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1. Introduction

Disturbance d

Input u Measurements Yy

-

e Steady state optimization of continuous processes

e Objective:
muinJ(u,d) st. S(u,d) <O0.
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Introduction — Conclusion preview

In practice We propose.
Operator (RTO)

yset

Controller

u

Process
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Introduction — Conclusion preview

In practice We propose.
NCO tracking
Operator (RTO) as ATO
yset csetpoint — UNCO tracking

Controller

u

PID controller

Process

d
ey
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2. NCO tracking for static optimization (Francois et al. 2005)

Optimization Problem
e Origin: Batch-to-Batch optimization

minJ(u,d) st S(u,d)=0.
u

e lteratively update the input u

(Srinivasan 2002, Frangois 2005, Srinivasan 2008)
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2. NCO tracking for static optimization (Francois et al. 2005)
Optimization Problem
e Origin: Batch-to-Batch optimization
muin J(u,d) st S(u,d)=0.

e lteratively update the input u to
e satisfy the Necessary Conditions of Optimality (NCO)

swo-o . (MY (sswa),

Active constraints N
Sensitivities

(Srinivasan 2002, Frangois 2005, Srinivasan 2008)
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2. NCO tracking for static optimization (Francois et al. 2005)
Optimization Problem
e Origin: Batch-to-Batch optimization
muin J(u,d) st S(u,d)=0.

e lteratively update the input u to
e satisfy the Necessary Conditions of Optimality (NCO)

swo-o . (MY (sswa),

Active constraints N
Sensitivities

¢ |dea: Track the optimality conditions using measurements

(Srinivasan 2002, Frangois 2005, Srinivasan 2008)
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2. NCO tracking for static optimization (Francois et al. 2005)
Optimization Problem
e Origin: Batch-to-Batch optimization
muin J(u,d) st S(u,d)=0.

e lteratively update the input u to
e satisfy the Necessary Conditions of Optimality (NCO)

swo-o . (MY (sswa),

Active constraints N
Sensitivities

¢ |dea: Track the optimality conditions using measurements
— Measurements: Measured and estimated quantities

(Srinivasan 2002, Frangois 2005, Srinivasan 2008)
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NCO tracking for static optimization (Francois et al. 2005)

e Unconstrained optimization

Disturbances

d
uk+]=uk+ A
Controller Ju
Au=-J,,J,

e lteratively update u
e Push sensitivities J, to zero.
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NCO tracking for static optimization (Francois et al. 2005)

e Unconstrained optimization
Run plant to steady state

Disturbances

d

“Measure gradient”
(E.g. perturb u and use finite differ-
ences to estimate gradient Jy(uk))

U= Ut A l
Estimate Juu~'(ux) us-
ing a BFGS update

- Controller Ly (Or use nominal Hessian)
Au=-J,,Jy l
o lteratively update u Update input:
- Au = —Juy~(Ug)du(uk)
e Push sensitivities J,, to zero. Ui = Uk + BAU

aschke, SOC and NCO tracking in the context of RTO



NCO tracking for static optimization (Francois et al. 2005)

e Constraints: partition input space: u, U
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NCO tracking for static optimization (Francois et al. 2005)

e Constraints: partition input space: u, U
e Constraint seeking inputs u:

- ~ —1
Al — (M) S,
ou

Sm: measured constraint
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NCO tracking for static optimization (Francois et al. 2005)

e Constraints: partition input space: u, U
e Constraint seeking inputs u:
-~ —1
Al — — (88(u,_u,d)) S,
ou

Sm: measured constraint

e Sensitivity seeking inputs U

. (RJ(T,0,d)\ " [0J(T,d,d)
aa=-(Z5R9) (M589),

= —J5i s

Ja: measured gradient
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NCO tracking for static optimization (Francois et al. 2005)

e Constraints: partition input space: u, U
e Constraint seeking inputs u:
-~ —1
Al — — (88(u,_u,d)> S,
ou

Sm: measured constraint

e Sensitivity seeking inputs U

. (RJ(T,0,d)\ " [0J(T,d,d)
aa=-(Z5R9) (M589),

= —J5i s

new __ .old
Ja: measured gradient ‘ uT =u" +pAu ‘

Step length parameter: 3
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NCO tracking for static optimization
Some comments on NCO tracking

e J, and Au only defined at steady state
— What about transients?

