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A convex formulation of fixed-order linear quadratic control with and
without noise

Henrik Manum and Sigurd Skogestad

Abstract—By using a newly established link between self- from the observer as the input to the controller [5]. As noted
optimizing control and linear-quadratic optimal control [1],  in [5], “another approach is to differentiate the available
[2], we show in this paper how to derive fixed-order linear o tnts a number of times and the combine these derivatives
guadratic optimal controllers (no noise) and fixed-order H2 . . .y .
optimal controllers (with noisy measurements) by solving a appro_pnat_ely to obtain the_ state vector. ls_'t furthericed
convex quadratic program. The method may be applied, for that “in this case, the estimate responds instantaneoasly t
example, to find optimal SISO and MIMO PID controllers  disturbances, but it is severely degraded by a small qyantit
with and without noise. In the literature, these problems has of additive noise in the measurements” In this work we use
previously been assumed to be non-convex [3]. The validity of ;5 approach where the derivatives give “state infornmitio

the approach, and in particular of the noise assumptions, has o ; -
been verified on a small-scale laboratory experiment. In addition, we provide a convex problem formulation to get

Index Terms— linear quadratic control, fixed-order control fixed-order controllers for cases where of the derivatives a
not available.
I. INTRODUCTION Importantly, results are further extended to the case with

A key result, which is a basis for this paper, is thehoise, that is we find combinations = Hy that yield
nullspace theoreni] (noise-free case, see Theorem 2); Minimum loss when held constant (Theorem 2).

For a quadratic static optimization problem there exists Consider (1), but witmoisy measurements
(infinitely many) linear measurement combinatians Hy

that are optimally invariant to disturbance providedn,, > Ym =y + 0. @
N+ N As above, the initial state(0) is treated as the disturbance.
Consider a LQ problem of the form We can now use a generalization of the nullspace theorem
min.J (u, 2(0)) = mjvaNJF that handles noise as “measurements’we include the
w N output, a s(elec})(yed number of derivatives of the outputs plus
T T the inputs,(yx, %, ..., ux), and we derive a feedback law
+ ;} [2kQax + ugRur] o that minimizes the deterministic objective function in (1)
. » subject tousing noisy measurements. As for the noise-free
subject toxp = z(0) case, we have eonvexformulation of the fixed-order control
Tp1 = Az + Bug, k=0 problem.
yr = Cxg The rest of the paper is organized as follows: In section

Il we review two theorems from self-optimizing control. In
t%ection Il we will see that these theorems gives a nice link
0 LQ control, and several examples will be given.

Here the initial states are the disturbanceg € n,).

One sees immediately that there may be some link L
linear quadratic optimal control (LQ), because the discret
LQ problem can be written as a static optimization problem
The link is: If we let the “measurementg’contain the inputs
u plus the states:, then the invariant variable combination In previous works on self-optimizing control and in partic-

c = Hy is the same as the LQ feedback law, te- u— K. ular the nullspace method, candidate variables are depoted

The measurements can in theory include previous ar@hd then. = n, variable combinations (controlled variables)
future outputs (states). However, for feedback controllis ac = Hy. These candidate variables can be process outputs,
measurements need to be at the same time to avoid proble@fgl also inputs. On the other hand, in process control
with causality. To have sufficient number of measurementiieraturey is referred to as measurements or process output,
(n, > n, + ng) at the present time, we need informationbut usually not inputs. In this paper we work most of the
about all the present states. time with discrete models, and them is a process output,

However, in generak is not measured directly. For the whilst y is a vector of candidate variables, for example
noise-free case one may use a Luenberger observer of order (Zx, ux).

n. —n, to estimate the remaining states and use the outputFigure 1 shows the candidate variabjethat are combined
to ¢ = Hy and control them using a feedback controller. In

Department of Chemical Engineering, Norwegian UniversitySofence  this work we will show that the feedback controller can be
and Technology, N-7491 Trondheim, Norway.

*Author to whom correspondence should be addressed. Emafp.bta'ned frqmc = Hy itself, if we 'r!CIUd_e the inputsuy,
skoge@t nu. no in the candidate variableg. Further, in this workcs, = 0
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l nY Then for a givenH, the worst-case loss introduced by adding
Z ) gz y S the constraint = Hy is L. = d(M)/2, where M is
LN d M2 My Nyl
) My = —JH*(HGY)"*HFW, (6)
c=H(y+nY) Measurement M, = —JY*(HGY) L HW ..

combination {)

The optimal H that minimizes the loss can be found by

solving theconvexoptimization problem
Fig. 1. Summary of important notation.

min |HF|
o , ©)
for all candidate variable combinations, as we will typigal subject toHGY = .J,

consider regulation problems in deviation variables.

The most important notation is also summarized in figurElere £ = [FWa Wo. _ _ o
1. Typically, w = (ug, Wes1, .- s psn—1), d = 20 andy = The reason for using the Frobenius norm is that minimiza-

tion of this norm also minimizes (M) [6].

