Self-Optimizing Control and NCO tracking

in the Context of Real-Time Optimization

DYCOPS 2010, Leuven

Johannes Jäschke, Sigurd Skogestad

Norwegian University of Science and Technology (NTNU)

Trondheim

Outline

- 1. Introduction
- 2. NCO-tracking
- 3. Self-optimizing control (SOC)
- 4. Properties of NCO tracking and SOC
- 5. Combine methods
- 6. CSTR Example
- 7. Conclusions

1. Introduction

- Steady state optimization of continuous processes
- · Objective:

$$\min_{\boldsymbol{u}} \boldsymbol{\mathit{J}}(\boldsymbol{u},\boldsymbol{d}) \quad \text{s.t.} \quad \boldsymbol{\mathit{S}}(\boldsymbol{u},\boldsymbol{d}) \leq 0.$$

1. Introduction

- Steady state optimization of continuous processes
- · Objective:

$$\min_{\boldsymbol{u}} \boldsymbol{\mathit{J}}(\boldsymbol{u},\boldsymbol{d}) \quad \text{s.t.} \quad \boldsymbol{\mathit{S}}(\boldsymbol{u},\boldsymbol{d}) \leq 0.$$

Introduction – Conclusion preview

In practice

We propose.

Introduction - Conclusion preview

In practice

We propose.

Optimization Problem

• Origin: Batch-to-Batch optimization

$$\min_{\mathbf{u}} J(\mathbf{u}, \mathbf{d})$$
 s.t. $S(\mathbf{u}, \mathbf{d}) = 0$.

Iteratively update the input u

Optimization Problem

Origin: Batch-to-Batch optimization

$$\min_{\mathbf{u}} J(\mathbf{u}, \mathbf{d})$$
 s.t. $S(\mathbf{u}, \mathbf{d}) = 0$.

- Iteratively update the input u to
- satisfy the Necessary Conditions of Optimality (NCO)

$$\underbrace{\frac{\mathcal{S}(\mathbf{u},\mathbf{d})=0}{\partial \mathbf{u}}}, \qquad \underbrace{\left(\frac{\partial J(\mathbf{u},\mathbf{d})}{\partial \mathbf{u}}\right)^{\mathsf{T}} + \left(\frac{\partial S(\mathbf{u},\mathbf{d})}{\partial \mathbf{u}}\right)^{\mathsf{T}} \lambda = 0}_{\mathsf{Sensitivities}}$$

(Srinivasan 2002, François 2005, Srinivasan 2008)

Optimization Problem

• Origin: Batch-to-Batch optimization

$$\min_{\mathbf{u}} J(\mathbf{u}, \mathbf{d})$$
 s.t. $S(\mathbf{u}, \mathbf{d}) = 0$.

- Iteratively update the input u to
- satisfy the Necessary Conditions of Optimality (NCO)

$$\underbrace{\frac{\mathcal{S}(\mathbf{u},\mathbf{d})=0}{\text{Active constraints}}}, \qquad \underbrace{\left(\frac{\partial J(\mathbf{u},\mathbf{d})}{\partial \mathbf{u}}\right)^{\mathsf{T}} + \left(\frac{\partial S(\mathbf{u},\mathbf{d})}{\partial \mathbf{u}}\right)^{\mathsf{T}} \lambda = 0}_{\mathsf{Sensitivities}}$$

Idea: Track the optimality conditions using measurements

(Srinivasan 2002, François 2005, Srinivasan 2008)

Optimization Problem

• Origin: Batch-to-Batch optimization

$$\min_{\mathbf{u}} J(\mathbf{u}, \mathbf{d})$$
 s.t. $S(\mathbf{u}, \mathbf{d}) = 0$.

