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a b s t r a c t

A method for deriving computationally efficient reduced nonlinear distillation models is proposed,

which extends the aggregated modeling method of Lévine and Rouchon (1991) to complex models. The

column dynamics are approximated by a low number of slow dynamic aggregation stages connected by

blocks of steady-state stages. This is achieved by simple manipulation of the left-hand sides of the

differential equations. The algebraic equations resulting from the reduction procedure are replaced by

interpolation in tables or polynomial approximations. The resulting reduced model approximates the

original dynamic model very accurately, and for a realistic case study increases the simulation speed

several times. This makes the reduced models interesting for real-time applications. The numerical

properties of the models and possible improvements are discussed.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

This study describes and analyzes a model reduction method
for staged distillation column models. Reduced models are used
for system analysis and controller design, and for speeding up
simulations. The latter is much desired for model predictive
control (Allgöwer and Zheng, 2000; Qin and Badgwell, 2003) and
dynamic real-time optimization (Schlegel, 2005) applications.
Numerous model reduction methods for linear (Antoulas, 2005)
and nonlinear systems (Marquardt, 2001; van den Berg, 2005)
have been described in the literature.

The model reduction method presented in this work extends
the aggregated modeling method of Lévine and Rouchon (1991).
The original method was developed as an improvement of the
compartmental modeling method of Benallou et al. (1986). The
approach of Lévine and Rouchon has been used recently by
Khowinij et al. (2004, 2005) and Bian et al. (2005) to derive
reduced models of a distillation column with variable stage
holdups, with the objective of obtaining reduced models that
increase the simulation speed. They conclude that a tailor-made
DAE solver is necessary to significantly speed up the simulations.

However, it was shown by Linhart and Skogestad (2009) that
applying the original method in combination with an ordinary
DAE solver does not increase the simulation speed. The reason for
this is that the method converts the majority of the dynamic
equations of the full model into algebraic equations, which does
not change the overall size of the system. Since in a DAE solver,

dynamic and algebraic equations are treated very similarly
(Ascher and Petzold, 1998; Hairer and Wanner, 2002), no gain
in computation speed can be expected. Alternatively, Linhart and
Skogestad (2009) show that the algebraic equations resulting
from the reduction procedure can be eliminated from the model
due to the banded Jacobian structure of the system, which yields a
much smaller ODE or DAE system. This model now yields a
significant improvement in computational performance. In addi-
tion, it was shown that the method of Lévine and Rouchon can be
interpreted to be basically compartment-free. This means that
only the dynamic aggregation stages have to be specified, but no
partition of the column into compartments is necessary.

The model reduction method presented in this study extends
the original method of Lévine and Rouchon (1991) and the
extension of Khowinij et al. (2005) and Bian et al. (2005) in the
following aspects:

1. The notion of ‘‘compartments’’ is abandoned; only the
specification of ‘‘aggregation stages’’ is necessary. The ‘‘hold-
up’’ is a free tuning parameter of the reduced model.

2. The method can be applied to all kinds of staged processes
with mass and energy balances, and complex hydraulic and
thermodynamic relationships. The assumptions of constant
molar flows, constant relative volatility and constant holdup
used in the original method by Lévine and Rouchon (1991) are
not needed.

3. The algebraic equations resulting from the reduction proce-
dure are eliminated from the reduced model and replaced by
functions, which are substituted in the dynamic aggregation
stage equations. This is the crucial step to obtain computationally
superior reduced models.

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ces

Chemical Engineering Science

0009-2509/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ces.2010.02.032

� Corresponding author.

E-mail address: skoge@ntnu.no (S. Skogestad).

Chemical Engineering Science 65 (2010) 3439–3456



Author's personal copy
ARTICLE IN PRESS

4. The physical interpretation of the reduction principle is
different. In the original derivation (Lévine and Rouchon,
1991), a singular perturbation argument (Kokotovic et al.,
1986) that relies on the different time-scales of the slow
compartment dynamics and fast stage dynamics is employed.
In the proposed method, the spatial transport through the
column is approximated by fast transport through steady-state
stages, which is slowed down by assigning large ‘‘aggregated
holdup factors’’ to the aggregation stages that connect the
blocks of steady-state stages. Although related, the method is
not a singular perturbation method (Linhart and Skogestad,
2009).

This paper is organized as follows. In Section 2, a full distillation
model that is used to demonstrate the reduction method is
introduced. Important structural and implementation issues of
the model are discussed. Section 3 describes the derivation of the
reduced model from the full model. In a first step, by a simple
manipulation of the left-hand sides of the differential equations of
the full column, a reduced model of the same size as the original
model is obtained. In a second step, the resulting algebraic
equations are eliminated from the model and replaced by more
efficient approximations such as table interpolations. As the
second step is crucial for the performance of the reduced model,
this part is described in more detail. In Section 4, the approxima-
tion quality and computational performance of the reduced model
is investigated. For this purpose, simulations with fast changes in
the input variables of the models over a range of simulation
tolerances are performed. The accuracy of the reduced models is
compared with the original model, and is set into relation with
the simulation speed. An analysis of the numerical behavior and
of the distribution of computational complexity in the models and
the solver is given. Finally, the advantages and disadvantages of
the stage aggregation method, possible improvements and
applications, and a brief comparison to other model reduction
methods for distillation models are discussed in Section 5.

2. Full model

2.1. System and modeling assumptions

The distillation column used in this study to demonstrate the
reduction method is a high-purity distillation column with 92
stages, a reflux drum with a total condenser, and a reboiler. The
case-study model in this study uses a binary mixture of i-butanol
and n-butanol, but the model description and the model reduction
procedure is for a multi-component mixture. Ideal stages with
perfect mixing and vapor–liquid equilibrium on each stage are
assumed.

2.2. Mathematical description

For notational convenience, the reflux drum and reboiler are
written as stages 1 and N, respectively.

For a mixture with Nc components, the state of each stage is
described by Nc + 1 dynamic variables: Mtot

i (total mole number
on stage i), Mi (vector of Nc�1 component moles on stage i), and
Utot

i (total internal energy on stage i). Since the sum of the Nc

components gives the total holdup Mi
tot, this formulation is

equivalent to including all Nc components in the Mi vector.
The dynamic evolution of each state is governed by a differential
balance equation. In addition, there is a large number of
algebraic equations, including thermodynamic relationships for
the vapor–liquid equilibrium.

2.2.1. Dynamic balance equations

On each stage, Nc + 1 balance equations can be formulated. The
balance equations for the stages except the reboiler, condenser
and feed stage ð2r irN�1; ia iF Þ read

_M
tot

i ¼ Li�1þViþ1�Li�Vi; ð1Þ

_Mi ¼ Li�1xi�1þViþ1yiþ1�Lixi�Viyi; ð2Þ

_U
tot

i ¼ Li�1hL
i�1þViþ1hV

iþ1�Lih
L
i�Vih

V
i �Qhl

i : ð3Þ

The balance equations for the feed stage iF read

_M
tot

iF
¼ LiF�1þViF þ1�LiF�ViF þF; ð4Þ

_MiF ¼ LiF�1xiF�1þViF þ1yiF þ1�LiF xiF�ViF yiF þFzF ; ð5Þ

_U
tot

iF
¼ LiF�1hL

iF�1þViF þ1hV
iF þ1�LiF hL

iF
�ViF hV

iF
�Qhl

iF
þFhF : ð6Þ

The balance equations for the reflux drum with total condenser
(i=1) read

_M
tot

1 ¼ Vtop�ðRþDÞ; ð7Þ

_M1 ¼ Vtopy2�ðRþDÞx1; ð8Þ

_U
tot

1 ¼ VtophV
2�ðRþDÞhL

1þQc: ð9Þ

The balance equations for the reboiler (i=N) read

_M
tot

N ¼ LN�1�B�VN ; ð10Þ

_MN ¼ LN�1xN�1�BxN�VNyN ; ð11Þ

_U
tot

N ¼ LN�1hL
N�1�BhL

N�VNhV
NþQr : ð12Þ

The variables used in the above equations are explained in
Table 1. Note that Mi, xi, yi and zF are vectors of length Nc�1,
except in the binary case, where they are scalars.