Remark 1:If F'FT is non-singular we have an explicit

Il. RESULTS FROM SELFOPTIMIZING CONTROL expression for the optima¥ [4]:

From [4] we have the following two theorems: 1

Theorem 1:(Nullspace theorem = Linear invariants for H" = (FF")~'qv (GyT(FFT)*lGﬂ JY2.(8)
quadratic optimization problem) Consider an unconstkine Remark 2: Since, in this particular case, the matfixthat
quadratic optimization problem in the variables (input  minimizes the Forbenius norm also minimizes the maximum
vector of lengthn,,) andd (disturbance vector of lengthy) singular value of M [6], this H is also a solution to

(.Tk7Uk) ory= (yka %a sy Uk, Uk 15 - - - auk‘+N—1)'

T ming 6(M).
. u Juu Jud u .

min J(u,d) = | 1|57 Taal ld| 3) Remark 3:From [4] we have that any optima& premul-
- . ud o tiplied by a non-singular matrix. xn. D, i.e. Hy = DH is

In addition, there are “measurement” variables- G¥u +  stjl| optimal. One implication of this is that for a squarat,
GYd. If there existsn, > n, + ng independent measure- ,,  — . we can writec = Hyy = HY"y,,,+ Iu. To see this,
ments (where “independent” means that the madrk = aésumey = (Y, u), SOH = [H¥» H"], whereH" is a non-
[GY  GY] has full rank), then the optimal solution to (3) singularn, x 1, matrix. Now, H; = (H*)~\[H¥» H"] =

has the property that there exists = n,, linear variable [(H*)~tHv= I].

combinations (constraints) = Hy that are invariant to Remark 4:More generally, for the case wheRET is
the disturbances.. The optimal measurement combinationgingylar, we can solve the convex problem (7) using for

matrix I is foung by: o _ exampleCVX, a package for specifying and solving convex
be obtained from cvx_begin
F=—(GYJ  Jua — GY), 4) vfar@ a_bl e H(N«nu, ny_+nu*N) ;
mnimze norm HFtilde, fro’)
and selectd such that subj ect to
HF — 0. (5) H-Gy == sqrtm(Juu);
cvx_end

That is, H is in the left nullspace of'.
A generalization of Theorem 1 is the following: An important comment regrading Theorem 2 for LQ
Theorem 2:(Loss by introducing linear constraint for

noisy quadratic optimization problem) Consider the uncory

strained optimization problem in Theorem 1,

It is assumed in this work that the problem can be
rmulated as a static problem at time= £ (with all
the measurements available at tirke This assumption is

] [T Jual Tu satisfied for the PID controller with direct measurements
[d} [JJ p Jdd} {d} ’ of the present outpuyy, the derivativesy; and the sum

) I — . (for integration).
and a set of noisy measuremepis = y + n, wherey = kaov%e\zjler( if we gnl h;ve available present output mea-
GYu + GYd. Assume thai, = n, constraintsc = Hy,, = ' y P P

c. are added to the problem, which will result in a non_;urementsgk), then the derivatives must be obtained by us-

optimal solution with a 10 = J(u, d) — Jop (d). Consider 19 PrEVIoUs measurements, eyg.= y —yx1. In this case,
; Co . there will then be an additional “start-up” loss, in additio
disturbancesl and noisen? with magnitudes

to that given in Theorem 2, and it is not guaranteed that the
<1 solution obtained from Theorem 2 is optimal (although it is
- likely to be reasonably close to the optimal case)

min J(u,d) =

u

!
d=Wud:; nY=W,n?; H {d/]
ny

2
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[1l. FULL STATE INFORMATION and
.
A. No noise B - P
' Jod B PA

Assume that noise-free measurements of all the states are -5 = ) ) A (14)
available. It is well known that the LQ problem (1) can be - . ;v71
rewritten on the form in (3) (see for example [8]) by treating B [PA
g as the disturbance, and lettingu = (ug, w1, ..., un—1). The sensitivity matrix (optimal change in when d is

Thus, from Theorem 1 we know that for this problemperturbed) becomes:
there existdnfinitely many invariants, but only one of these

t
involves only present states. — 83/0? = —(GY I s — GY) = [ Ijlw } (15)
Without loss of generality consider a stable process that ad i Jud
can be described by the following linear model: Since there is no noise we can use Theorem 1 to get the
combination matrixH, i.e. find anH such thatH F' = 0:
Tpt1 = Az + Bug, k=0,1,2,... )
I, _
ro : known [Hl HQ] |:Ju_u13ud:| = H, — HQ(JuulJud) =0 (16)
Lety = (@, up, Up+1, - -, Ukt n—1) = (Tx, u). Note that  To ensure a non-trivial solution we can choddg = I,, n

this includes also future inputs, but we will use the normaind get the following optimal combination ef, and v:
“trick” in MPC of implementing only the present (first) input