- Iteratively update the input u to
- satisfy the Necessary Conditions of Optimality (NCO)

$$\underbrace{\frac{\mathcal{S}(\mathbf{u},\mathbf{d})=0}{\text{Active constraints}}}, \qquad \underbrace{\left(\frac{\partial J(\mathbf{u},\mathbf{d})}{\partial \mathbf{u}}\right)^{\mathsf{T}} + \left(\frac{\partial S(\mathbf{u},\mathbf{d})}{\partial \mathbf{u}}\right)^{\mathsf{T}} \lambda = 0}_{\mathsf{Sensitivities}}$$

- Idea: Track the optimality conditions using measurements
 - Measurements: Measured and estimated quantities

(Srinivasan 2002, François 2005, Srinivasan 2008)

· Unconstrained optimization

- Iteratively update u
- Push sensitivities J_{ii} to zero.

· Unconstrained optimization

- Iteratively update u
- Push sensitivities J_{ii} to zero.

• Constraints: partition input space: ū, ũ

$$\mathcal{S}(\bar{\boldsymbol{u}},\tilde{\boldsymbol{u}},\boldsymbol{d})=0$$

- Constraints: partition input space: ū, ũ
- Constraint seeking inputs ū:

$$\Delta \bar{\boldsymbol{u}} = -\left(\frac{\partial \boldsymbol{\mathcal{S}}(\bar{\boldsymbol{u}}, \tilde{\boldsymbol{u}}, \boldsymbol{d})}{\partial \bar{\boldsymbol{u}}}\right)^{-1} \boldsymbol{S_{\!m}}$$

 S_m : measured constraint

$$\mathcal{S}(\bar{\boldsymbol{u}},\tilde{\boldsymbol{u}},\boldsymbol{d})=0$$

- Constraints: partition input space: ū, ũ
- Constraint seeking inputs ū:

$$\Delta \bar{\boldsymbol{u}} = -\left(\frac{\partial \boldsymbol{S}(\bar{\boldsymbol{u}}, \tilde{\boldsymbol{u}}, \boldsymbol{d})}{\partial \bar{\boldsymbol{u}}}\right)^{-1} \boldsymbol{S_m}$$

 S_m : measured constraint

• Sensitivity seeking inputs ũ

$$\begin{split} \Delta \tilde{\mathbf{u}} &= -\left(\frac{\partial^2 J(\bar{\mathbf{u}}, \tilde{\mathbf{u}}, \mathbf{d})}{\partial \tilde{\mathbf{u}}^2}\right)^{-1} \left(\frac{\partial J(\bar{\mathbf{u}}, \tilde{\mathbf{u}}, \mathbf{d})}{\partial \tilde{\mathbf{u}}}\right)_m \\ &= -\mathbf{J}_{\tilde{\mathbf{u}}\tilde{\mathbf{u}}}^{-1} \mathbf{J}_{\tilde{\mathbf{u}}} \end{split}$$

J_n: measured gradient

$$\frac{\partial \textit{J}(\bar{\boldsymbol{u}},\tilde{\boldsymbol{u}},\boldsymbol{d})}{\partial \tilde{\boldsymbol{u}}} = 0$$

$$\mathcal{S}(\bar{\boldsymbol{u}},\tilde{\boldsymbol{u}},\boldsymbol{d})=0$$

- Constraints: partition input space: ū, ũ
- Constraint seeking inputs ū:

$$\Delta \bar{\boldsymbol{u}} = -\left(\frac{\partial \boldsymbol{\mathcal{S}}(\bar{\boldsymbol{u}}, \tilde{\boldsymbol{u}}, \boldsymbol{d})}{\partial \bar{\boldsymbol{u}}}\right)^{-1} \boldsymbol{\mathcal{S}_m}$$

 S_m : measured constraint

• Sensitivity seeking inputs ũ

$$\begin{split} \Delta \tilde{\mathbf{u}} &= -\left(\frac{\partial^2 J(\bar{\mathbf{u}}, \tilde{\mathbf{u}}, \mathbf{d})}{\partial \tilde{\mathbf{u}}^2}\right)^{-1} \left(\frac{\partial J(\bar{\mathbf{u}}, \tilde{\mathbf{u}}, \mathbf{d})}{\partial \tilde{\mathbf{u}}}\right)_m \\ &= -\mathbf{J}_{\bar{\mathbf{u}}\bar{\mathbf{u}}}^{-1} \mathbf{J}_{\bar{\mathbf{u}}} \end{split}$$

