensitivity of these concentrations to the error in one function

can be calculated by perturbing the corresponding function value

and calculating the finite-difference quotient. It was found that the

sensitivities do not change significantly when different steady-states

(corresponding to different constant inputs) are used to calculate the

difference quotient.

The interpolation error of a function multiplied by the corresponding sen-

sitivity gives an estimate for the effect of the interpolation error on the

outputs. Appropriate table dimensions can now be found by minimizing
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a certain norm of the vector of the interpolation error effects for a given

total storage space. Table 5 shows the sensitivities of the top concentra-

tion to errors in functions (57) of the steady-state blocks in the reduced

model. The resulting table dimensions are shown in table 6.

4 Reduced model performance

(shortened) In this section, the performance of the reduced model is compared

with the performance of the original model. The performance of a model al-

ways depends on the application the model is intended for. The objective of

the performance assessment in this study is to give general insight into the ap-

proximation quality and the numerical performance of the reduced model in

comparison to the original model. For this, simulations with fast continuous

changes in the different inputs are performed. After each input change, the in-

puts are kept constant for a long time, allowing the system to approach steady

state again.

4.1 Test input trajectories

Figure 5 shows the input trajectories used for the performance assessment. The

inputs F , zF and hF describe the feed into the column, and can be seen from a

control perspective as disturbance variables. The inputs ps, T s and R are the

pressure controller setpoint, the temperature controller setpoint, and the reflux

rate, respectively. The can be used as manipulated variables for higher-level

control of the column. The input changes are implemented as continuous cubic-

spline functions with a transition time of 10 s. After each change, the inputs

are kept constant for 15 000 s, allowing the system to approach steady state.

4.2 Accuracy of reduced model

(shortened) Figures 6-11 show sections of the responses of the top and bottom

concentrations of the full and the reduced models to changes in the various
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inputs. In relative terms, the deviations of the bottom concentrations of the

reduced models are larger than the deviations of the top concentrations from

the original model. In absolute terms, however, the bottom concentration de-

viations are minimal compared to the top concentration deviations, due to the

action of the temperature controller in the bottom section. The parameters of

the optimized reduced model have been determined by fitting the top concen-

tration trajectories only. This explains that the approximation of the bottom

concentration is not more accurate for the optimized reduced model than for

the equally-distributed model.

Generally, in terms of top concentration approximation accuracy, the optimized

reduced model is superior to the equally-distributed reduced model. This is not

the case for input changes in the feed concentration (figure 7), where both mod-

els are approximating the original dynamics very accurately, but the equally-

distributed model is slightly more accurate. This is because the optimized re-

duced model has been optimized to approximate the original model over the

whole simulation domain, which lowers the approximation quality at some points

to gain a larger improvement at others.

4.3 Computational performance of reduced model

In order to compare the original and the reduced model, both were simulated

at different simulation tolerances, and their accuracies were compared to the

corresponding simulation times. The accuracy of the original model can be

expressed as

εfull(θ) = f(θ), (58)

where εfull is the simulation error of the full model compared to the exact

solution, and θ is the simulation tolerance. The accuracy of the reduced model

can be expressed as

εreduced(θ) = g(θ) + εreduction, (59)
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where εreduction is the invariant reduction error introduced by the model reduc-

tion procedure. This reduction error limits the maximal achievable accuracy of

the reduced model. The total error εreduced is therefore the sum of the reduction

error and the simulation error described by the term g(θ).

The simulation tolerance can usually be specified as relative and absolute tol-

erances with individual values for every state of the model, or with one value

which is used for all states. For simplicity, the relative tolerance is set to the

same value as the absolute tolerance, and the same value is used for all states

in this study. Both models are compared at the tolerances

θabs = θrel = 10i/2, i = 2, ..., 8, (60)

except in figure 13, where simulation results of the reduced model with toler-

ances up to θ = 10−6 are shown.

4.3.1 Simulation time versus tolerance

(shortened) Figure 12 shows a logarithmic plot of the simulation times for a

simulation of 370 000 s (real time) using the input trajectory described in section

4.1 of the full and the reduced model in dependence of the simulation tolerance

θ. Using the same simulation tolerance, the reduced model can be simulated

about 5 times faster for crude tolerances, and about 8 times faster for tight

tolerances (θ ≤ 10−2). At the average tolerance of θ = 10−2.5, the simulation

time is about 0.056 s for the reduced model, and 0.43 s for the full model.