2.2.2. Algebraic relations for sum of phases

The intensive variables for the individual phases xi, yi, hL
i , hV

i

must satisfy some algebraic relations, since the sum of the phases
make up the total holdup. The sum of the total masses,
component masses, energies and volumes of the phases on stage
i can be written as

Mtot
i ¼ML

i þMV
i ; ð13Þ

Mi ¼ML
i xiþMV

i yi; ð14Þ

Utot
i ¼ML

i hL
i þMV

i hV
i �piVi; ð15Þ

Vi ¼ML
i vL

i þMV
i vV

i ; ð16Þ

where Vi is the total volume of stage i (which is assumed
constant), and Mi

L and Mi
V are the stage liquid and vapor masses,

respectively. To reduce the number of algebraic equations
that need to be solved by the DAE solver, Eq. (13) and one of
Eqs. (14)–(16) can be combined to obtain explicit expressions for
Mi

L and Mi
V. The simplest choice is to combine Eqs. (13) and (16) to

get

ML
i ¼ ðVi�Mtot

i vV
i Þ=ðv

L
i�vV

i Þ; ð17Þ

MV
i ¼Mtot

i �ML
i ; ð18Þ

where vi
L and vi

V are the specific volumes of liquid and vapor
phase, respectively. The remaining Nc algebraic equations are then
(14) and (15).
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2.2.3. Algebraic thermodynamic relationships

The vapor–liquid equilibrium on stage i gives Nc algebraic
relations (one for each component):

f L
i ðxi;pi;TiÞ ¼ f V

i ðyi;pi;TiÞ: ð19Þ

In this study, the thermodynamic quantities fi
L, fi

V, hL
i , hV

i , vL
i , vV

i , rL
i

and rV
i are obtained by means of the Soave–Redlich–Kwong

equations of state (Reid et al., 1997).

2.2.4. Algebraic hydraulic relationships

The liquid flows Li are calculated by means of a modified
Francis weir equation (Green and Perry, 2007)

Li ¼ grL
i

�����li=b�hW ;i

�����1:5; ð20Þ

where b and g are geometry-dependent factors, li is the liquid
level, and hW,i is the weir height of stage i, respectively.

The vapor flows Vi are calculated by

Vi ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�����pi�pi�1�rL
i�1gli�1

�����rV
i ;

vuut ð21Þ

where g is the standard gravity.

2.2.5. Algebraic equations for heat loss

The heat loss of a tray to the environment is modeled by a
linear heat transfer equation

Qhl
i ¼ aiðTi�TenvironmentÞ; ð22Þ

where ai is the heat transduction coefficient through the outer
wall of stage i. The heat loss is frequently neglected ðai ¼ 0Þ in
distillation modeling.

2.2.6. Algebraic equations for condenser cooling

The cooling of the condenser is modeled as

Qc ¼�Vtopðh
V
2 þbÞ; ð23Þ

where b is an adjustable parameter.

2.2.7. Dynamic equations for controllers

The column is stabilized by four base-layer PI-controllers. The
controllers with their controlled variables (CV) and manipulated
variables (MV) are listed in Table 2.

2.3. Alternative strategies for solution of the algebraic equations

(full model)

As mentioned, there are ðNcþ1Þ � N dynamic balance equa-
tions, where Nc is the number of components and N is the number
of stages in the column. The associated dynamic state variables on
stage i are Mi

tot, Mi (vector of length Nc�1) and Ui
tot. In addition,

there is a large number of algebraic equations for the thermo-
dynamic quantities which are generally not explicit in the
dynamic state variables (Mi

tot, Mi, Ui
tot), and therefore need to be

solved. Several approaches for solving the algebraic equations are
possible. They can be applied to all or just a part of the algebraic
equations:

� Approach 1. The algebraic equations are solved separately at
each evaluation of the right hand sides of the dynamic balance
equations using a nonlinear equation solver.
� Approach 2. The differential and algebraic equations (DAEs) are

solved simultaneously using a DAE solver.
� Approach 3. The algebraic equations are solved beforehand and

the solutions are expressed as functions of suitable variables.

Generally, one tries to minimize the number of algebraic
equations and associated algebraic state variables to be solved

Table 1
Full model variables (binary case, Nc = 2).

Variable Description SI-unit Typical values

Stage Reflux drum Reboiler

i Stage index

iF Index of feed stage

Mtot
i Total mole number mol 3500 49 000 100 000

Mi Total mole number of component 1 mol 3300 45 500 1500

Utot
i Total internal energy kJ �5.7�104

�1.0 �106
�1.7�106

xi Liquid concentration of component 1 0.34 0.94 0.015

yi Vapor concentration of component 1 0.40 0.96 0.019

hi
L Liquid enthalpy kJ/mol �18 �22 �18

hi
V Vapor enthalpy kJ/mol 1.2 1.6 1.8

Li Liquid outflow mol/s 500

Vi Vapor outflow mol/s 500 500

Vtop Vapor flow from top stage into reflux drum mol/s 425

D Liquid distillate outflow of reflux drum mol/s 55

B Liquid bottom product outflow of reboiler mol/s 100

R Reflux flow out of reflux drum mol/s 370

F Feed flow into feed stage mol/s 155

zF Concentration of component 1 in feed 0.34

hF Feed enthalpy kJ/mol �22

Qc Heat flow into condenser kW �9500

Qr Heat flow into reboiler kW 10 000

Qi
hl Heat loss from stage to environment kW 2.4

Table 2
Base-layer PI-controllers.

Controller CV MV

Level controller reflux drum l1 D

Pressure controller top stage p2 Vtop

Temperature controller stage 76 T76 Qr

Level controller reboiler lN B

A. Linhart, S. Skogestad / Chemical Engineering Science 65 (2010) 3439–3456 3441
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by finding the lowest number of algebraic equations that must
be solved to make the rest of algebraic equation set explicit.
In most cases, the algebraic vapor–liquid equilibrium (VLE)
relations (19) are explicit in the variables pressure p, temperature
T, liquid composition x (vector with Nc�1 independent variables)
and vapor composition y (vector with Nc�1 independent
variables). In total, this gives 2Nc algebraic state variables
(p, T, x, y). Thus, on each stage the associated 2Nc algebraic
equations given in (14), (15) and (19) (for p, T, x, y) need
to be included in addition to the Nc + 1 differential equations
(for Mi

tot, Mi, Ui
tot).

If applied exclusively to all algebraic equations, approach 1 is in
general numerically not efficient due to the nested solver structure.
Approach 2 is numerically efficient, but requires the computation of
relatively complex thermodynamic expressions. Approach 3 is
numerically the most efficient, but requires the representation of
the relevant solutions (the thermodynamic quantities) as a function
of the Nc + 1 dynamic state variables (Mi

tot, Mi, Ui
tot). Since usually a

numerical solution is necessary, these functions can become very
complex and relatively inaccurate.

In this study, a combination of approaches 2 and 3 is used to
obtain a numerically efficient model. From the Gibbs phase rule, it
is sufficient to specify Nc intensive variables for a system in
vapor–liquid equilibrium to determine all remaining thermody-
namic quantities. For the binary mixture in this study (Nc = 2),
pressure p and temperature T are chosen as independent
variables. All remaining thermodynamic quantities are expressed
as precomputed functions of these independent variables. The
associated Nc algebraic equations are solved within the DAE
solver, yielding a DAE system of 2Nc + 1 variables.

2.4. Final DAE equation set for full model

In this study, a binary mixture is considered with T and p

(on each stage) as algebraic state variables. On each of the
N stages, the DAE set includes three differential equations (see
Eqs. (1)–(12)), plus one algebraic equation for the sum of phases
holdup of component 1 (14) and one algebraic equation for the
sum of phases internal energy (15). The five associated state
variables Xi on each stage are

Xi ¼ fM
tot
i ;Mi;U

tot
i ;pi;Tig: ð24Þ

Note that for a binary mixture, Mi is the scalar holdup of
component 1. In addition to these 3N dynamic and 2N algebraic
equations, the full DAE model has one dynamic equation for each
controller with integral action. The resulting full set of equations
solved by the DAE solver can be written in the form

M
dX

dt
¼ FðX;uÞ; ð25Þ

where X are the 5N + 4 state variables used by the DAE solver,
u is an input vector, and M is the diagonal mass matrix with a 1 on
the diagonal for a differential equation and a 0 for an algebraic
equation.

The remaining algebraic equations, including Eqs. (17) and
(18), and also the flash equations which are represented by tables,
are explicit in X and are solved at each evaluation of the right
hand side F(X,u).