J_n: measured gradient

$$\frac{\partial \textit{J}(\bar{\boldsymbol{u}},\tilde{\boldsymbol{u}},\boldsymbol{d})}{\partial \tilde{\boldsymbol{u}}} = 0$$

$$\mathcal{S}(\bar{\boldsymbol{u}},\tilde{\boldsymbol{u}},\boldsymbol{d})=0$$

$$\mathbf{u}^{\textit{new}} = \mathbf{u}^{\textit{old}} + \beta \Delta \mathbf{u}$$

Step length parameter: β

Some comments on NCO tracking

- $J_{\mathbf{u}}$ and $\Delta \mathbf{u}$ only defined at steady state
 - What about transients?

Some comments on NCO tracking

- $J_{\mathbf{u}}$ and $\Delta \mathbf{u}$ only defined at steady state
 - What about transients?
- Gradient is generally difficult to measure
 - Finite difference
 - Model

Some comments on NCO tracking

- $J_{\mathbf{u}}$ and $\Delta \mathbf{u}$ only defined at steady state
 - What about transients?
- · Gradient is generally difficult to measure
 - Finite difference
 - Model

Strengths:

- Converges to the optimum after few iterations
- No knowledge about disturbance required

Some comments on NCO tracking

- $J_{\mathbf{u}}$ and $\Delta \mathbf{u}$ only defined at steady state
 - What about transients?
- Gradient is generally difficult to measure
 - Finite difference
 - Model

Strengths:

- Converges to the optimum after few iterations
- No knowledge about disturbance required

Weaknesses

- Existing knowledge about disturbances is not used
- Online (intermediate/transient) measurements not used
- Discrete input updates
 - Active constraints satisfied iteratively (⇔ Feedback)

$$\min_{\mathbf{u}} J(\mathbf{u}, \mathbf{d})$$
 s.t. $S(\mathbf{u}, \mathbf{d}) = 0$.

• Active constraints $S(\mathbf{u}, \mathbf{d}) = 0$ controlled (by PI controller)

$$\min_{\mathbf{u}} J(\mathbf{u}, \mathbf{d})$$
 s.t. $S(\mathbf{u}, \mathbf{d}) = 0$.

• Active constraints $S(\mathbf{u}, \mathbf{d}) = 0$ controlled (by PI controller)

• SOC addresses the question: How to select H?

$$\min_{\mathbf{u}} J(\mathbf{u}, \mathbf{d})$$
 s.t. $S(\mathbf{u}, \mathbf{d}) = 0$.

• Active constraints $S(\mathbf{u}, \mathbf{d}) = 0$ controlled (by PI controller)

- SOC addresses the question: How to select H?
- y instant online measurements

Definition (Skogestad (2000))

Self-optimizing control is when we can achieve an acceptable loss with constant setpoint values for the controlled variables

Definition (Skogestad (2000))

Self-optimizing control is when we can achieve an acceptable loss with constant setpoint values for the controlled variables

Definition (Skogestad (2000))

Self-optimizing control is when we can achieve an acceptable loss with constant setpoint values for the controlled variables

Interpretation: Find good and simple approximation to J_u using online measurements \mathbf{v}

Interpretation: Find good and simple approximation to J_u using online measurements \mathbf{y}

• Ideal controlled variable: Gradient Ju

Interpretation: Find good and simple approximation to J_u using online measurements **y**

- Ideal controlled variable: Gradient Ju
- Single measurements:

$$\mathbf{c} = \mathbf{H}\mathbf{y} \qquad \mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Interpretation: Find good and simple approximation to J_u using online measurements **y**

- Ideal controlled variable: Gradient Ju
- Single measurements:

$$\mathbf{c} = \mathbf{H}\mathbf{y} \qquad \mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Combinations of measurements:

$$\mathbf{c} = \mathbf{H}\mathbf{y}$$
 $\mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \end{bmatrix}$

e.g. ratio control

Null space method

$$\min_{u} \textit{J}(u,d) = [u\,d] \left[\begin{array}{cc} J_{uu} & J_{ud} \\ J_{ud}^{T} & J_{dd} \end{array} \right] \left[\begin{array}{c} u \\ d \end{array} \right]$$