S(T0,d)=0
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NCO tracking for static optimization

Some comments on NCO tracking
e J, and Au only defined at steady state
— What about transients?
e Gradient is generally difficult to measure

— Finite difference
— Model

S(T0,d)=0
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NCO tracking for static optimization

Some comments on NCO tracking
e J, and Au only defined at steady state
— What about transients?
e Gradient is generally difficult to measure

— Finite difference
— Model

Strengths:

e Converges to the optimum after few iterations ;
¢ No knowledge about disturbance required s
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NCO tracking for static optimization

Some comments on NCO tracking
e J, and Au only defined at steady state
— What about transients?
e Gradient is generally difficult to measure

— Finite difference
— Model

Strengths:

e Converges to the optimum after few iterations I

¢ No knowledge about disturbance required e
Weaknesses

e Existing knowledge about disturbances is not used

e Online (intermediate/transient) measurements not used

o_Discrete input updates

— Active constraints satisfied iteratively (< Feedback)
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3. Self-optimizing control
muinJ(u7d) st S(u,d)=0.

e Active constraints S(u,d) = 0 controlled (by PI controller)

Disturbances
d

Controller c
.~ const
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3. Self-optimizing control
muinJ(u7d) st S(u,d)=0.

e Active constraints S(u,d) = 0 controlled (by PI controller)

Disturbances
d

Controller c
.~ const

e SOC addresses the question: How to select H?
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3. Self-optimizing control
muinJ(u7d) st S(u,d)=0.

e Active constraints S(u,d) = 0 controlled (by PI controller)

Disturbances
d

Controller c
.~ const

e SOC addresses the question: How to select H?
e Yy instant online measurements
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Self-optimizing control

Definition (Skogestad (2000))

Self-optimizing control is when we can achieve an acceptable loss with constant
setpoint values for the controlled variables
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Self-optimizing control

Definition (Skogestad (2000))

Self-optimizing control is when we can achieve an acceptable loss with constant
setpoint values for the controlled variables

Disturbances
d

Loss ¢=H,y
u Y J_Jopl
Loss
Controller c | opt
C,.;= const 0 ! cr=J u
—
d d,
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Self-optimizing control

Definition (Skogestad (2000))

Self-optimizing control is when we can achieve an acceptable loss with constant
setpoint values for the controlled variables

Disturbances
d
Loss

J-J opt

Controller c
C,~ const 0
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Self-optimizing control

Interpretation: Find good and simple approximation to J,
using online measurements y
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Self-optimizing control

Interpretation: Find good and simple approximation to J,
using online measurements y
e |deal controlled variable: Gradient J,
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Self-optimizing control

Interpretation: Find good and simple approximation to J,
using online measurements y

e |deal controlled variable: Gradient J,

e Single measurements:
00
10

c =Hy H:[é 8}
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Self-optimizing control

Interpretation: Find good and simple approximation to J,
using online measurements y

e |deal controlled variable: Gradient J,

e Single measurements:

1 000
¢ =Hy H_[o 10 0}
e Combinations of measurements:

hy1 hi2 s h14}

c=H H=
y [hm hoo  hoz  hog

e. g. ratio control
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Self-optimizing control

Null space method

] _ Juu Jud u
minJ(u,d) = [ud] { Jua"  Jad } [ d }

e Linear measurement model y = G'u + G/,d
e Linear Measurement combinations ¢ = Hy
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Self-optimizing control

Null space method

. . Juu Jud u
mumJ(u,d) = [ud] [ JugT  Jug } [ d }
e Linear measurement model y = G'u + G/,d

e Linear Measurement combinations ¢ = Hy

Theorem

Given a sufficient number of measurements (n, > n, + ng) and no measurement
noise, select H such that

HF =0
where
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Self-optimizing control
Proof

8yopt
od
y*(d) — y*(do) = F(d — do)

F =
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Self-optimizing control

Proof
opt
F= 8<;,d

y*(d) — y*(do) = F(d — do)
Using ¢ = Hy:

c®(d) — ¢®(dy) = HF(d — do)

T
Since HF = 0, we have that Ac =0 O
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Self-optimizing control

Proof
_ 8yopt
F= od
y¥(d) — y*(do) = F(d — do)
Using ¢ = Hy:
c°p‘(d) - c"p’(do) = HF(d — do)
—_—
Acopt
Since HF = 0, we have that Ac =0 O
Obtaining F
e Assume set of disturbances d
« Numerically find F = 25"
e FromF = —-G'Juw "Jua + G, where Juu = % and Jua = 54
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4. Properties of NCO tracking and SOC

