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Abstract: It is well known that subspace identification methods that assume open loop data
without correlations between the input and noise, may give biased estimates when applied to
closed loop data. The effect of the controller gain parameters on the quality of the identified
model is studied when closed loop data are used. Several subspace identification methods (both
open loop and closed loop methods), and different simulated data sets ranging from ideal 2 x 2
linear systems, to a fairly realistic nonlinear debutanizer process simulator, are considered. The
results show that up to a point, higher controller gain during the identification experiment gives
more accurate models than with lower controller gain, for both open and closed loop subspace
identification methods. It is observed that the sensitivity to the controller gain is very small for
the closed loop sub-space method tested for the ideal cases when its assumptions are satisfied.
An explaination for this is that in this case there will be no bias, while the open loop methods
may have a bias that depends on the controller parameters. Another interesting observation
is that for the debutanizer example, the nonlinearities seem to lead to biased estimates also
with the closed loop subspace method, and the choice of controller gain appears to be just as
important as the use of a closed loop subspace identification method for the accuracy of the
estimates.
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1. INTRODUCTION

A mathematical model is often used to develop model-
based controllers. Likewise, in order to find good tuning
parameters for conventional P/PI/PID-controllers, some
information from the system to be controlled is required,
like a low order model approximation. The term identi-
fication for control (Gevers (2004), Hjalmarsson (2004))
considers experimental conditions for identification of a
model for either tuning, synthesis, updating or realization
of these controllers.

When feedback control is used, a model that is accurate
near the bandwidth frequency of the closed-loop system
is important. The model may be mediocre for other fre-
quencies, due to the ”forgiving effect” of feedback control.
This corresponds to the frequencies where the closed-loop
sensitivity function is small, being low or high frequencies.
A good model fit around the bandwith frequency is needed
for robust performance of the closed-loop system, see van
den Hof and Schrama (1995). Use of bandwidth frequency
of the closed-loop system to extract information relevant
for control purposes is a well-known technique, and stems
back to the work of Ziegler and Nichols (1942). For mul-
tivariable systems, the bandwidth frequencies may not be
well-defined. An overview of different techniques for auto-
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tuning of both single-loop and multi-loop controllers based
on bandwidth frequencies is given in Hang et al. (2002).

Recently a system identification technique based on state-
space methods has emerged, known as subspace identifica-
tion (see Qin (2006) for an overview of subspace methods).
A great advantage of subspace identification methods is
that they are non-iterative, using well-understood linear
algebra algorithms with good numerical properties. They
are also known to cope well with large data sets, rendering
it possible to identify large systems in a fair amount of
time. An example of this is given in Juricek et al. (2001),
where the Tennessee Eastman challenge process is subject
for identification. It is shown that the only successful mod-
els are the state-space models produced by two different
subspace algorithms.

The goal of the present work is to investigate MIMO
system identification in closed loop using subspace Identi-
fication Methods. Most of the theory on subspace methods
assumes that datasets are collected in open-loop, and ear-
lier results show that ordinary subspace methods may fail
when closed-loop data is applied. The problem using sub-
space methods with closed-loop data, is that instrumental
variables are used to filter out noise in the data record.
For noisy closed-loop data, the noise on the input data
will be correlated with the noise on the output data due
to the feedback mechanism. An assumption that is made
when instrumental variables are used, is that noise on the
input data is uncorrelated with noise on the output data
(see Ljung (1999)). If this is not satisfied, the subspace



algorithms will in general return biased system parame-
ters. Recently, several closed-loop subspace methods try
to account for this Verhagen (1993); Ljung and McKelvey
(1996); Qin and Ljung (2003); Jansson (2003); Qin (2006);
Katayama et al. (2005); Wang and Qin (2006); Gilson and
Mercere (2006); Jansson (2005), and consistency analysis
of different closed-loop subspace methods is given in Lin
et al. (2004) and Chiuso and Picci (2005).

While the asymptotic variance can be computed explic-
itly for some closed-loop subspace methods under certain
assumptions, Chiuso (2006), we conduct an empirical sim-
ulation study to investigate the performance of different
subspace methods when closed-loop data sets are applied.
The systems that are subject to investigation here are
all multivariable, and operate under feedback from de-
centralized PI controllers. The main contribution of this
work is investigations on the performance of subspace
identification methods when the controller parameters are
varied, also under conditions with process nonlinearities
and finite data sets. Insight into this contributes to explain
why closed-loop experiments in some cases may fail, and
provides knowledge on how the controllers should be tuned
to give good identification conditions. Additional results
and simulations are available in Bakke (2009).