4.3.2 Simulation time versus error

(shortened) To quantify the model accuracy, the average deviation of the top

concentrations from the exact trajectory are used as accuracy measures in this

study:

εfull
average =

1

tend

tend
∫

0

∣

∣

∣
xexact

1 (t) − xfull
1 (t)

∣

∣

∣
dt, (61)
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εred
average =

1

tend

tend
∫

0

∣

∣xexact
1 (t) − xred

1 (t)
∣

∣ dt. (62)

In practice, the integral is replaced by average of sample points at intervals

of 50 s. Since the bottom concentration is varying little compared to the top

concentration due to the temperature controller action, it is not included in the

accuracy measure.

Figure 13 shows the simulation time of the full and the reduced model versus

the average error. It can be seen that the simulation times of both the full

and reduced model increase with increasing simulation accuracy (decreasing

simulation error). For the reduced model, the reduction error is visible for the

simulation with tight tolerances, where increasing the simulation accuracy does

not lead to an increase of the overall accuracy. The reduction error starts to

dominate the overall accuracy from tolerances of around θ = 10−2.5 and on. At

the maximal achievable accuracy, the overall error is around 4.7 · 10−4. This

is the average error in the top concentration of the reduced model. Below this

accuracy, the simulation time of the reduced model is considerably lower than

that of the full model, with a factor of approximately 6.5 at θ = 10−2.5.

4.3.3 Computational complexity of model and solver

Figures 14 and 15 show the call graphs of the simulations of the full and the re-

duced model, respectively. They visualize how the different numerical functions

of the solver and the model code call each other, and show the percentage of

the total execution time that is spent in each function.In the call graphs, each

block represents a function, with the following information:

• name of the function (see appendix A for details);

• percentage of total execution time spent in this function including execu-

tion times of sub-functions;

• (in brackets) percentage of total execution time spent only in this function

(excluding execution times of sub-functions);
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• total number of function executions. To obtain better statistics, each

simulation was run 100 times.

Each arrow represents calls of a sub-function, with the following information:

• percentage of total execution time spent in the called function when called

from the calling function, including execution times of sub-functions;

• total number of function calls from the calling function.

Only functions and calls that account for more than 1% of the total execution

time are shown in the graphs. The graphs in figures 14 and 15 Both graphs

were generated from simulations with the simulation tolerance θ = 10−2.5. At

this tolerance, the reduced model shows the best performance (see figure 13).

From figures 14 and 15 it can be seen that the largest part of the execu-

tion time in both full and reduced model simulation is spent in the functions

res (∼ 16% and ∼ 24%, respectively), jac (∼ 49% and ∼ 40%), and psol

(∼ 14% and ∼ 13%). For the full model, residual and Jacobian evaluation of

the DAE (∼ 16% and ∼ 19%) are less computationally intensive than the LU-

decomposition dgbfamod and LU-solution dgbslmod functions (∼ 28% and

∼ 14%). The execution time of the residual evaluations is dominated by the

look-up table time for obtaining the thermodynamic quantities on every stage

(srktlu ), whereas in the Jacobian calculations, the execution times of the func-

tions for computing the hydraulic quantities and their derivatives are slightly

more costly than the thermodynamic calculations.

No function uses much more of the execution time than the other functions.

This means that no significant increase in simulation speed can be achieved

by reducing the execution time of a single function by some means. The most

expensive functions are the linear algebra functions. A doubling of execution

speed here would lead to a 22% decrease in total simulation time.

For the reduced model, the percentaged execution time of the residual evalua-

tions res (∼ 24%) is significantly higher than for the full model. This is due to

the computationally expensive table look-ups of the steady-state block variables
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SSBtableLU. They require with ∼ 11% almost half of the execution time of

the function. The situation is similar for the Jacobian evaluations, where the

derivative calculation of the tabulated functions account for ∼ 6% of ∼ 17%.

With ∼ 22%, the LU-factorization is not the most expensive operation anymore.

5 Discussion

5.1 Model reduction method

The main theoretical aspects of the model reduction method used in this study

compared to the original method of Lévine and Rouchon (1991) have been dis-

cussed previously by Linhart and Skogestad (2009). As shown in section 4,

the reduced model is capable of reproducing the dynamic behavior with good

accuracy, and almost perfectly reproduces the steady-states, except for some

interpolation error. The computational complexity is several times lower than

that of the original full model.