2.5. Jacobian structure

The DAE set for the full model described by Eq. (25) in Section
2.4 is highly structured as can be seen from Fig. 1a, which shows
the Jacobian structure (dF/dX) of the full model. The Jacobian is
basically a banded matrix. However, the temperature controller in
the bottom section, which has influence on the temperature of
stage 76 in the bottom section, introduces elements into the
Jacobian, which correspond to the proportional and integral
action of the controller and which lie outside the narrow band.
By this, the width of the Jacobian band is increased several times.
The level and pressure controllers at the top of the column also
increase the width of the Jacobian band, but to a much less extent,
as the manipulated and controlled variables are positioned
spatially close to each other. The system including all
controllers except the temperature controller in the bottom
section has a Jacobian non-zero entry band of width 19. If the
temperature controller is included in the system with the
temperature measurement located at stage 76 (19 stages from
the bottom), the width is increased to 94. The special structure of
the Jacobian has to be taken into account for efficiently solving the
linear equations arising during the integration of the model. This
is described in Section 2.6.4.

Fig. 1. Jacobian structures of the full (plot a) and reduced (plot b) models. Shown are the dependencies of the right-hand sides F on the states X. The solid lines mark the

width of the non-zero Jacobian elements, when the elements corresponding to the temperature controller are excluded. The dashed lines mark the width when these

elements are included.
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2.6. Implementation of full model

2.6.1. System size

In the present case, with N=94 stages in the column, the full
differential–algebraic model contains 94 � 3 dynamic and 94 � 2
algebraic variables for the stages, and four dynamic variables for
the states of the PI-controllers, adding up to a total of 474
variables in the state vector X.

2.6.2. Numerical solution

For simulation, the DAE solver DASPK 3.0 (Li and Petzold,
2000) was used. This solver is implemented in FORTRAN 77. The
residual F and the analytic Jacobian dF/dX of the model were
programmed in C-code. This ensures a fast implementation for a
realistic evaluation of the computational performance.

2.6.3. Tabulation of thermodynamic properties

The thermodynamic VLE relations and property relations were
programmed as two-dimensional look-up tables. From these eight
tables, x, y, hV, hL, vV, vL, rV and rL are obtained as functions
of T and p by cubic spline interpolation (Press et al., 2007) of the
table entries. Each table has 1000�1000 entries, where
273 KoTo350 K and 1 baroPo8 bar.

2.6.4. LU-decomposition of Jacobian

The Jacobian is evaluated analytically. Each time the Jacobian is
recomputed, it is decomposed into a lower and an upper triangular
matrix. For this, a modified banded Gaussian LU-decomposition is
used. The LINPACK (1978) routine DGBFA as used in DASPK to LU-
decompose a banded matrix was modified to work with the narrow
banded Jacobian matrix as described in Section 2.5. An efficient
special treatment of the off-band elements was introduced, where
the rows containing the off-band elements are included in the
elimination steps of the in-band rows above them. Correspondingly,
the LINPACK routine DGBSL was modified to solve the linear
equation system arising at each integration step using the previously
generated LU-decomposition.

2.6.5. Model code

Implementations of the full and reduced models in C and
FORTRAN 77 code to be used in combination with DASPK 3.0 (Li and
Petzold, 2000) are available on the homepage of Skogestad (2009).

3. Reduced model

3.1. Summary of reduction method

The model reduction method used in this study is based on the
aggregated modeling method of Lévine and Rouchon (1991). It
was shown in a previous study by Linhart and Skogestad (2009)
that the method can actually be derived without the notion of
compartments and use of average concentrations. This is due to
an undocumented simplification step in the original derivation of
the method. Although this simplification step deviates from the
standard procedure for deriving singular perturbation models
(Kokotovic et al., 1986), it greatly simplifies the derivation of the
reduced model and its structure. For the application of the
method to a given full model, it is sufficient to select some stages
as aggregation stages and multiply the left-hand sides of their
dynamic equations with some factors, while all remaining stages
are modeled as ‘‘steady-state stages’’ by setting their left-hand
sides to zero. This way, the original method can easily be
generalized to more complex models including mass and energy
balances; see Linhart and Skogestad (2009) for details.

However, as found previously by Linhart and Skogestad (2009),
applying the reduction procedure as described above does not
necessarily improve the computation speed, since the total
number of differential and algebraic equations in the reduced
model is the same as in the original model. Therefore, in a second
step, the algebraic equations resulting from the reduction
procedure are eliminated from the reduced model by replacing
them with precomputed functions where the block-wise structure
of the reduced model is exploited. Note that these functions are
different from the precomputed thermodynamic functions used to
obtain the thermodynamic quantities on each stage. These
functions are still used on the aggregation stages of the reduced
model and remain the same as in the full model.

The complete reduction method can therefore be described as
a two-step procedure:

Step 1: Select a number of aggregation stages and multiply
their left hand sides by certain factors, which will be called
‘‘aggregated holdup factor’’ in the following. Convert all remaining
stages to steady-state stages by setting their left-hand sides to
zero. The resulting model is a DAE model of the same size as the
original model. It has, however, reduced dynamics.

Step 2: Eliminate the algebraic equations of each block of
steady-state stages by replacing them with precomputed func-
tions. This yields a model with a reduced number of variables and
equations, which can be simulated faster than the original model.
This step can be divided into two sub-steps:

(a) Replace all variables of the steady-state stages that appear in
the aggregation stage equations by functions obtained from
the solutions of the steady-state equations in dependence of
the variables of the aggregation stages.

Table 3
Final form of reduced model.

Reflux drum (aggregation stage 1)

H1
_M

tot

1 ¼ Vtop�ðRþDÞ

H1
_M1 ¼ Vtopy2�ðRþDÞx1

H1
_U

tot

1 ¼ VtophV
2�ðRþDÞhL

1þQc

Aggregation stage 2 (below reflux drum)

H2
_M

tot

2 ¼ R�L2þV ðÞ3�Vtop

H2
_M2 ¼ Rx1�L2x2þV ðÞ3 yðÞ3�Vtopy2

H2
_U

tot

2 ¼ RhL
1�L2hL

2þV ðÞ3 hVðÞ
3 �VtophV

2�Qhl
2

Aggregation stage j

Hj
_M

tot

j ¼ Lj�1�LjþV ðÞjþ1�V ðÞj

Hj
_M j ¼ Lj�1xj�1�LjxjþV ðÞjþ1yðÞjþ1�V ðÞj yðÞj

Hj
_U

tot

j ¼ Lj�1hL
j�1�Ljh

L
j þV ðÞjþ1hVðÞ

jþ1�V ðÞj hVðÞ
j �QhlðÞ

j �Qhl
j

Feed stage jF

HjF
_M

tot

jF
¼ LjF�1�LjF

þV ðÞjF þ1�V ðÞjF
þF

HjF
_M jF
¼ LjF�1xjF�1�LjF

xjF
þV ðÞjF þ1yðÞjF þ1�V ðÞjF

yðÞjF
þFzF

HjF
_U

tot

jF
¼ LjF�1hL

jF�1�LjF
hL

jF
þV ðÞjF þ1hVðÞ

jF þ1�V ðÞjF
hVðÞ

jF
�QhlðÞ

jF
�Qhl

jF
þFhF

Aggregation stage n�1 (before reboiler)

Hn�1
_M

tot

n�1 ¼ Ln�2�Ln�1þVn�V ðÞn�1

Hn�1
_Mn�1 ¼ Ln�2xn�2�Ln�1xn�1þVnyn�V ðÞn�1yðÞn�1

Hn�1
_U

tot

n�1 ¼ Ln�2hL
n�2�Ln�1hL

n�1þVnhV
n�V ðÞn�1hVðÞ

n�1�QhlðÞ
n�1�Qhl

n�1

Reboiler (aggregation stage n)

Hn
_M

tot

n ¼ Ln�1�B�Vn

Hn
_Mn ¼ Ln�1xn�1�Bxn�Vnyn

Hn
_U

tot

n ¼ Ln�1hL
n�1�BhL

n�VnhV
n þQr

A. Linhart, S. Skogestad / Chemical Engineering Science 65 (2010) 3439–3456 3443
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(b) Eliminate some of the functions and independent variables to
obtain a final reduced model that is as compact as possible.