2. BACKGROUND

2.1 Closed-Loop Identification

Open-loop identification is a common method for system
identification. Consider Figure 1: The experiment design
involves manipulation of the variable um in order to
identify the dynamics from um to y. There are many
systems where prior knowledge tells us that it is practically
impossible to break the feedback loop in order to identify
the open-loop dynamics. This is in particular true for
processes with unstable behavior, and systems with inherit
feedback effects (e.g. economic and biological systems).
As stated by van den Hof (1998), it will in many cases
be too high a risk, or cost, to break feedback loops
for identification purposes, since the outputs may drift
away from their nominal operating points during the
identification experiment due to unknown disturbances.

When a system/process is identified in closed-loop, the
open-loop dynamics of the given system is estimated while
the controllers already present are calculating the input u
to the system. When a process G0 is subject to feedback
control by a controller C, the degree of freedom for the
user to excite the system is usually moved from u to the
controller reference signal r. Consider the block diagram
in Figure 2: Here the reference signal is denoted r2, and
an additional external input signal r1 is directly added to
the system input u. Throughout this work, it is assumed
that r1 is an unknown signal in the form of process noise,
and the reference r2 is instrumental to externally excite
the system dynamics. The common approach to closed-
loop identification is to generate an input sequence to
the system by varying the reference signal, and collect u
and y data from the system to be used for identification.
There are three common methods used for closed-loop
identification, according to Ljung (1999). These are the
direct method, the indirect method, and the the joint input-
output method. The direct method operates directly on
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Fig. 1. Feedback loop broken before identification experi-
ment

u and y data from the process, ignoring the feedback.
The indirect method assumes a known, linear controller.
The process is identified from r to y, and the closed-
loop transfer function is estimated. From knowledge of the
controller, the open-loop transfer matrix is calculated. The
joint input-output method assumes that the closed-loop
system is a system with one input (r), and two outputs
(u and y). The system is identified from r to y (Ĝry), and
from r to u (Ĝru). The open-loop estimate is calculated as
Ĝ = Ĝry · (Ĝru)−1.

Since the indirect method is limited to linear, known
controllers, and the joint input-output method relies upon
calculating the inverse of a possibly close-to-singular trans-
fer function, the direct method is used throughout this
work. One of the main reasons why open-loop experiments
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Fig. 2. A system operating in closed-loop with process and
measurement noise

are preferred is the lack of correlation between process-
and measurement noise, and the input u to the system.
Under closed-loop operation, the input to the process is
the controller command uc, which is a function of the
output(s) of the system. Hence, the disturbances that
affect the output variables y will also affect the controller
command uc through the feedback loop.

2.2 Subspace Identification Methods

The family of subspace algorithms seek to estimate the
system matrices A, B C and D of a discrete-time, linear
state space model from input-output data of the system. A
general subspace identification algorithm is given in Ljung
(1999). All subspace identification methods consist of three
main steps:

(1) Estimating the predictable subspace for multiple fu-
ture steps



(2) Extract the state variables from the estimated sub-
space

(3) Fitting the estimated states to a state space model

In this paper, three different subspace identification al-
gorithms are applied to closed-loop data; the MOESP
algorithm (discussed in Verhaegen (1994)), the MATLAB
implementation of the N4SID algorithm (see van Over-
schee and de Moor (1994)), and the DSR e algorithm ( Di
Ruscio (2008), see also Di Ruscio (2003) and Di Ruscio
(1996)). Out of the three methods used in this work,
only the DSR e method is particularly designed for closed-
loop data. This method identifies the Kalman filter of the
system, using filtered outputs in the identification routine.

3. RESULTS

3.1 Preliminary discussion

In order to generate identification and validation data from
the systems to be simulated, PRBS-signals are generated
and applied to the references of the systems. Different
PRBS-sequences with the same frequency spectrum are
generated for identification and validation respectively.

It is useful to define some performance metrics for the
models identified. Two indices are defined in order to
compare performances of identified models:

MRSE =
1
l

l∑
i=1

√√√√∑N
j=1 (yi(j)− ŷi(j))

2∑N
j=1 yi(j)

2
(1)

MVAF =
1
l

l∑
i=1

(
1− variance(yi − ŷi)

variance(yi)
)

(2)

Here, yi means system outputs, and ŷi means model
outputs (one-step ahead predictions). The MRSE index
given in (1) is used to measure the Mean Relative Squared
Error between the real process outputs and the outputs
predicted by the model. As seen by (1), an MRSE index
of 0 indicates a perfect model.

MVAF in (2) stands for Mean Variance Accounted For,
and is a measure for evaluating the dynamic properties of
the produced models. If the ratio variance(yi−ŷi)

variance(yi)
is small,

the MVAF index is close to 1.