- Linear measurement model $\mathbf{y} = \mathbf{G}^{y}\mathbf{u} + \mathbf{G}_{d}^{y}\mathbf{d}$
- Linear Measurement combinations $\mathbf{c} = \mathbf{H} \mathbf{y}$

Null space method

$$\min_{u} \textit{J}(u,d) = [u\,d] \left[\begin{array}{cc} J_{uu} & J_{ud} \\ J_{ud}^{\mathsf{T}} & J_{dd} \end{array} \right] \left[\begin{array}{c} u \\ d \end{array} \right]$$

- Linear measurement model $\mathbf{y} = \mathbf{G}^{\mathbf{y}}\mathbf{u} + \mathbf{G}_{d}^{\mathbf{y}}\mathbf{d}$
- Linear Measurement combinations c = Hy

Theorem

Given a sufficient number of measurements ($n_y \ge n_u + n_d$) and no measurement noise, select **H** such that

$$HF = 0$$

where

$$\mathbf{F} = \frac{\partial \mathbf{y}^{opt}}{\partial \mathbf{d}}$$

-Controlling $\mathbf{c} = \mathbf{H}\mathbf{y}$ to zero yields locally zero loss from optimal operation.

Proof

$$\begin{split} \textbf{F} &= \frac{\partial \textbf{y}^{opt}}{\partial \textbf{d}} \\ \textbf{y}^{opt}(\textbf{d}) &- \textbf{y}^{opt}(\textbf{d}_0) = \textbf{F}(\textbf{d} - \textbf{d}_0) \end{split}$$

Proof

$$\begin{split} \textbf{F} &= \frac{\partial \textbf{y}^{opt}}{\partial \textbf{d}} \\ \textbf{y}^{opt}(\textbf{d}) &- \textbf{y}^{opt}(\textbf{d}_0) = \textbf{F}(\textbf{d} - \textbf{d}_0) \end{split}$$

Using $\mathbf{c} = \mathbf{H}\mathbf{y}$:

$$\underbrace{\mathbf{c}^{opt}(\mathbf{d}) - \mathbf{c}^{opt}(\mathbf{d}_0)}_{\Delta \mathbf{c}^{opt}} = \mathsf{HF}(\mathbf{d} - \mathbf{d}_0)$$

Since $\mathbf{HF} = 0$, we have that $\Delta \mathbf{c} = 0$

Proof

$$\begin{aligned} \textbf{F} &= \frac{\partial \textbf{y}^{opt}}{\partial \textbf{d}} \\ \textbf{y}^{opt}(\textbf{d}) &- \textbf{y}^{opt}(\textbf{d}_0) = \textbf{F}(\textbf{d} - \textbf{d}_0) \end{aligned}$$

Using $\mathbf{c} = \mathbf{H}\mathbf{y}$:

$$\underbrace{\boldsymbol{c}^{\textit{opt}}(\boldsymbol{d}) - \boldsymbol{c}^{\textit{opt}}(\boldsymbol{d}_0)}_{\Delta \boldsymbol{c}^{\textit{opt}}} = \boldsymbol{\mathsf{HF}}(\boldsymbol{d} - \boldsymbol{d}_0)$$

Since $\mathbf{HF} = 0$, we have that $\Delta \mathbf{c} = 0$

Obtaining F

- · Assume set of disturbances d
- Numerically find $\mathbf{F} = \frac{\Delta \mathbf{y}^{opt}}{\Delta \mathbf{d}}$
- From $\mathbf{F} = -\mathbf{G}^y \mathbf{J_{uu}}^{-1} \mathbf{J_{ud}} + \mathbf{G}_d^y$ where $\mathbf{J_{uu}} = \frac{\partial^2 J}{\partial \mathbf{u}^2}$ and $\mathbf{J_{ud}} = \frac{\partial J}{\partial \mathbf{d}}$