Step 1 can be applied immediately to the full model by simple
manipulation of the left-hand sides of the differential equations.
This procedure will be described in Section 3.2. Step 2a is necessary
to produce a reduced-order model that increases the simulation
speed. The basic procedure is described in Section 3.3.1. The key
idea is to replace the algebraic equations resulting from the
reduction procedure by precomputed functions. Due to the

complexity of the model, these functions can become very complex
themselves. To obtain efficient reduced models, in step 2b the
number of functions and the number of independent variables is
reduced to a minimum. This is described in Section 3.3.2.

Note on notation: In order to stay consistent with the notation
used in Linhart and Skogestad (2009), the variables in the reduced
model after step 1, where the states are partially dynamic and
partially algebraic, are marked by the bar notation M

tot

i , M i and
U

tot

i . In the full model (1)–(12), the states Mtot
i , Mi and Utot

i are
purely dynamic. In order to simplify notation, the variables of the
reduced model after step 2 are again denoted as in the full model

xliq hliq

yvap hvap

Mtot M U tot T   P

L

V

R Vtop

Pressure
controller

Temperature
controller

Level
controller

Level
controller

Qcondenser

Qreboiler

Temperature

setpoint

Level
setpoint

Level
setpoint

Pressure
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zFhf

Feed

D

B

Steady-state

stages

Dynamic

stages

Fig. 2. Schematic diagram of reduced column model.
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Mtot
j , Mj and Utot

j . However, the numbering of the variables (j) is
now different from the full model (i), since the final form of the
reduced model consists only of aggregation stages. The functions
that replace the algebraic equations of the steady-state stages are
marked by (). The final form of the reduced model is shown in
Table 3.

3.2. Reduction step 1: introducing aggregation stages and steady-

state stages

Fig. 2 illustrates the reduction method: a number of n stages
on original stages sj, j=1,y,n are selected as dynamic aggregation
stages, see Fig. 3a. For example, s3=10 means that aggregation
stage j = 3 corresponds to original stage i=10.

The dynamics of the aggregation stages are slowed down by
multiplying the left-hand sides of the corresponding dynamic
equations of each aggregation stage j by the aggregated holdup
factor Hjc1:

Hj
_M

tot

sj
¼ Lsj�1þV sjþ1�Lsj

�V sj
; ð26Þ

Hj
_M sj
¼ Lsj�1xsj�1þV sjþ1ysjþ1�Lsj

xsj
�V sj

ysj
; ð27Þ

Hj
_U

tot

sj
¼ Lsj�1h

L

sj�1þV sjþ1h
V

sjþ1�Lsj
h

L

sj
�V sj

h
V

sj
�Q

hl

sj
: ð28Þ

The equations for the feed stage, the reflux drum and the reboiler
are treated correspondingly.

The remaining stages i¼ 1; . . . ;N; iasj ðj¼ 1; . . . ;nÞ, are con-
verted into steady-state stages by setting the left hand sides of the
respective dynamic equations to 0:

0¼ Li�1þV iþ1�Li�V i; ð29Þ

0¼ Li�1x i�1þV iþ1y iþ1�Lix i�V iy i; ð30Þ

0¼ Li�1h
L

i�1þV iþ1h
V

iþ1�Lih
L

i�V ih
V

i �Q
hl

i : ð31Þ

3.3. Reduction step 2: elimination of steady-state stages

In the second step of the reduction procedure, the algebraic
equations of the steady-state stages are eliminated from the
model. Despite the large number of algebraic equations, this is
possible because of the structure of the reduced model, where the
steady-state stages are grouped into blocks between the dynamic
aggregation stages.

3.3.1. Step 2a: replacement of steady-state equations by functions

Fig. 3 illustrates the principle. To avoid complicated notation,
aggregation stages j=2 and 3 are used for demonstration. Table 3
can be used as a reference for the general form of the equations. A
block of steady-state stages is located between aggregation stages
2 and 3 (Fig. 3a). It is referred to in the following as steady-state
block 3. It constitutes a system of algebraic equations, consisting
of a set of Eqs. (29)–(31) for each of the steady-state stages with
the indices i=s2 + 1 to i = s3�1. It can be solved in dependence on
a certain set z3 of variables of aggregation stages 2 and 3.

In order to eliminate the equations of steady-state block 3, the
variables ys2þ1, h

V

s2þ1 and V s2þ1 in the dynamic equations of
aggregation stage 2 (Eqs. (26)–(28) with j=2) are replaced by the
functions

ys2þ1 ¼ yðÞ3 ðz3Þ; ð32Þ

h
V

s2þ1 ¼ hVðÞ
3 ðz3Þ; ð33Þ

V s2þ1 ¼ V ðÞ3 ðz3Þ; ð34Þ

and the variables xs3�1, h
L

s3�1, Ls3�1 and V s3
in the dynamic

equations of aggregation stage 3 are replaced by the functions

xs3�1 ¼ xðÞ3 ðz3Þ; ð35Þ

h
L

s3�1 ¼ hLðÞ
3 ðz3Þ; ð36Þ

Ls3�1 ¼ LðÞ3 ðz3Þ; ð37Þ

V s3
¼ VbðÞ

3 ðz3Þ: ð38Þ

aggregation stage 2
(original stage )

aggregation stage 3
(original stage )

stage

stage

 after Step 1  after Step 2a  after Step 2b

aggregation stage 2 aggregation stage 2

3 kcolb etats-ydaets

aggregation stage 3 aggregation stage 3

i= s2

i= s2+1

i= s3−1

i= s3

−L s 2 Vs 2 +1

L s 3 − 1 Vs 3

L 2 V
( )

3

L ( )
3 V b( )

3

L 2 V ( )
3

−

−− −

Fig. 3. Schematic illustration of a block of consecutive steady-state stages between aggregation stages 2 and 3. Part (a) shows the structure after reduction step 1. Part (b)

shows the structure after elimination of the steady-state stages by substitution of functions (32)–(34) and (35)–(38). Part (c) shows the structure after elimination of the

flows on the bottom of the steady-state block by mass conservation.
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The y()
3 notation signifies that the respective variable is a function

of the variables of the neighboring aggregation stages 2 and 3; see
Fig. 3b. These functions will be called steady-state functions in the
following.

The variables above correspond to the flow rates and intensive
properties of the flows from the steady-state block into the
aggregation stages. In addition, the vapor flow rate V s3

from
aggregation stage 3 depends on the variables of the bottom stage
of the steady-state block. As a consequence, it is replaced by the
function Vb()

3 . The b indicates that this vapor flow is located at the
bottom of the steady-state block 3, in contrast to the vapor flow
V()

3 , which is located at the top.
It is assumed here that the liquid flows only depend on the

variables of the departing stage, otherwise the liquid flow Ls2

departing from aggregation stage 2 would have to be replaced by
a function as well.

Aggregation stage j=3 is used for illustration of the dynamic
equations of the reduced model after the substitution:

H3
_M

tot

3 ¼ LðÞ3�VbðÞ
3 þV ðÞ4�L3; ð39Þ

H3
_M3 ¼ LðÞ3 xðÞ3�VbðÞ

3 y3þV ðÞ4 yðÞ4�L3x3; ð40Þ

H3
_U

tot

3 ¼ LðÞ3 hLðÞ
3 �VbðÞ

3 hV
3 þV ðÞ4 hVðÞ

4 �L3hL
3�Qhl

3 : ð41Þ

Here, the notation is simplified, and M3, L3, etc. signify that the
reduced model after step 2 consists only of equations and
variables corresponding to aggregation stages.

A possible set of independent variables for the functions (32)–
(34) and (35)–(38) is the set

z3 ¼ fM
tot
2 ;M2;U

tot
2 ;Mtot

3 ;M3;U
tot
3 g; ð42Þ

consisting of 2Nc + 2 variables. However, the complexity of the
steady-state functions depends strongly on the number and
selection of the independent variables. A suitable minimal
selection of functions and independent variables is therefore
discussed in the next section.