The simplified derivation using aggregation stages instead of compartments

makes the method applicable in a straightforward fashion to all kinds of staged

processes. Since in step 1 of the reduction procedure only simple manipula-

tions of the left-hand sides of the dynamic equations of the original model are

needed, it is easy to quickly derive a model with reduced dynamics to test the

suitability of the reduction method for the given case. The same way, a suitable

parametrization and dynamic analysis of the reduced model can be done.

Step 2 of the reduction procedure is conceptually straightforward, but requires

more implementation effort. Due to the high dimensionality of the functions

that are substituted into the dynamic equations, the method is restricted to a

low number of state variables on each stage. This is the main bottleneck of

the method. However, the functional approximation by tabulation used in this

study is a relatively simple and straightforward approach, which works very well

for the discussed example system. Possible improvements are discussed in the

next section.
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The physical argument behind the original method by Lévine and Rouchon (1991) was to neglect the fast time-scale

5.2 Functional approximation of steady-state stage vari-

ables

(shortened) The functional approximation of the dependent variables of the

steady-state stages as described in section 3.3 is difficult because of the large

number of independent variables. In the example distillation column in this

study, the number of independent variables is five. This is one less than the

total number of dynamic states of the aggregation stages on both sides of each

block of steady-state stages. This is due to the unsymmetrical flows in the

column, where the vapor flow only depends on the intensive quantities on each

stage.

In this study, the functions values were obtained by multi-linear interpolation of

five-dimensional look-up tables. The interpolation is computationally expensive,

because each interpolation dimension increases the computational complexity

by factor two. Thus, 25 = 32 operations are needed to obtain one interpolated

value from a table. However, as shown in section 4.3.3, the table look-up and

interpolation takes only about 17% of the total simulation time. This means

that the reduced model is only insignificantly slowed down by the additional

complexity resulting from the elimination of the algebraic equations. If the

reduction method is applied to a ternary system, then two more independent

variables corresponding to one additional state on each side of each steady-state

block have to be included in the table and the interpolation. The interpolation

complexity will then increase by factor four. However, since the computational

complexity of the other parts of the model will also increase due to the additional

component, the interpolation complexity will still not dominate the rest of the

model. This means that for extensions to systems with three or four components,

the reduced model will still achieve a considerable gain in computation speed

compared to the original model.

To reduced the complexity of the tables, the following ideas can be considered:
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• The function to be approximated can be partially linearized in the follow-

ing way:

f(x1, x2, x3) ≈ f1(x1, x2) + f2(x1, x2)x3. (63)

This can be done when, for example, the function depends on the concen-

tration of a component that has a very low concentration compared to the

other components. Then, the nonlinear function that has to be tabulated

is of lower dimension.

• Cubic spline interpolation can be used instead of linear interpolation along

dimensions which require a high resolution. For example, table 6 shows

that the table dimension corresponding to the independent variable δP

requires a high resolution. This is due to a more nonlinear dependence

of the function values on this variable. Cubic spline interpolation is easy

to implement, but requires four look-up operations per dimension. If one

table dimension is interpolated with cubic splines, the computational com-

plexity of the interpolation will therefore double. However, since the in-

terpolation error is of higher order, the complexity of the tables can be

reduced several times.

• The table resolution can be adapted locally to the curvature of the tabu-

lated function. A simple way to do this is to use non-uniform table grids.

A more sophisticated method is the use of sparse grids, where the table

resolution is adapted locally (Barthelmann et al., 2000).

As an alternative to tables, functional approximation using polynomials or other

suitable basis functions can be used. Their coefficients can be determined by, for

example, least-square fits to sample data on a certain domain of the independent

variables. However, also here the resulting expressions can be rather complex

due to the high number of independent variables, and the approximation accu-

racy can be unsatisfactory due to the global nature of the approximation. If, for
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example, polynomials up to third order are used, the resulting expression will

consist of 56 terms. Such an approximation has been tested in a reduced model,

but yielded rather large steady-state deviations of about 2%. However, by care-

fully selecting suitable basis functions and sample points for the determination

of the coefficients, the approximation quality can possibly be improved.