4. Properties of NCO tracking and SOC

Self-optimizing control

 $\bullet \ \ \text{Procedure for finding } \textbf{c} = \textbf{Hy} \\$

NCO tracking

• Controlled variable: Ju

Self-optimizing control

- Procedure for finding **c** = **Hy**
- Ju and Jacobian not measured

- Controlled variable: J_u
- J_u and Jacobian are measured

Self-optimizing control

- Procedure for finding c = Hy
- J_u and Jacobian not measured
- Important d known a priori

- Controlled variable: Ju
- J_u and Jacobian are measured
- No assumption disturbances

Self-optimizing control

- Procedure for finding c = Hy
- J_u and Jacobian not measured
- Important **d** known a priori
- $\mathbf{F} = \frac{\partial \mathbf{y}^{opt}}{\partial \mathbf{d}}$ from disturbance model

- Controlled variable: J_u
- J_u and Jacobian are measured
- No assumption disturbances
- No model needed

Self-optimizing control

- Procedure for finding c = Hy
- Ju and Jacobian not measured
- Important d known a priori
- $\mathbf{F} = \frac{\partial \mathbf{y}^{opt}}{\partial \mathbf{d}}$ from disturbance model
- Active constraints controlled by Feedback (PI)

- Controlled variable: J_u
- J_u and Jacobian are measured
- No assumption disturbances
- No model needed
- Active constraints controlled by input updates

Self-optimizing control

- Procedure for finding c = Hy
- J_u and Jacobian not measured
- Important d known a priori
- $\mathbf{F} = \frac{\partial \mathbf{y}^{opt}}{\partial \mathbf{d}}$ from disturbance model
- Active constraints controlled by Feedback (PI)
- Local (linearized at nominal point)

- Controlled variable: J_u
- J_u and Jacobian are measured
- No assumption disturbances
- No model needed
- Active constraints controlled by input updates
- · Local, moves with operating point

Self-optimizing control

- Procedure for finding c = Hy
- J_u and Jacobian not measured
- Important d known a priori
- $\mathbf{F} = \frac{\partial \mathbf{y}^{opt}}{\partial \mathbf{d}}$ from disturbance model
- Active constraints controlled by Feedback (PI)
- Local (linearized at nominal point)
- Continuous input change (by e. g. PI-control)

- Controlled variable: Ju
- J_u and Jacobian are measured
- No assumption disturbances
- No model needed
- Active constraints controlled by input updates
- Local, moves with operating point
- Iterative input change at sampling times

Self-optimizing control

- Procedure for finding $\mathbf{c} = \mathbf{H} \mathbf{y}$
- J_u and Jacobian not measured
- Important d known a priori
- $\mathbf{F} = \frac{\partial \mathbf{y}^{opt}}{\partial \mathbf{d}}$ from disturbance model
- Active constraints controlled by Feedback (PI)
- Local (linearized at nominal point)
- Continuous input change (by e. g. PI-control)
 - ⇒ Lower control layer

- Controlled variable: Ju
- J_u and Jacobian are measured
- No assumption disturbances
- No model needed
- Active constraints controlled by input updates
- Local, moves with operating point
- Iterative input change at sampling times

Self-optimizing control

- ullet Procedure for finding ${f c}={f Hy}$
- J_u and Jacobian not measured
- Important d known a priori
- $\mathbf{F} = \frac{\partial \mathbf{y}^{opt}}{\partial \mathbf{d}}$ from disturbance model
- Active constraints controlled by Feedback (PI)
- Local (linearized at nominal point)
- Continuous input change (by e. g. PI-control)
 - ⇒ Lower control layer

NCO tracking

- Controlled variable: Ju
- J_u and Jacobian are measured
- No assumption disturbances
- No model needed
- Active constraints controlled by input updates
- Local, moves with operating point
- Iterative input change at sampling times

⇒ RTO layer

- Control active constraints $S(\mathbf{u}, \mathbf{d}) = 0$ using feedback, e.g. PI-control
- Separate layers:

- Control active constraints $S(\mathbf{u}, \mathbf{d}) = 0$ using feedback, e.g. PI-control
- Separate layers:

- Control active constraints $S(\mathbf{u}, \mathbf{d}) = 0$ using feedback, e.g. PI-control
- Separate layers:

Combines the advantages

• Smooth inputs **u**

Combines the advantages

- Smooth inputs **u**
- Expected disturbances rejected fast by SOC (lower layer)

Combines the advantages

- Smooth inputs **u**
- Expected disturbances rejected fast by SOC (lower layer)
- Unexpected disturbances rejected on a slow time scale by NCO tracking (RTO layer)

Combines the advantages

- Smooth inputs u
- Expected disturbances rejected fast by SOC (lower layer)
- Unexpected disturbances rejected on a slow time scale by NCO tracking (RTO layer)
- Gradient measurements not required so frequently.

$$A \rightleftharpoons B$$

$$A \rightleftharpoons B$$

Disturbance (d):

Feed Concentration $C_{A,in}$ Feed Concentration $C_{B,in}$

$$A \rightleftharpoons B$$

Disturbance (d):

Feed Concentration Feed Concentration

 $C_{A,in}$ $C_{B,in}$

Input (u):

Jacket temperature

 T_i

$$A \rightleftharpoons B$$

Disturbance (d):

Feed Concentration $C_{A,in}$ Feed Concentration $C_{B,in}$

Input (u):

Jacket temperature T_i

Measurements (y):

Concentration C_A

Concentration C_B Temperature T

$$A \Rightarrow B$$

Disturbance (d):

Feed Concentration $C_{A,in}$ Feed Concentration $C_{B,in}$

Input (u):

Jacket temperature T_i

Measurements (y):

 $\begin{array}{ccc} \text{Concentration} & & & C_A \\ \text{Concentration} & & & C_B \\ \text{Temperature} & & & T \\ \end{array}$

$$\frac{dC_A}{dt} = \frac{1}{\tau} (C_{A,in} - C_A) - r$$

$$\frac{dC_B}{dt} = \frac{1}{\tau} (C_{B,in} - C_B) + r$$

$$\frac{dT}{dt} = \frac{1}{\tau} (T_i - T) + \frac{-\Delta H_{rx}}{\rho C_p} r$$

$$r = k_1 C_A - k_2 C_B$$
$$k_1 = K_1 e^{\frac{-E_1}{RT}}$$
$$k_2 = K_2 e^{\frac{-E_2}{RT}}$$

 T_i

 C_A

 C_B

$$A \rightleftharpoons B$$

Disturbance (d):

Feed Concentration $C_{A,in}$ Feed Concentration $C_{B,in}$

Input (u):

Jacket temperature

Measurements (v):

Concentration Concentration Temperature

$$\frac{dC_B}{dt} = \frac{1}{\tau} (C_{B,in} - C_B) + r$$

$$\frac{dT}{dt} = \frac{1}{\tau} (T_i - T) + \frac{-\Delta H_{rx}}{\rho C_p} r$$

$$r = k_1 C_A - k_2 C_B$$

 $\frac{dC_A}{dt} = \frac{1}{\tau}(C_{A,in} - C_A) - r$

$$k_1 = K_1 e^{\frac{-E_1}{RT}}$$

 $k_2 = K_2 e^{\frac{-E_2}{RT}}$

Objective: Maximize Profit

$$\max_{T_i} J = p_{C_B} C_B - (p_{T_i} T_i)^2$$

Noise: offset -0.1, std dev: 0.2

CSTR Example - Disturbances (d)

Perturb \mathbf{u} and run plant to steady state to estimate $J_u(\mathbf{u}_k)$

Estimate $\mathbf{J_{uu}}^{-1}(\mathbf{u}_k)$ using a BFGS update

Update input:

$$\Delta \mathbf{u} = -\mathbf{J}_{\mathbf{u}\mathbf{u}}^{-1}(\mathbf{u}_k)J_{u}(\mathbf{u}_k)$$