3.3.2. Step 2b: minimal selection of steady-state functions and

independent variables

The functions (32)–(34) and (35)–(38) are 2Nc + 3 functions,
while the variable set (42) contains 2Nc + 2 variables. However,
the functions are not completely independent of each other.
Furthermore, not all state variables of both aggregation stages are
needed as independent variables. In the following, it will there-
fore be shown that

1. The number of independent variables needed is 2Nc + 1
(instead of 2Nc + 2),

2. The number of functions needed is Nc + 1 (instead of 2Nc + 3).

Minimal number of independent variables: The following vari-
ables that are present in the system of algebraic equations of
steady-state block 3, consisting of the set of Eqs. (29)–(31) for
each of the steady-state stages, depend on the variables of the
aggregation stages 2 and 3:

Ls2
;xs2

;h
L

s2
and V s2þ1 ð43Þ

depend on variables of aggregation stage 2, and

V s3
; ys3

and h
V

s3
ð44Þ

depend on variables of aggregation stage 3 (compare Fig. 3a). The
vapor flow V s2þ1 is a variable of steady-state stage s2 + 1, but
appears here because of its dependence on the variables of
aggregation stage 2. Except for the liquid flow Ls2

, all variables
depend only on Nc intensive variables on the respective aggrega-

tion stage. Ls2
depends on an additional extensive variable due to

its dependence on the liquid level on aggregation stage 2.
A suitable set of 2Nc + 1 independent variables is therefore, for

example,

z3 ¼ fx2;T2;L2;y3;T3g: ð45Þ

Here, the liquid flow from aggregation stage 2, L2, is directly used as
an independent variable for the functions of steady-state block 3.

For the case-study model with a binary mixture in the present
work, it is convenient to use set of independent variables

z3 ¼ fT2;p2;L2;T3;p3g: ð46Þ

Minimal number of steady-state functions: In the steady-state
blocks, mass is conserved. Considering the total and Nc�1
component mass balances around steady-state block 3 (compare
Fig. 3b),

0¼ L2�V ðÞ3�LðÞ3þVbðÞ
3 ; ð47Þ

0¼ L2x2�V ðÞ3 yðÞ3�LðÞ3 xðÞ3þVbðÞ
3 y3; ð48Þ

Nc additional equations are obtained. They can be used to reduce the
number of functions that need to be substituted in the dynamic
equations of the aggregation stages (39)–(41). Energy is, however,
only conserved if the heat loss occurring at each stage is neglected:

0¼ L2hL
2�V ðÞ3 hVðÞ

3 �LðÞ3 hLðÞ
3 þVbðÞ

3 hV
3�QhlðÞ

3 : ð49Þ

Here, Qhl()
3 is the accumulated heat loss of steady-state block 3.

Eqs. (47)–(49) can be rearranged to

LðÞ3�VbðÞ
3 ¼ L2�V ðÞ3 ; ð50Þ

LðÞ3 xðÞ3�VbðÞ
3 y3 ¼ L2x2�V ðÞ3 yðÞ3 ; ð51Þ

LðÞ3 hLðÞ
3 �VbðÞ

3 hV
3 ¼ L2hL

2�V ðÞ3 hV ðÞ
3 �QhlðÞ

3 ; ð52Þ

and can then be used to eliminate the corresponding terms in the
dynamic equations of aggregation stages. The equations for
aggregation stage 3 (39)–(41) then read

H3
_M

tot

3 ¼ L2�L3þV ðÞ4�V ðÞ3 ; ð53Þ

H3
_M3 ¼ L2x2�L3x3þV ðÞ4 yðÞ4�V ðÞ3 yðÞ3 ; ð54Þ

H3
_U

tot

3 ¼ L2hL
2�L3hL

3þV ðÞ4 hV ðÞ
4 �V ðÞ3 hV ðÞ

3 �QhlðÞ
3 �Qhl

3 ; ð55Þ

where only the vapor flow variables y()
3 , hV()

3 , V()
3 , and the

accumulated heat loss Qhl()
3 remain as functions of steady-state

block 3 (compare Fig. 3 c). Note that Eq. (55) also includes the heat
loss term Q3

hl for aggregation stage 3.
A further reduction of the number of steady-state functions

can be achieved by using the fact that the vapor flow rate V()
3

depends only on intensive variables of the topmost steady-state
stage s2 + 1 (compare Fig. 3a and b). It is therefore sufficient to
know Nc intensive variables on this stage, for example y()

3 (z3) and
p()

3 (z3), to calculate all other intensive variables of the vapor flow
(i.e. hV()

3 ), and the vapor flow rate V()
3 .

If the heat loss on each tray is not neglected, an additional
function

QhlðÞ
3 ¼QhlðÞ

3 ðz3Þ ð56Þ

has to be included in the set of functions.
In the case of a binary mixture, it is practical to use the set of

functions

TðÞ3 ðz3Þ; pðÞ3 ðz3Þ; QhlðÞ
3 ðz3Þ; ð57Þ

because then y()
3 (which is scalar in this case) and hV()

3 can be
conveniently calculated from the tabulated thermodynamics as
described in Section 2.6.3.
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3.4. Jacobian structure

The Jacobian of the reduced model as given in Table 3 has
exactly the same structure as the Jacobian of the full model, but
the reduced model has fewer stages (compare Fig. 1a and b). Since
the temperature controller in the bottom now only spans over
two stages, the width of the Jacobian of the model including the
controller does not differ much from that of the reduced model
without temperature controller.

3.5. Reduced model structure and parameters

The reduced model in this study consists of nine dynamic
aggregation stages and 94�9=85 steady-state stages. The loca-
tions and aggregated holdup factors of the aggregation stages are
free tuning parameters. However, the following recommendations
can be given (compare Fig. 2):

� The sum of all aggregated holdup factors should approximately
amount to the number of stages in the system to obtain similar
time constants of the reduced model.
� Reflux drum (j=1) and reboiler (j=n) should be chosen as

aggregation stages because of their large capacities. Their
aggregated holdup factors H1 and Hn should be close to 1.
� The feed stage should be chosen as aggregation stage for an easy

inclusion of the feed variables in the reduced model equations.
� The stages where a controller is applied, i.e. the pressure-

controlled topmost stage and the temperature-controlled stage
in the bottom section, should be chosen as aggregation stages.
This way, the controllers can be included in the reduced model
exactly as in the full model.
� In the full model, the temperature control loop in the bottom

section spans over a relatively large number of stages. To
achieve a good approximation of the control loop behavior in
the reduced model, it is therefore advisable to increase the
dynamic order by including one additional aggregation stage
between the temperature stage and the bottom (reboiler).

In this study, two sets of parameters for the reduced model with
nine aggregation stages are used for evaluating the performance
of the reduced models:

1. An ‘‘equally distributed’’ choice of parameters, where the free
aggregation stages are distributed between the fixed aggrega-
tion stages at equal distances. The aggregated holdup factor of
each aggregation stage corresponds to half of the number of
steady-state stages between the aggregation stage and the

adjacent aggregation stages on both sides plus one for the
aggregation stage.

2. An ‘‘optimized’’ choice of parameters, where the free para-
meters were determined by fitting the top concentration
trajectory of the reduced model on the full model trajectory
using the input signal described in Section 4.1. The parameter
optimization can be performed conveniently using the reduced
model in DAE form that is obtained after reduction step 1 as
described in Section 3.2. To find the (locally) optimal
parameter set, discrete and continuous optimizations were
performed iteratively.

The equally distributed parameter set is used to demonstrate the
approximation quality of a reduced model, where no particular
effort is undertaken to determine favorable reduced model
parameters. This can be considered the least accurate approxima-
tion quality that can be expected from a reduced model. On the
other hand, the optimized parameter set gives an indication of the
best possible approximation quality, which is, however, specific
for the given case the parameters were optimized for. The equally
distributed and optimized parameter sets are given in Table 4.

3.6. Implementation of steady-state functions by table interpolation

In the reduced model, the steady-state functions (57) are used
to calculate the vapor flow variables in the dynamic equations of
the aggregation stages (53)–(55). These functions are the solu-
tions of the steady-state blocks described by Eqs. (29)–(31)
between the aggregation stages that depend on the set of
independent variables (46) as described in Section 3.3.2. The
solutions can only be obtained numerically due to the nonlinear
nature of the equations. The continuous functions (57) have
therefore be generated from discrete numerical solutions on the
domain of the independent variables.

In this study, a five-dimensional look-up table is used for this
purpose. The function values are calculated numerically on a grid
of a certain resolution spanning the input domain. Function
values at arbitrary points on the input domain can then be
retrieved by interpolating between neighboring table entries.