Self-optimizing control NCO tracking

e Procedure for finding ¢ = Hy e Controlled variable: Jy
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4. Properties of NCO tracking and SOC

Self-optimizing control NCO tracking
e Procedure for finding ¢ = Hy e Controlled variable: Jy
e J, and Jacobian not measured e J, and Jacobian are measured
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4. Properties of NCO tracking and SOC

Self-optimizing control NCO tracking
e Procedure for finding ¢ = Hy e Controlled variable: Jy
e J, and Jacobian not measured e J, and Jacobian are measured
e Important d known a priori e No assumption disturbances
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4. Properties of NCO tracking and SOC

Self-optimizing control NCO tracking
e Procedure for finding ¢ = Hy e Controlled variable: Jy
e J, and Jacobian not measured e J, and Jacobian are measured

e Important d known a priori

opt
® F= a‘éd

No assumption disturbances
from disturbance model ¢ No model needed
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4. Properties of NCO tracking and SOC

Self-optimizing control NCO tracking
e Procedure for finding ¢ = Hy e Controlled variable: Jy
e J, and Jacobian not measured e J, and Jacobian are measured
e Important d known a priori e No assumption disturbances
e F— 2% from disturbance model o No model needed
e Active constraints controlled by e Active constraints controlled by
Feedback (Pl) input updates
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4. Properties of NCO tracking and SOC

Self-optimizing control NCO tracking

e Procedure for finding ¢ = Hy e Controlled variable: Jy

e J, and Jacobian not measured e J, and Jacobian are measured

e Important d known a priori e No assumption disturbances

e F— 2% from disturbance model ¢ No model needed

e Active constraints controlled by e Active constraints controlled by
Feedback (Pl) input updates

e Local (linearized at nominal point) e Local, moves with operating point

e Continuous input change (by e [terative input change at sampling
e.g. Pl-control) times
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4. Properties of NCO tracking and SOC

Self-optimizing control NCO tracking

e Procedure for finding ¢ = Hy e Controlled variable: Jy

e J, and Jacobian not measured e J, and Jacobian are measured

e Important d known a priori e No assumption disturbances

e F— 2% from disturbance model ¢ No model needed

e Active constraints controlled by e Active constraints controlled by
Feedback (Pl) input updates

e Local (linearized at nominal point) e Local, moves with operating point

e Continuous input change (by e [terative input change at sampling
e.g. Pl-control) times

=- Lower control layer
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4. Properties of NCO tracking and SOC

Self-optimizing control NCO tracking

e Procedure for finding ¢ = Hy e Controlled variable: Jy

e J, and Jacobian not measured e J, and Jacobian are measured

e Important d known a priori e No assumption disturbances

e F— 2% from disturbance model ¢ No model needed

e Active constraints controlled by e Active constraints controlled by
Feedback (Pl) input updates

e Local (linearized at nominal point) e Local, moves with operating point

e Continuous input change (by e [terative input change at sampling
e.g. Pl-control) times
= Lower control layer = RTO layer
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5. Use methods together

e Control active constraints S(u, d) = 0 using feedback, e.g. Pl-control
e Separate layers:

NCO tracking
as RTO

csetpoim

PID controller

= UNCO tracking
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5. Use methods together

e Control active constraints S(u, d) = 0 using feedback, e.g. Pl-control
e Separate layers:

NCO tracking Slow time scale,
as RTO Discrete updates,

. Ac=—Jg'Je
ceetpont — UNCO tracking
Ck11 = C + BAC
PID controller
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5. Use methods together

e Control active constraints S(u, d) = 0 using feedback, e.g. Pl-control

e Separate layers:

NCO tracking
as RTO

csetpoim

= UNCO tracking

Slow time scale,
Discrete updates,
Ac=—Jg'Je

Ck11 = C + BAC

PID controller

Fast time scale,
Continuous updates,
Control ¢ = Hy
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Use methods together

Combines the advantages

e Smooth inputs u
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Use methods together

Combines the advantages

e Smooth inputs u
e Expected disturbances rejected fast by SOC (lower layer)
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Use methods together

Combines the advantages

e Smooth inputs u
e Expected disturbances rejected fast by SOC (lower layer)

e Unexpected disturbances rejected on a slow time scale by NCO tracking
(RTO layer)
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Use methods together

Combines the advantages

Smooth inputs u

Expected disturbances rejected fast by SOC (lower layer)

Unexpected disturbances rejected on a slow time scale by NCO tracking
(RTO layer)

Gradient measurements not required so frequently.
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6. CSTR Example (Economou 1986, Alstad 2005)