 $\mathbf{u}_{k+1} = \mathbf{u}_k + \beta\Delta\mathbf{u}$

Sampling time $T_S = 10 \text{ min}$ Perturbation $\Delta T_{pert} = 1 \text{ K}$ Step size $\beta = 0.4$

Sampling time $T_S = 10 \text{ min}$ Perturbation $\Delta T_{pert} = 1 \text{ K}$ Step size $\beta = 0.4$

Instantaneous profit

Concentrations and reactor temperature

Instantaneous profit

Concentrations and reactor temperature

Self-optimizing control

- Cost is not measured
- Select **H** such that **HF** = 0

$$\mathbf{F} = \frac{\partial \mathbf{y}^{op}}{\partial \mathbf{d}}$$

c = Hy

Controlled variable:

$$-0.769$$
 $C_A + 0.639$ $C_B + 0.005$ T

Self-optimizing control

- · Cost is not measured
- Select **H** such that **HF** = 0

$$\mathbf{F} = \frac{\partial \mathbf{y}^{opt}}{\partial \mathbf{d}}$$

• c = Hy

Controlled variable:

$$\mathbf{c} =$$

$$-0.769$$
 $C_A + 0.639$ $C_B + 0.005$ T

Input and controlled variable c

Instantaneous Profit

Concentrations and reactor temperature

Instantaneous Profit

Concentrations and reactor temperature

Comparing instantaneous profit

Comparing instantaneous profit

Comparing input usage

Comparing instantaneous profit

Comparing input usage

Winner so far: SOC

CSTR Example – Unexpected disturbance in E_2

• New disturbance: Activation Energy E₂ changes +10%

$$\textit{k}_2 = \textit{K}_2 e^{\frac{-\textit{E}_2}{\textit{RT}}}$$

Reaction rate:

$$r = k_1 C_A - k_2 C_B$$

Favours formation of product B

CSTR Example – Unexpected disturbance in E_2

• New disturbance: Activation Energy E₂ changes +10%

$$\mathit{k}_{2}=\mathit{K}_{2}e^{\frac{-\mathit{E}_{2}}{\mathit{RT}}}$$

Reaction rate:

$$r = k_1 C_A - k_2 C_B$$

- Favours formation of product B
- Not taken into account when calculating $\mathbf{F} = \frac{\partial \mathbf{y}^{opt}}{\partial \mathbf{d}}$

CSTR Example – Unexpected disturbance in E_2

Instantaneous profit

CSTR Example – Unexpected disturbance in E_2

Instantaneous profit

Reactor states

CSTR Example – Unexpected disturbance in E_2

Instantaneous profit

CSTR Example – Unexpected disturbance in E_2

Winner this time: NCO tracking

Profit

NCO tracking and SOC

• Have the same purpose:

NCO tracking and SOC

• Have the same purpose:

 $\min J(\mathbf{u}, \mathbf{d})$

Are not competing methods

NCO tracking and SOC

Have the same purpose:

- Are not competing methods
- Should be seen as complementary
 - NCO tracking as RTO
 - SOC used in the lower layer.

NCO tracking and SOC

Have the same purpose:

- Are not competing methods
- Should be seen as complementary
 - NCO tracking as RTO
 - SOC used in the lower layer.
- Self-optimizing control can not replace RTO

NCO tracking and SOC

Have the same purpose:

- Are not competing methods
- Should be seen as complementary
 - NCO tracking as RTO
 - SOC used in the lower layer.
- Self-optimizing control can not replace RTO
- Self-optimizing control layer reduces need for RTO/NCO tracking updates
 - less perturbations and discrete input changes

NCO tracking and SOC

Have the same purpose:

- Are not competing methods
- Should be seen as complementary
 - NCO tracking as RTO
 - SOC used in the lower layer.
- Self-optimizing control can not replace RTO
- Self-optimizing control layer reduces need for RTO/NCO tracking updates
 - less perturbations and discrete input changes
- Use SOC in the lower layer

Thank you