The following issues are important when generating and using
the table:

1. The simplest way to obtain continuous function values is
multi-dimensional linear interpolation (Press et al., 2007)
between the discrete table entries. For a five-dimensional
interpolation, 25=32 table look-up operations and proportionally
many calculations are needed. This is computationally
relatively expensive, compared to other calculations in the
column model. Possible simplifications are discussed later in
Section 5.

2. The table needs a certain resolution to achieve a sufficient
approximation accuracy using linear interpolation. It is there-
fore advisable to restrict the domain of the independent
variables. This can be done by determining the maximal and
minimal values of these variables during a suitable simulation.

3. Some safety margin should be added to the domain of the
independent variables to take situations into account, when
the independent variables leave their previously calculated
operating domain due to unexpected dynamic behavior of the
system.

4. There are many possibilities for choosing the set of indepen-
dent variables. A good choice may yield a significant decrease
in table size for a given accuracy. This is illustrated in
Fig. 4. Depicted are trajectories of the temperatures T and
pressures p of two neighboring aggregation stages. While the

Table 4
Positions and aggregated holdup factors of the aggregation stages of the reduced

models.

Aggregation stage Equally distributed Optimized

sj Hj sj Hj

1 (Reflux drum) 1 1 1 1

2 2 8 2 8.42

3 17 14.5 13 10.93

4 31 14.5 26 16.22

5 (Feed) 46 15 46 19.51

6 61 15 65 12.34

7 (Temp. controlled) 76 16 76 14.46

8 93 9 93 6.99

9 (Reboiler) 94 1 94 1

A model with equally distributed aggregation stages and holdups, and a model

with optimized aggregation stage positions and holdups is shown.
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temperatures assume values on large parts of the domain, the
pressures are tighter correlated and move only on a narrow
band of the whole domain. This can be explained by the fast
nature of the pressure dynamics, which is due to the
immediate dependence of the vapor flow on the pressure
difference between two stages. It is therefore advisable to
choose the pressure pj of one dynamic stage j, and the pressure
difference Dp¼ pjþ1�pj as independent variables, instead of
the two pressures pj and pj +1. This reduces the domain of the
independent variables and thereby the size of the table several
times.

5. In order to make optimal use of the available memory, the
table resolution along each dimension and thereby the total
table size can be adapted to the accuracy requirements. This
can be done in two steps:
(a) The interpolation error for a given table resolution is

estimated. For this, the function value at a test point is
calculated numerically. Symmetrically around this point,
25 grid points with a distance in each dimension
corresponding to the table resolution are calculated
numerically, and the interpolated function value at the
test point is determined. This can be repeated for a number
of test points to scan the domain of independent variables
systematically, because the degree of curvature of the
functions might vary over the domain. Either the average
or the maximum of the absolute differences between exact
and interpolated function values can be taken as a measure
for the interpolation error.

(b) The effect of the interpolation error on the outputs of
interest in steady-state is estimated. The two outputs of
primary interest of the model are the top and bottom
product concentrations of component 1. The sensitivity of

these concentrations to the error in one function can be
calculated by perturbing the corresponding function value
and calculating the finite-difference quotient. It was found
that the sensitivities do not change significantly when
different steady-states (corresponding to different con-
stant inputs) are used to calculate the difference quotient.

The interpolation error of a function multiplied by the
corresponding sensitivity gives an estimate for the effect of
the interpolation error on the outputs. Appropriate table
dimensions can now be found by minimizing a certain norm
of the vector of the interpolation error effects for a given total
storage space. The resulting dimensions of the tables used in
this study are shown in Table 5.

4. Reduced model performance

In this section, the performance of the reduced model is
compared with the performance of the original model. The
performance of a model always depends on the application the
model is intended for. The objective of the performance assessment
in this study is to give general insight into the approximation
quality and the numerical performance of the reduced model in
comparison with the original model. For this, simulations with fast
continuous changes in the different inputs are performed.

4.1. Test input trajectories

Fig. 5 shows the six input trajectories used for the performance
assessment. The inputs F, zF and hF describe the feed into the
column, and can be seen from a control perspective as disturbance
variables. The model includes some basic control loops and the
inputs ps, Ts and R are the pressure controller setpoint, the
temperature controller setpoint, and the reflux rate, respectively.
They can be used as manipulated variables for higher-level
control of the column. The input changes are implemented as
continuous cubic-spline functions with a transition time of 10 s.
After each change, the inputs are kept constant for 15� 104 s,
allowing the system to approach steady state again.

4.2. Accuracy of reduced model

Figs. 6–11 show snapshots of the responses of the top and
bottom concentrations of the full (94 stages including reflux drum
and reboiler and 474 states) and the reduced models (nine
aggregation stages and 49 states) to changes in the different
inputs. In relative terms, the deviations of the bottom
concentrations of the reduced models are larger than the
deviations of the top concentrations from the original model. In
absolute terms, however, the bottom concentration deviations are
small compared to the top concentration deviations, due to the
action of the temperature controller in the bottom section. The
parameters of the optimized reduced model have been
determined by fitting the top concentration trajectories only.
This explains the fact that the approximation of the bottom
concentration is not more accurate for the optimized reduced
model than for the equally distributed model.

Generally, in terms of top concentration approximation
accuracy, the optimized reduced model is superior to the equally
distributed reduced model. This is not the case for input changes
in the feed concentration (Fig. 7), where both models are
approximating the original dynamics very accurately, but the
equally distributed model is slightly more accurate. This is
because the optimized reduced model has been optimized to
approximate the original model over the whole simulation
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314

315

316

317

318
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4.82

4.84

4.86

4.88

4.9

p

p

Fig. 4. Temperature and pressure correlations of aggregation stages 2 and 3.

Table 5
Dimensions of look-up tables for approximation of the steady-state stage

functions.

Steady-state block j Tj pj Lj Tj +1 Dpj

2 10 11 14 20 55

3 15 14 17 15 44

4 23 17 25 15 92

5 22 15 29 15 70

6 12 13 16 12 78

7 12 13 17 10 200
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domain, which lowers the approximation quality at some points
to gain a larger improvement at others.

It can be observed that the equally distributed reduced model
is generally faster than the full model. This suggests that the
infinite fast signal transport through the steady-state blocks in the
reduced model is not fully compensated by the large aggregated
holdup factors of the aggregation stages, such that the reduced
model can possibly be improved by slightly increasing the
aggregated holdup factors. Interestingly, the aggregated holdup
factors of the optimized reduced model are even smaller
(compare Table 4), indicating that the locations of the aggregation

stages have a considerable influence on the approximation
accuracy.

4.3. Computational performance of reduced model

In order to compare the original and the reduced model, both
were simulated at the simulation tolerances

yabs
¼ yrel

¼ 10i=2; i¼ 2; . . . ;8; ð58Þ

where yabs and yrel are the absolute and relative simulation
tolerances, respectively. For simplicity, the same value was used
for both during one simulation.

4.3.1. Simulation time versus error

To obtain a measure for the accuracy of a certain model, the
trajectories of the model can be compared with trajectories of
the original model simulated at very tight tolerances ðy¼ 10�8

Þ.
The latter can be seen as the ‘‘exact’’ trajectories of the model. In
this study, the average deviation of the top concentrations from
the exact trajectory is used as a measure for the different models:

e¼ 1

tend

Z tend

0
xexact

1 ðtÞ�xmodel
1 ðtÞ

�����dt;

����� ð59Þ

where xexact
1 (t) is the top concentration trajectory of the full model

simulated at very tight tolerances, and xmodel
1 (t) is the top

concentration trajectory of the model the error of which is to be
quantified. In practice, the integral is replaced by the average
of sample points at intervals of 50 s. Since the bottom concentra-
tion is varying little compared to the top concentration due
to the temperature controller action, it is not included in the
accuracy measure. The error e is called the average error in the
following. It is a practical measure for the overall error averaged
over time.
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Fig. 5. Input trajectories used for model performance assessment.
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Fig. 6. Top and bottom concentration trajectories of the full and the reduced models. The feed flow rate F is changed from 155 to 140 (left part) and back (right part).
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The overall error of the full model is only determined by
the simulation error, which is caused by the trade-off between
simulation time and simulation accuracy governed by the
simulation tolerance. The overall error of a reduced model is in

addition to the simulation error affected by the reduction
error, which results from the difference between the full and
the reduced dynamics. For a given reduced model and error
measure, the reduction error is constant. A third error affecting

0.94
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Fig. 7. Top and bottom concentration trajectories of the full and the reduced models. The feed concentration zF is changed from 0.34 to 0.19 (left part) and back (right part).
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the overall error of a reduced model is the implementation error,
which results from the inexact implementation of the mathema-
tically derived reduced model equations. For the reduced models

in this study, an implementation error is caused by the
implementation of the steady-state functions by interpolated
tables. However, this implementation error is small compared to
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Fig. 9. Top and bottom concentration trajectories of the full and the reduced models. The pressure setpoint psp is changed from 4.8 to 4.75 (left part) and back (right part).
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the reduction error. In the following, the implementation error is
therefore neglected.