White noise is added to both the process inputs and
outputs. For the idealized case studies, the identification
experiments are first performed without any noise, and
repeated with both process and measurement noise. When
there is noise present in the loop, Monte Carlo simulations
are used with 10 simulations, reporting only the mean
value of the performance indices from these experiments.
For the nonlinear debutanizer case, only the scenario with
both process and measurement noise is used.

Three different controller gain schedules are applied for all
systems; low gain, medium gain and high gain. The same
subspace algorithm parameters and PRBS signals are used
for all gain schedules.

3.2 Idealized Case Studies

In this section, two linear, multivariable systems with
different dynamic properties are simulated. In both cases,

the systems are operating under decentralized PI-control.
The two systems are defined as follows, on transfer matrix
form:

S1 =
1

2s+ 1

[
1 1
1 2

]
(3)

S2 =


2s− 1

(3s+ 1)(s+ 1)
1

2s+ 1
1

50s+ 1
2s+ 1

(70s+ 1)(30s+ 1)

 (4)

Systems S1 and S2 corresponds to G0 in Figure 2. The
controller which is used for both systems is

[
C1(s) 0

0 C2(s)

]
=


Kc1

τis+ 1
τi1s

0

0 Kc2
τis+ 1
τi2s

 (5)

System S1 is a 2×2, weakly coupled system with a common
denominator. The RGA of the system is calculated as (see
Skogestad and Postlethwaite (2005))

Λ(G0) =
[

λ11 1− λ11

1− λ11 λ11

]
; λ11 =

1
1− g12g21

g11g22

= 2 (6)

System S2 is also a 2× 2, weakly coupled system, but this
system is also relatively stiff. The RGA of this system is 2

3 .
The ratio between the highest and lowest eigenvalues is for
this system about 70. Table 1 shows the results from the
simulated identification experiments for systems S1 and
S2 respectively. Figure 3 shows the indices as a function
of controller gains, when the gains are varied in parallell,
in small steps. For each step calculated, 10 simulations
are used, and the mean values of the indices are used as
the actual values. The closed-loop method DSR e is less
affected by increasing controller gain than the open-loop
methods, which is reasonable since it (unlike the other
methods) is guaranteed to give unbiased estimates.

3.3 Nonlinear Debutanizer Case

Figure 4 shows a Process Flow Diagram for the debu-
tanizer. The debutanizer is implemented in UniSim Design
by Honeywell, see UniSim (2005).

The reboiler heats the input flow so that hot vapour is sent
back into the column, in order to control the temperature
at a specific stage in the column. The effect of this reboiler
is controlled by the temperature controller TIC-100, which
in turn is controlled by a master bottoms composition
controller XIC-101. The reflux flow is controlled by the
flow controller FIC-100, which is a slave controller to
the distillate composition controller XIC-100. In addition,
there are two pressure controllers that controls the column
pressure in a bypass configuration. As seen by the process
flow diagram, this pressure controller will induce a flow
into the reflux drum, which is under level control. This
means that pressure control action will act as an ”unknown
disturbance” on the reflux flow through the reflux drum
level controller LIC-102, seen from the flow controller FIC-
100. This will in turn have effect on the compositions, since
the flow controller adjust the flow to achieve its setpoint,
and change of reflux flow means change of compositions.
This will also affect the column temperature, as there is
a physical interaction between the reflux flow into the
column and the temperature.



Table 1. Performance indices from identification of system S1: PN = Process Noise, MN =
Measurement Noise, LG = Low Gain, MG = Medium Gain, HG = High Gain. ”Failed” means

that MRSE > 100% and MVAF < 85%.

System PN MN Method MRSE/MVAF (LG) MRSE/MVAF (MG) MRSE/MVAF (HG)

S1 No No
DSR e 0%/100% 0%/100% 0%/100%

MOESP 0%/100% 0%/100% 0%/100%
N4SID 0%/100% 0%/100% 0%/100%

S1 Yes Yes
DSR e 13%/99.99% 10.5%/100% 10%/100%

MOESP 51%/94% 33.5%/98% 24.5%/99%
N4SID 36.5%/98% 27%/99% 22%/99.4%

S2 No No
DSR e 0%/100% 0%/100% 0%/100%

MOESP 0%/100% 0%/100% 0%/100%
N4SID 0%/100% 0%/100% 0%/100%

S2 Yes Yes
DSR e 19%/99.1% 12.1%/99.9% 27%/98.1%

MOESP failed failed failed
N4SID 14.2%/99.8% 12.1%/99.9% 55.3%/90.4%
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Fig. 3. Performance of identified models for system S1 for
increasing controller gains, Kc = Kc1 = Kc2

The debutanizer modell itself is nonlinear, and the valves
are modeled to have linear characteristics. These are fast
compared to the rest of the system. In addition, the process
is interactive, since the reflux-flow will directly affect
the bottoms composition, and the temperature inside the
column will also affect the distillate composition.