F

CA.m
Cgin

Ti—‘

-
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6. CSTR Example (Economou 1986, Alstad 2005)

F

CA.m
Cgin

-

A=18B

Disturbance (d):
Feed Concentration  Ca jn
Feed Concentration  Cg s
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6. CSTR Example (Economou 1986, Alstad 2005)

F

CA.m
Cgin

-

A=18B

Disturbance (d):
Feed Concentration  Ca jn
Feed Concentration  Cg s
Input (u):
Jacket temperature T
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6. CSTR Example (Economou 1986, Alstad 2005)

F

CA.m
Cgin

-

A=18B

Disturbance (d):

Feed Concentration  Ca jn

Feed Concentration  Cg s
Input (u):

Jacket temperature T
Measurements (y):

Concentration Ca
Concentration Cs
Temperature
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6. CSTR Example (Economou 1986, Alstad 2005)

F

CA.m
Cg.in
: dCs 1 o _
Ti—‘ ? = ;(CAJH CA) r
dC 1
Ca Y _ 1 -
(EFB] at 7_(CB.m CB) +r
ar 1 —AH
~— at T(T T+ pCp r
A=B r=kiCa—k:Cs
Disturbance (d): ki — K oA
Feed Concentration  Cain 1 1 T
Feed Concentration  Cg,in ko = Koo AT
Input (u):

Jacket temperature T

Measurements (y):
Concentration Ca
Concentration Cs
Temperature
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6. CSTR Example (Economou 1986, Alstad 2005)

F

C/\Jn
Cgin
R % = 1;(CAJ‘n—CA)—I’
ETQJ % = 1;(CB.in —Cg)+r
— = L=y R
A=B r = kiCa— ksCs
. . —E.
DIStuFrE:cr;cgo(:géntration Cain ki = Ki eT:
Feed Concentration  Cs i ko = Kye AT

|nputh3(.et temperature T Objective: Maximize Profit
Measurements (y):

Concentration Ca
Concentration Cs
Temperature T

www.ntnu.no

max J = pg, Cs — (7, Ti)?

Noise: offset -0.1, std dev: 0.2
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CSTR Example — Disturbances (d)

1.4 ; ; . .

1.2 b

0.8r i

0.6 i

Disturbances

0.2f B

= CAin

——CBin

0 1000 2000 3000 4000 5000
time [min]

NCO tracking e context of RTO



CSTR Example — Operation using NCO tracking | . -

Run plant to steady state

I

Perturb u and run plant to
steady state to estimate Ju(uk)

!

Estimate Juu ™' (uk) us-
ing a BFGS update

'

Update input:
Au = —Jyu~ " (ug)Jdu(ug)
Ugi1 = Ug + BAU

Samplingtime  Tg = 10 min
Perturbation ATpert =1K
Step size B=04
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CSTR Example — Operation using NCO tracking | . -

Run plant to steady state

I

Perturb u and run plant to
steady state to estimate Ju(uk)

!

Estimate Juu ™' (uk) us-
ing a BFGS update

'

Update input:
Au = —Jyu~ " (ug)Jdu(ug)
Ugi1 = Ug + BAU

Samplingtime  Tg = 10 min
Perturbation ATpert =1K
Step size B=04

gradient

Input usage and gradient

5
g 420

-0.02

-0.04

0 1000 2000 3000 4000 5000

0 1000 2000 3000 4000 5000

time [min]

BT N YR S

time [min]
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CSTR Example — Operation using NCO tracking | . /|

Instantaneous profit Concentrations and reactor temperature

—— NCO profit
0 1000 2000 3000 4000 5000
time [min]
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CSTR Example — Operation using NCO tracking | . /|

Instantaneous profit Concentrations and reactor temperature
16 12
= 1 4
1.4 4 %
E 08 ]
1.2 S os T
x — A
; O 04 _CE
0'20 1000 2000 3000 4000 5000
time [min]

0.2 4

—— NCO profit
0 1000 2000 3000 4000 5000 0 1000 2000 ~ 3000 4000
time [min] time [min]




CSTR Example — Operation using SOC =

Self-optimizing control

e Cost is not measured
e Select H such that HF = 0

8yopt
od

F
e c=Hy
Controlled variable:

c=
—0.769C, + 0.639C5 + 0.005T
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CSTR Example — Operation using SOC =