Fig. 12 shows the simulation time of the full and the optimized
reduced model versus the average error. It can be seen that the
simulation times of both the full and reduced model increase with
increasing simulation accuracy (decreasing simulation error). The
reduction error of the reduced model is limiting the maximal
achievable accuracy for the simulation with tight tolerances,
where increasing the simulation accuracy does not lead to an
increase of the overall accuracy. The reduction error starts to
dominate the overall error from tolerances of around y¼ 10�2:5

and on. At the maximal achievable accuracy, the overall error is
around 4:7� 10�4. Below this tolerance, the simulation time of
the reduced model is considerably lower than that of the full
model, with a factor of approximately 6.5 at y¼ 10�2:5.

4.3.2. Computational complexity of model and solver

Table 6 shows the contributions of the main model and solver
functions and of their most important subfunctions to the total
simulation times of the full and the reduced model. The numbers
were obtained from simulations with the simulation tolerance
y¼ 10�2:5. At this tolerance, the reduced model shows the best
performance (see Fig. 12).

It can be seen that for the full model, residual and Jacobian
evaluation are computationally less intensive than the LU-decom-
position and LU-solution functions. The execution time of the residual
evaluations is dominated by the thermodynamic calculations on
every stage, whereas in the Jacobian calculations, the execution times
of the functions for computing the hydraulic quantities and their
derivatives are higher than the thermodynamic calculations.

No function uses much more of the execution time than the
other functions. This means that no significant increase in
simulation speed can be achieved by reducing the execution time
of a single function. The most expensive functions are the linear
algebra functions (LU-decomposition and LU-solution). However,

a doubling of execution speed here would still only lead to a 22%
decrease in total simulation time.

For the reduced model, the percentage of the execution time of
the residual evaluations is significantly higher than for the full
model. This is due to the computationally expensive steady-state
function look-up tables and interpolations. They require with
� 11% almost half of the execution time of the function. The
situation is similar for the Jacobian evaluations, where the
derivative calculation of the tabulated functions account for
� 6% of � 17%. The hydraulic calculation execution times are not
significant in residual and Jacobian calculations anymore, because
the vapor flow is obtained from the steady-state functions. This is
especially the case for the Jacobian, where the computationally
intensive calculations of the vapor flow derivatives are not
necessary anymore.

5. Discussion

5.1. Model reduction method

The main theoretical aspects of the model reduction method
used in this study compared to the original method of Lévine and
Rouchon (1991) have been discussed previously by Linhart and
Skogestad (2009). As shown in Section 4, the reduced model is
capable of reproducing the dynamic behavior with good accuracy,
and almost perfectly reproduces the steady-states, except for
some negligible implementation error. The computation time is
several times lower than that of the original full model.

The simplified derivation using aggregation stages instead of
compartments makes the method applicable in a straightforward
fashion to all kinds of staged processes. Since in step 1 of the
reduction procedure only simple manipulations of the left-hand
sides of the dynamic equations of the original model are needed, it
is easy to quickly derive a model with reduced dynamics to test
the suitability for a given application, and to determine a suitable
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Fig. 11. Top and bottom concentration trajectories of the full and the reduced models. The reflux rate R is changed from 370 to 340 (left part) and back (right part).
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parametrization and perform a dynamic analysis of the reduced
model.

Step 2 of the reduction procedure, where the steady-state
blocks are replaced by precomputed functions, is conceptually
straightforward, but requires more implementation effort. Due to
the high dimensionality of the steady-state functions that are
substituted into the dynamic equations, the method is restricted
to systems with a low number of state variables on each stage.
This is the main bottleneck of the method. However, the look-up
table with linear interpolation used in this study is a relatively
simple and straightforward approach, which works very well for
the example system. Possible improvements are discussed in the
next section.

In the original method of Lévine and Rouchon (1991), a fast
time-scale of the stage dynamics and a slow time-scale of
the compartment dynamics is identified. Such a time-scale
separation is typical in singular perturbation systems. However,
in this case the time-scales are somewhat constructed, since the
compartments are not present in the real system, but are
artificially introduced into the model. It was shown in Linhart

and Skogestad (2009) that only by some undocumented simpli-
fication step that deviates from the normal singular perturbation
procedure, a reduced model of the same form as the models in
this paper is obtained. The compartment boundaries do not
appear in the model anymore, which makes the notion of
compartments useless. It is therefore misleading to use compart-
ments and time-scale separations to explain the principle of the
method.

To understand and classify the model reduction method
of the present work, it is therefore important to emphasize that
the method does not rely on any time-scale separation in the
column, and is therefore no real singular perturbation method.
Instead, a different physical interpretation can be given: the
transport of ‘‘signals’’ (changes of mass and energy and intensive
quantities) through the steady-state stages is made infinitely fast,
which is compensated by the slow dynamics of the dynamic
aggregation stages which are distributed over the column. The
method described in the present work is therefore a specialized
model reduction method for one-dimensionally distributed staged
systems.
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Fig. 12. Simulation time versus average error. The numbers along the data points are the simulation tolerances used during the corresponding simulations.

Table 6
Percentage of simulation time spent by the full model (FM) and the reduced model (RM) in the main solver functions and the most important subfunctions.

Main functions FM (%) RM (%) Important subfunctions (B) FM (%) RM (%)

Residual 16.3 24.0 Thermodynamics 11.4 8.1

Hydraulics 3.1 1.1

Steady-state functions 10.9

Jacobian 18.9 16.6 Thermodynamics 5.4 5.5

Hydraulics 10.4 1.8

Steady-state functions 5.9

LU-decomposition 28.4 22.0 Row scaling and addition 12.6 9.8

LU-solution 13.9 12.7 Row scaling and addition 6.7 6.6
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5.2. Implementation of steady-state functions

The implementation of the steady-state functions as described
in Section 3.3 is difficult because of the large number of
independent variables. In the example distillation column in this
study, the number of independent variables is five. This is one less
than the total number of dynamic states of the aggregation stages
on both sides of each block of steady-state stages. This is due to
the unsymmetrical flows in the column, where the vapor flow
only depends on the intensive quantities on each stage.

5.2.1. Large number of independent variables

In this study, the steady-state functions were implemented
using five-dimensional look-up tables with multi-linear inter-
polation. However, as shown in Section 4.3.2, the table look-up
and interpolation takes only about 17% of the total simulation
time. This means that the reduced model is only insignificantly
slowed down by the additional complexity resulting from the
elimination of the algebraic equations. From a computational
performance point of view, it is therefore possible to apply the
method to more complex systems. If, for example, the reduction
method is applied to a system with three components, one
dynamic and one algebraic state per stage is added, increasing the
number of states from 5 to 7. In addition, two more independent
variables corresponding to one additional state on each side of
each steady-state block have to be included in the table and the
interpolation. This means that about 17% of the simulation time
which is spent in the table look-up and interpolation will increase
by factor 4, while the remaining about 83% of the simulation time
will increase proportionally to the increase in the number of
states by factor 7/5. Then, the table look-up and interpolation will
take about 37% of the overall time. Since the computation time of
the full model will also increase by factor 7/5, the reduced model
will still be several times faster. For example, if the reduced model
was 8 times faster at the same simulation tolerance, the extended
model with three components will still be 6 times faster.

5.2.2. Large number of components

For systems with many components the dimension of the
tables may get large and unmanageable. An alternative is to use
individual tables for the low-concentration components. The
justification is that in each column section there is usually only a
few dominant components that affect the overall behavior. A low-
concentration component will affect itself but not the other
components.