The references, inputs and outputs of this system are
defined as follows:
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Fig. 4. Process Flow Diagram for the debutanizer

• r1 - setpoint for the controller XIC-100 [Mole Fraction]
• r2 - setpoint for the controller XIC-101 [Mole Fraction]
• u1 - Setpoint to the flow controller FIC-100, which

controls the reflux flow into the column
[

m3

h

]
• u2 - Setpoint for TIC-100, which controls stage 8

temperature [◦C]
• y1 - Composition of heavy key component (i-pentane)

in the distillate flow [Mole Fraction]
• y2 - Composition of light key component (n-butane)

in the bottoms flow [Mole Fraction]

Three different controller gain schedules are used also in
this case.



• Configuration 1 - Kc1 = 1.29, Kc2 = 0.319
• Configuration 2 - Kc1 = 1.935, Kc2 = 0.4785
• Configuration 3 - Kc1 = 2.58, Kc2 = 0.638

In all cases, the integral times are τi1 = 38.3[min] and
τi2 = 13.5[min]. Table 2 shows the performance indices
for the different controller tuning configurations. Figure
5 shows the performance of the DSR e method for these
configurations.

Table 2. Performance indices, debutanizer

Configuration Method MRSE MVAF

1
(Low
gain)

DSR e 70.11% 76.28%
MOESP 89.46% 49.83%
N4SID 73.13% 69.93%

2
(Medium
gain)

DSR e 56.32% 89.88%
MOESP 87.9% 43.74%
N4SID 60.01% 86.22%

3
(High
gain)

DSR e 49.76% 93.68%
MOESP 91.7% 46.55%
N4SID 56.43% 88.67%

4. DISCUSSION

As shown for both system S1, S2, the identification per-
formance was degraded for too high a value for the gains.
This is shown to be true also for the debutanizer process,
see Bakke (2009). A possible explanation to this is that
when the controller gains are increased, frequencies in the
input signals will be more concentrated around the achiev-
able bandwidth of the controller, which produces system
outputs with more information of the frequency response
around this bandwidth frequency. If the controller gains
are pushing this limit, the controller will be so aggressive
that it dominates over the open-loop dynamics, and more
of the controller is seen on the identified models.

Ljung (1999) mentions on p. 434 that the part of the
system input that originates from the feedback has no
information value when it comes to identifiying the open-
loop dynamics. On the other hand, it is the part of u
(controller output, system input) that stems from the
reference signal that will reveal information from the open-
loop system, and give a lower signal to noise ratio. In this
context, it is explained why the models identified with
high gains in the feedback loops performed better than
those identified with the low gains in the loops. Consider
the controller equation that has been used throughout this
work:

u(s) =
[
C1(s) 0

0 C2(s)

]
(r − y) (7)

The same reference sequences are used when comparing all
the methods, for all controller parameter configurations.
Notice that u consists of two different signals, namely the
part that stems from the feedback (y), and the part that
stems from the reference signal r. When the reference
signal r is manipulated, it is the controller gain that
determines how much the external reference signal is
amplified. Ljung (1999) defines the covariance of the open-
loop transfer function estimate as

Cov Ĝ0 =
n

N

Φv(ω)
|S0|2Φr(ω)

(8)

Here, Φv(ω) is the power spectrum of the noise, and Φr(ω)
is the power spectrum of the reference signal. |S0|2 is the
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Fig. 5. Validation sequences for the debutanizer process
using the DSR e method

squared absolute value of the sensitivity function. As seen
by equation (8) the amplification of the reference signal
will directly lower the ”noise to signal ratio”. As stated in
Ljung (1999), it is this ratio that determines how well the
open-loop transfer function may be estimated when there
is noise present in the loop.

In the debutanizer example, all methods may give biased
estimates due to the nonlinear process and linear model.
It is interesting to observe that in this case it seems like an
open loop subspace method like N4SID with a high gain



tend to give more accurate estimates than a closed loop
subspace method like DSR e with a low gain.

5. CONCLUSION

The results from this work show empirically that tuning
of existing controllers has a significant impact on the
performance of the identified models when using sub-
space methods. It is shown that when controller gains are
increased, controller outputs with higher signal to noise
ratios are generated, and the information content of these
signals is higher because of the amplification of the input
reference signals. This is believed to be the main reason
why data produced by the relative high gain systems yield
identified models with better performance than for systems
with lower gain, since noise that corrupts the system will
be dominated by the power of these controller outputs. It is
also shown by simulations that there exists a limit to how
much the gains can be increased before the performance
of the identified models are degraded.
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