Input and controlled variable ¢

Self-optimizing control 435
430
Q
. o
e Cost is not measured & 425
3 420
e Select H such that HF = 0 £
opt 4105 1000 2000 3000 4000 5000
F= 8y time [min]
ad 0.1
s Cc= Hy 0.05
(6]
Controlled variable: zw 0
c= ~0.05
—0.769C4 + 0.639C + 0.005T ‘ ‘ ‘ ‘
70‘10 1000 2000 3000 4000 5000
time [min]
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CSTR Example — Operation using SOC =

Instantaneous Profit Concentrations and reactor temperature

0.8

SOC Profit

0.6

0.4

0'20 1000 2000 3000 4000 5000

time [min]
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CSTR Example — Operation using SOC =

Instantaneous Profit Concentrations and reactor temperature
12
(o]
12 1 S ]
E 08
1 1 £ os
S04
z 8 ) ‘ ‘ ‘
Sos 1 02, 1000 2000 3000 4000 5000
[6] time [min]
ot
3 450
06 1 -
L a0 1
2430 ,
0.4 1 2 420WJLK_'
S a10 ]
3
02 ‘ ‘ = 400 ‘ ‘ ‘ ‘ 1
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

time [min] time [min]




CSTR Example — Operation using SOC =

Comparing instantaneous profit

02 ——NCO profit
—— SOC profit
00 1000 2000 3000 4000 5000

time [min]
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CSTR Example — Operation using SOC =

Comparing instantaneous profit Comparing input usage
1.6 450
1.4 — 445
440
12 435
1 430
€08 = a2sfAAAY AVA
: ‘_21 420
06 415
0.4 410
405 E
0.2 - -
——NCO profit 400 —— NCO tracking
— SOC profit — self-optimizing control
0 395

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
time [min] time [min]




CSTR Example — Operation using SOC =

Comparing instantaneous profit Comparing input usage
16 450
14 445
440
12 435
1 430
- = 425\ A AL A A
Sos8 5 Y
5 2420
0.6 415
0.4 410
405 4
0.2 - -
——NCO profit 400 —— NCO tracking
. . . —— SOC profit 305 — self-optimizing control
% 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
time [min] time [min]

Winner so far: SOC
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CSTR Example — Unexpected disturbance in E;

e New disturbance: Activation Energy E, changes +10%
—Ep
kr = Koe T

e Reaction rate:
r =Kk CA — ko CB

e Favours formation of product B
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CSTR Example — Unexpected disturbance in E;

New disturbance: Activation Energy E, changes +10%
—Ep
kr = Koe T

Reaction rate:

r= k1CA—kQCB

Favours formation of product B

Not taken into account when calculating F = 8%?
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CSTR Example — Unexpected disturbance in E;

Ins

tantaneous profit

——NCO profit
—— SOC profit

0 1000 2000 3000
time [min]

4000

5000

e context of RTO

NCO tracking



CSTR Example — Unexpected disturbance in E;

Instantaneous profit

Reactor states

——NCO profit
—— SOC profit

0 1000 2000 3000

time [min]

4000

5000

nnes Jaschke, SOC a

CO tracking in the context of RTO



CSTR Example — Unexpected disturbance in E;

Instantaneous profit

0.8

0.6

0.4

0.2

0 1000

——NCO profit
—— SOC profit

2000 3000
time [min]

4000 5000

Reactor states

NCO tracking

7650

,,,,,,,,,,,,

3000

600

mmmmmmmm

7600

e context of R



CSTR Example — Unexpected disturbance in E;

Instantaneous profit
Reactor states

2
1.8 NCO tracking
1.6
1.4
7650 T 600 w600 000
1.2 500|
- £ 4so
s 1 £
s § az0f
0.8 - 7500 B 3500 000
06 SOC
g
0.4 4 2oa
Eoe S —
0.2 ——NCO profit 5o —Co
—S0C proﬂ‘ ©- 1000 20(:(: P i';onu 4000 5000
00 1000 2000 3000 4000 5000 =
time [min]
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CSTR Example — Combined method

NCO tracking e NCO tracking in RTO layer

e U(NCO) = setpoint for ¢
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Step size: B8=0.3
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NCO tracking
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NCO tracking
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7. Conclusions
NCO tracking and SOC
e Have the same purpose:

minJ(u, d)

Are not competing methods

Should be seen as complementary
— NCO tracking as RTO
— SOC used in the lower layer.

Self-optimizing control can not replace RTO

Self-optimizing control layer reduces need for RTO/NCO
tracking updates

— less perturbations and discrete input changes
e Use SOC in the lower layer
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