For all function approximation methods, it is advisable to chose the domain of

the independent variables on which the function is approximated as small as

possible. The domain has to be, however, large enough to cover the operating

domain the reduced model is intended for.

5.3 Application of reduced model in real-time optimizing

control

It was shown in section 4.3 that the reduced models can increase the simulation

speed by a factor of about 7.5 when the same tolerance θ = 10−2.5 is used. This

makes the models attractive for model predictive control and dynamic real-time

optimization applications. However, the performance of the reduced models

were assessed only in open-loop simulations with long intervals between changes

in the inputs. In real-time optimizing control applications, input changes are

made at much higher frequencies. Therefore, the approximation quality in the

initial period after a change in the inputs is of greater importance.

The reduced model reproduces the outputs of the full model with good accuracy.

Because the reduced models are “slow models”, that means that they asymptot-

ically approximate the dynamics of the full model, the deviation is largest in the

initial period after a rapid change in one or more input signal. The suitability

of a reduced model of this kind for MPC and other real-time optimization ap-

plications will depend largely on how well the time-scales of the application and

the model are matched, that means if the reduced model is capable to follow

the changes in control and disturbance inputs at the frequency and speed they

occur in the closed loop application.

As shown in section 4, the approximation quality of the reduced models is very
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good for changes in the disturbance variables F , zF and hF , and in the reflux

rate R. The approximation of the dynamics of fast changes in the controller

setpoints is less accurate. This can be compensated by changing the controller

setpoints less rapidly and possibly less frequent to allow for accurate predictions

of the reduced model.

5.4 Comparison to other reduction methods for distilla-

tion models

A comparison of the reduction method to other reduction methods for distilla-

tion columns has been given in Linhart and Skogestad (2008). The conclusions

basically also hold for the extension of the method to more complex distillation

models as discussed in this study.

Collocation methods (Cho and Joseph, 1983, Dalaouti and Seferlis, 2006) are

probably the most similar methods in terms approximation accuracy and gain in

simulation speed. While they are not restricted to a low number of components

as the method described in the present study, they possibly loose some approxi-

mation accuracy by approximating staged columns by continuous equations and

applying collocation methods to the resulting partial differential equations.

Wave propagation methods (Hankins, 2007, Kienle, 2000, Marquardt, 1990)

are so far restricted to distillation models with rather strict assumptions such

as constant molar flows, since they make use of analytic solution of wave pro-

file equations. The resulting models can therefore be expected to have limited

approximation accuracy when used as reduced models for complex distillation

models. However, they result in models of very low order, which promise very

fast simulations.

Other methods are more suitable for nonlinear controller design than for fast

simulations (Kumar and Daoutidis, 2003). An overview of further reduction

and simplification methods for distillation column is given by Skogestad (1997).
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6 Conclusions

An extension and simplification of the aggregated modeling method of Lévine

and Rouchon (1991) to complex distillation models is presented. The method

is applicable in a straightforward fashion by manipulating the left-hand sides

of the differential equations. It was shown that if the resulting algebraic equa-

tions are eliminated from the reduced model, the reduced model yields gains

in computational speed of a factor of around 7.5. The elimination of the alge-

braic equations is conceptually straightforward, but requires the approximation

of functions of five independent variables. In this study, look-up tables com-

bined with multi-linear interpolation was for the function approximation. The

approximation quality of the reduced model was shown by simulations to be

very accurate. In this study, a binary distillation model was investigated. The

extension of the method to systems with a larger number of components is pos-

sible, but limited by the increasing complexity of the function approximation,

which is the main bottleneck of the method. If this bottleneck is treated care-

fully, the resulting fast and accurate reduced models are attractive for real-time

optimizing control applications.
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Appendix A: Full and reduced model main func-

tions

(shortened) The following are the main functions of the full and reduced model

implementations:

• Model functions:

– rhs : computes the right-hand side (residual) of the DAE systems. It

calls sub-functions for calculating the thermodynamic and hydraulic

quantities in the column.

– jacobian : computes the analytic Jacobian of the DAE systems.

– stageThermodynamics: computes the thermodynamic quantities

on each stage.

– srktlu: obtains the thermodynamic properties from tabulated SRK

correlations using cubic spline interpolation.

– liquidFlow: computes the liquid flow between two stages.

– vaporFlow: computes the vapor flow between two stages.