5.2.3. Reduction of table complexity

To reduce the complexity of the tables, the following ideas can
be considered:

� The function to be approximated can be partially linearized in
the following way:

f ðx1;x2;x3Þ � f1ðx1;x2Þþ f2ðx1;x2Þx3: ð60Þ

This can be done when, for example, the function depends on
the concentration of a component that has a very low
concentration compared to the other components. Then, the
nonlinear function that has to be tabulated is of lower
dimension.
� Cubic spline interpolation can be used instead of linear

interpolation along dimensions which require a high resolution.
For example, Table 5 shows that the table dimension
corresponding to the independent variable dP requires a high
resolution. This is due to a more nonlinear dependence of the
function values on this variable. Cubic spline interpolation is

easy to implement, but requires four look-up operations per
dimension. If one table dimension is interpolated with cubic
splines instead of linear interpolation, the computational
complexity of the interpolation will therefore double. How-
ever, since the interpolation error is of higher order, the size of
the tables can be reduced several times.
� The table resolution can be adapted locally to the curvature of

the tabulated function. A simple way to do this is to use non-
uniform table grids. A more sophisticated method is the use of
sparse grids, where the table resolution is adapted locally
(Barthelmann et al., 2000).

5.2.4. Polynomial functional approximation

As an alternative to tables, functional approximation using
polynomials or other suitable basis functions can be used. Their
coefficients can be determined by, for example, least-square fits to
sample data on a certain domain of the independent variables.
However, also here the resulting expressions can be rather complex
due to the high number of independent variables, and the
approximation accuracy can be unsatisfactory due to the global
nature of the approximation. If, for example, polynomials up to third
order are used, the resulting expression will consist of 56 terms.

5.2.5. Model robustness considerations

For all implementations of the steady-state functions, it is
advisable to choose the domain of the independent variables as
small as possible to achieve a high function accuracy. However, the
independent variable domain has to be large enough to cover the
operating domain the reduced model is intended for. Approximate
domain boundaries can be determined by simulation, where maximal
and minimal values of the different inputs are used. To increase the
model robustness, the independent variable domain should be
increased by a certain safety margin to account for situations where
the model states leave the expected operating domain. In case the
safety margin of a certain steady-state function is not sufficient, the
function could be temporarily replaced by a less accurate steady-state
function that has a larger independent variable domain. Since the
functions affect only the flows between the aggregation stages,
continuity of the state evolutions is guaranteed. If even this is not
enough, a reduced model after step 1 of the reduction method, that
means a model which still explicitly contains the steady-state stages,
can be used. Since there is no computational advantage of such a
reduced model over a full model, it should be used only as backup.

5.3. Selection of reduced model parameters

In Section 3.5, some guidelines on how to select the reduced
model parameters, namely the number and locations of the
aggregation stages and the aggregated holdup factors, were given.
The guidelines are not sufficient to determine all reduced model
parameters. While an ‘‘equal distribution’’ of the free aggregation
stages and the aggregated holdup factors yields models with
satisfactory approximation quality, it was shown that better
reduced models can be obtained by selecting the parameters
using a more specialized procedure. In the present study, the free
reduced model parameters were determined by fitting the top
concentration trajectories of the full and the reduced models.
Clearly, the reduced model will be optimized for the input
sequence used to generate the fitting trajectory, but this does not
guarantee that the approximation quality is close to optimal when
a significantly different input is applied.

It would be desirable to have an extended set of rules at hand
to derive near-optimal reduced model parameters without the
need of simulation data and optimization. An analytical derivation
of such rules is probably difficult due to the nonlinear and
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multiple-input multiple-output character of the system. However,
since the reduced model is structurally similar to the original
model, it should be possible in most cases to choose the number
and locations of the aggregation stages using some physical insight
into the dynamics of the column. To determine any remaining
parameters, especially the aggregated holdup factors, it seems
most practical to fit the model to available process data or some
carefully designed reference trajectory. When fitting, care should
be taken that the optimization criterion is selected with the
intended application of the reduced model in mind. For example,
when the accuracy of the reduced model after a certain time after
excitation (long-term or short-term response) is important, the
error should be weighted accordingly in the optimization criterion.

An alternative to determining the parameters ‘‘off-line’’ could be
some adaptive procedure during simulation or application of the
model. Similar to adaptive mesh methods for partial differential
equations (Baker, 1997), the number of aggregation stages could be
adapted locally to the dynamic activity in the different parts of the
column. Here, the ‘‘density’’ of aggregation stages should locally
match the dynamic activity in the different parts of the column. The
residuals of the dynamic aggregation stage equations could be taken
as a measure for the dynamic activity of the corresponding part of
the column, and aggregation stages could be added or removed to
change their density. To simplify implementation, a limited number
of possible aggregation stages should be fixed beforehand. This
procedure requires the calculation of additional steady-state func-
tions for the different possibilities of active aggregation stages.

A different adaptive approach can be used when the model is
used repeatedly with similar inputs during dynamic optimization.
Prior to the optimization iterations, a suitable model could be
selected from a bank of precalculated reduced models. The selection
can be based on the optimal inputs that have been calculated from
the previous optimization, and are now used as starting guess for the
new optimization. One reduced model with a large number of
aggregation stages can be used to generate a reference trajectory.
From the remaining models, the model which has the lowest
number of aggregation stages (lowest order) at an acceptable
deviation from the reference trajectory is selected for the optimiza-
tion. As a refinement, the model could be changed repeatedly during
one simulation. This procedure is rather generic, and not restricted
to models derived with the method proposed in this paper.

5.4. Application of reduced model in real-time optimizing control

It was shown in Section 4.3 that the reduced models can
increase the simulation speed by a factor of about 7.5 when the
same tolerance y¼ 10�2:5 is used. This makes the models
interesting for model predictive control and dynamic real-time
optimization applications. However, the performance of the
reduced models was assessed only in open-loop simulations with
long intervals between changes in the inputs. In real-time
optimizing control applications, input changes occur at much
higher frequencies. Due to their structure, the reduced models
approximate the long-term dynamics, which asymptotically
approach the correct steady-state, with good accuracy. The
short-term dynamics are not necessarily approximated equally
well. The suitability of a reduced model of this kind for model
predictive control and other real-time optimization applications
will largely depend on how well the time-scales of the application
and the model are matched, that means if the reduced model is
capable to follow the changes in control and disturbance inputs at
the frequency and speed they occur in the closed loop application.
This issue has to be addressed in a separate study, where the
reduced model is applied in a closed-loop optimizing control
application.

5.5. Alternative model reduction methods for distillation models

There exist several alternative model reduction methods for
distillation models.

Collocation methods (Cho and Joseph, 1983; Dalaouti and
Seferlis, 2006; Stewart et al., 1984) are probably the most similar
methods in terms of approximation accuracy and gain in
simulation speed. While they are not restricted to a low number
of components as the method described in the present study, they
possibly lose some approximation accuracy approximating staged
columns by continuous equations and applying collocation
methods to the resulting partial differential equations.

Wave propagation methods (Hankins, 2007; Kienle, 2000;
Marquardt, 1990) are so far restricted to distillation models with
rather strict assumptions such as constant molar flows, since they
make use of analytic solution of wave profile equations. The
resulting models can therefore be expected to have limited
approximation accuracy when used as reduced models for
complex distillation models. However, they result in models of
very low order, which promise very fast simulations.

Other methods are more suitable for nonlinear controller
design than for fast simulations (Kumar and Daoutidis, 2003). An
overview of further reduction and simplification methods for
distillation columns is given by Skogestad (1997).

6. Conclusions

A simplification of the aggregated modeling method of Lévine
and Rouchon (1991) and an extension to complex distillation
models is presented. The method is applicable in a straightforward
fashion by manipulating the left-hand sides of the differential
equations. It was shown that if the resulting algebraic equations
are eliminated from the reduced model, the reduced model yields a
gain in computational speed of a factor of around 7.5 over an
efficient implementation of the full model. The elimination of the
algebraic equations is conceptually straightforward, but requires
the approximation of functions of five independent variables. In
this study, look-up tables combined with multi-linear interpolation
were used for this purpose. The approximation quality of the
reduced models was shown by simulations to be very accurate. In
this study, a binary distillation model was investigated. The
extension of the method to systems with a larger number of
components is possible, but is limited by the increasing complexity
of the function approximations. For systems with a low number of
components, the resulting fast and accurate reduced models are
promising for real-time optimizing control applications.
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