– SSB tableLU: computes the tabulated variables of the steady-state

blocks by multi-linear interpolation.

– d ...: derivatives of the above functions.

• Solver functions:

– ddaspk : is the main function of the DASPK solver [18]. It is called

iteratively by the main function to integrate the system starting from

a certain start time for a certain interval.

– res : provides the residual of the DAE systems by directly calling

the function rhs .

– jac : provides the Jacobian of the DAE systems by calling the func-

tion jacobian . In addition, it calls the function dgbfamod to de-

compose the Jacobian into lower and upper triangular matrices.
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– psol : solves the nonlinear system of equations arising from the in-

tegration algorithm.

– ddwnrm: computes the weighted root-mean-square norm of a vec-

tor.

– ddatrp: performs interpolation to get an output solution.

• Linear algebra functions:

– dgbfamod : is a modified version of the LINPACK [20] LU-decomposition

routine dgbfa for banded matrices. The modification allows for

the inclusion of off-band elements arising from decentralized control

loops, as described in section 2.6.

– dgbslmod : is a modified version of the LINPACK LU-solution rou-

tine dgbsl for banded matrices.

– daxpy : is a LINPACK routine for adding scaled matrix rows. It is

the most intensively used subroutine of dgbfamod and dgbslmod .

The remaining functions are mostly internal functions of the DASPK solver.

They are, for example, used for step-size control of the integration time step,

and are documented in the DASPK code (Li and Petzold, 2000).
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List of figures

Figure 1: Jacobian structures of the full (plot a) and reduced (plot b) models.

Shown are the dependency of the right-hand sides F on the states X. The solid

lines mark the width of the non-zero Jacobian elements, when the elements

corresponding to the temperature controller are excluded. The dashed lines

mark the width when including these elements.

Figure 2: Schematic diagram of reduced column model.

Figure 3: Schematic illustration of a block of consecutive steady-state stages

between aggregation stages 2 and 3. Part a) shows the structure after reduction

step 1. Part b) shows the structure after elimination of the steady-state stages

by substitution of functions (32)-(34) and (35)-(38). Part c) shows the structure

after elimination of the flows on the bottom of the steady-state block by mass

conservation.
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Figure 4: Temperature and pressure correlations of aggregation stages 2 and 3.

Figure 5: Input trajectories used for model performance assessment.

Figure 6: Top and bottom concentration trajectories of the full and the reduced

models. The feed flow rate F is changed from 155 to 140 (left part) and back

(right part).

Figure 7: Top and bottom concentration trajectories of the full and the reduced

models. The feed concentration zF is changed from 0.34 to 0.19 (left part) and

back (right part).

Figure 8: Top and bottom concentration trajectories of the full and the reduced

models. The feed enthalpy zh is changed from 0.2098 to 0.2598 (left part) and

back (right part).

Figure 9: Top and bottom concentration trajectories of the full and the reduced

models. The pressure setpoint ps
1 is changed from 4.8 to 4.75 (left part) and

back (right part).

Figure 10: Top and bottom concentration trajectories of the full and the reduced

models. The temperature setpoint T s
75 is changed from 322.35 to 321.35 (left

part) and back (right part).

Figure 11: Top and bottom concentration trajectories of the full and the reduced

models. The reflux rate R is changed from 370 to 340 (left part) and back (right

part).

Figure 12: Simulation times of full and reduced models at different tolerances.

Figure 13: Simulation time versus average error. The numbers along the data

points are the simulation tolerances used during the corresponding simulations.

Figure 14: Call graph of a simulation of the full model with simulation tolerance

θ = 10−2.5.

Figure 15: Call graph of a simulation of the reduced model with simulation

tolerance θ = 10−2.5.
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Table 1:

Variable Description SI-Unit typical values
stage reflux drum reboiler

i stage index
iF index of feed stage
M tot

i total mole number mol 3500 49000 100000
Mi total mole number of component 1 mol 3300 45500 1500
U tot

i total internal energy J -570 -10000 -17000
xi liquid concentration of component 1 0.34 0.94 0.015
yi vapor concentration of component 1 0.40 0.96 0.019
hL

i liquid enthalpy J/mol -0.18 -0.22 -0.18
hV

i vapor enthalpy J/mol 0.012 0.016 0.018
Li liquid outflow mol/s 500
Vi vapor outflow mol/s 500 500
Vtop vapor flow from top stage into reflux drum mol/s 425
D liquid distillate outflow of reflux drum mol/s 55
B liquid bottom product outflow of reboiler mol/s 100
R reflux flow out of reflux drum mol/s 370
F feed flow into feed stage mol/s 155
zF concentration of component 1 in feed 0.34
hF feed enthalpy J/mol -0.22
Qcondenser heat flow into condenser W -95
Qreboiler heat flow into reboiler W 100
Qhl

i stage heat loss from to environment W 0.024

Table 2:

Controller CV MV
Level controller reflux drum l1 D
Pressure controller top stage p2 Vtop

Temperature controller stage 76 T76 Qreboiler

Level controller reboiler lN B
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Table 3:

reflux drum (aggregation stage 1):

Ṁ tot
1 = Vtop − (R + D)

Ṁ1 = Vtopy2 − (R + D)x1

U̇ tot
1 = Vtoph

V
2 − (R + D)hL

1 + Qcondenser

aggregation stage 2 (below reflux drum):

H2Ṁ
tot
2 = R − L2 + V

()
3 − Vtop

H2Ṁ2 = Rx1 − L2x2 + V
()
3 y

()
3 − Vtopy2

H2U̇
tot
2 = RhL

1 − L2h
L
2 + V

()
3 h

V ()
3 − Vtoph

V
2 − Qhl

2

aggregation stage j:

HjṀ
tot
j = Lj−1 − Lj + V

()
j+1 − V

()
j

HjṀj = Lj−1xj−1 − Ljxj + V
()
j+1y

()
j+1 − V

()
j y

()
j

HjU̇
tot
j = Lj−1h

L
j−1 − Ljh

L
j + V

()
j+1h

V ()
j+1 − V

()
j h

V ()
j − Q

hl()
j − Qhl

j

feed stage jF :

HjF
Ṁ tot

jF
= LjF −1 − LjF

+ V
()
jF +1 − V

()
jF

+ F

HjF
ṀjF

= LjF −1xjF −1 − LjF
xjF

+ V
()
jF +1y

()
jF +1 − V

()
jF

y
()
jF

+ FzF

HjF
U̇ tot

jF
= LjF −1h

L
jF −1 − LjF

hL
jF

+ V
()
jF +1h

V ()
jF +1 − V

()
jF

h
V ()
jF

− Q
hl()
jF

− Qhl
jF

+ FhF

aggregation stage n − 1 (before reboiler):

Hn−1Ṁ
tot
n−1 = Ln−2 − Ln−1 + Vn − V

()
n−1

Hn−1Ṁn−1 = Ln−2xn−2 − Ln−1xn−1 + Vnyn − V
()
n−1y

()
n−1

Hn−1U̇
tot
n−1 = Ln−2h

L
n−2 − Ln−1h

L
n−1 + VnhV

n − V
()
n−1h

V ()
n−1 − Q

hl()
n−1 − Qhl

n−1

reboiler (aggregation stage n):

Ṁ tot
n = Ln−1 − B − Vn

Ṁn = Ln−1xn−1 − Bxn − Vnyn

U̇ tot
n = Ln−1h

L
n−1 − BhL

n − VnhV
n + Qreboiler
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Table 4:

Equally distributed: Optimized:
aggregation stage sj Hj sj Hj

1 (Reflux drum) 1 1 1 1
2 2 8 2 8.42
3 17 14.5 13 10.93
4 31 14.5 26 16.22
5 (Feed) 46 15 46 19.51
6 61 15 65 12.34
7 (Temp. controlled) 76 16 76 14.46
8 93 9 93 6.99
9 (Reboiler) 94 1 94 1

Table 5:

Steady-state block j ∂xtop/∂T
()
j ∂xtop/∂p

()
j ∂xtop/∂Q

hl()
j

2 -0.0048 -0.66 -0.014
3 -0.014 5.17 -0.013
4 -0.64 60.8 -0.0077
5 -0.96 91.3 -0.00030
6 -0.20 40.6 0.00078
7 0.68 -259.7 7.8e-6

Table 6:

Steady-state block j Tj pj Lj Tj+1 ∆pj

2 10 11 14 20 55
3 15 14 17 15 44
4 23 17 25 15 92
5 22 15 29 15 70
6 12 13 16 12 78
7 12 13 17 10 200
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