. . —1
changeuy. Since we have:, = n, + n, and no noise, we c=Hy = Jy, Juazr + u, (17)

can use Theorem 1. The open loop model becomes: which reads out as (uy, = KPzyp), (upm _
y:Gyu_'_ng Kk+1$k),...,('LLk+N,1 = Kk+N_1)$]€, of which the
first invariantu;, = K*z;, is the one to be implemented.
QY = {O"wx(nuN)} c R(ratnuN)x(nuN) In [10] we prove that this gives the same result as con-
In.v (10) ventional linear quadratic control, by conventional megni
Qv — [ In, N } € R(natnuN)xn, for example equation (3) in Rawlings and Muske 1993 [8].
4 0, Ny xn,
() B. Noisy measurement of state vector
Here I,,, is anm x m identity matrix andd,, <, is am x n Assume now thahoisy measurements of the state vector
matrix of zeros. are available, and that the noise-level on all states isahees

The matrices.J,,, and J,q are the derivatives of the jo ,  — 4 1 o As before, we treat the initial state as

linear quadratic objective function. Here we will considery gisturbanced = z,, and assume the following bounds on
the following infinite horizon objective function: the disturbance and noise:

o d=Wud', n¥ =Wun¥, Wy=1I, Wy = al,
J = Z (mZka + uZRuk) . (1)) J
=0 and H {n@/}

If we assume that fok > 0 the solution to the optimization
problem of minimizing (11), it can be shown [8] that this
particular objective function can be rewritten as

<1 (18)

2

Herea is thenoise-to-disturbanceatio and we have assumed
that the combined two-norm describes the disturbance and
noise variations. Further assume that an optimal state feed

N-1 back K for the case of no noisex(= 0) has already been
J =Y (2]Qur+uRur) + zyPry,  (12) found. By using Theorem 2 and the analytical expression for
k=0 H (8), we prove in appendix A that
whereP is a solution to the discrete Lyapunov equatidn= w — 1 K (19)
ATPA+Q. (For an unstable process we canggt= — K}, P 142t

for k > N, where K is a state feedback gain matrix such
that(A— BK) has no eigenvalues outside the unit circle. Fo
the objective function in (11) we can convert the problem t

Thus, (1 + o?) is the optimal reduction in state feedback
ain whena: > 0.

finite horizon by using a final state weight matrix for example IV. OUTPUT FEEDBACK WITHOUT NOISE
from [9].) In this section we will consider a second order SISO
For the objective in (12) with the process model in (9) Weyrocess with noise-free output measurements. For clafity o
show in [10] that presentation, we present the theory by way of an example.
BPB+R B'ATKB .. B'(AN-1)TPB We will consider two cases. First, the full-information eas
o B'PAB  B'PB+R .. B'(AN-2)PB where we measure the derivatives and where %) and
o = : . . : (13)  the inputs are combined using Theorem 1. The controller
BTPAN-1B BTPAN-2B .. BTPB4+R is equivalent to a Luenberger observer with poles-ab
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in continuous time domain an@ in discrete time, but is Herec; = [1 0] is the first row of theC-matrix. In this
derived using Theorem 1, andbt using observer theory. case we need to solve an optimization problem to get the
In the second case a low-order controller using the explicéiptimal combination, since; < n, = Nn, + (ng — 1) <
expression (8) from Theorem 2 wiflv,,, = 0 is derived. Nn, + ng. The optimalH can now be found solving the
Example 1: (SISO process) Consider the proceggs) = convex optimization problem shown in Theorem 1.

=55 u(t) taken from example 7.1 in [11]. This can be e end up with the feedback law
written on “observer canonical form” (see for example [12])

Uk = _7-14yk- (26)

) (20)
Note that this gain is the double of the gain for the full
information case.

where have used the notations) = |—212 | represents ~ Numerical comparison: A simulation was run with dis-
clD turbances drawn from a uniform distribution witd||; <1,

the transfer functionG(s) = C(sI — A)™'B + D. The -
t th t t |
derivative ¢/ (¢) is included as the second output from th and by computing N $verage stage costs under closed

Soop, Jag = L3V 2TQu; + wIRu; we found that
process. We sample the process with= 0.1 and get the P e - JXZ":O 2; Qi+ u; i o
following discreterealization: Javg, full information = 6.4, while Javg, reduced information= 22.7.

As expected, there is a loss with only output feedback.
0.7326  —0.0861 | 0.009

—0.1722  0.9909 | 0.200
G(z) = 21
(2) 1 0 0 (1) V. OUTPUT FEEDBACK WITH NOISE
-3 1 0
The task is to regulate the system to the origin, and to aehiev In this section, we will use Theorem 2 to find low-order
this we minimize the following objective: controllers when noisy measurements are available. We will
N1 show the methodology on a small-scale laboratory plant,
J(u, z0) = &% Py + #TQx; +ul Rus, which is shown in figure 2. The low-order controlleri that we
(u, o) NN ; @ (22) want to use is a PID controller, and therefore we first show

how to derive a LQ-optimal PID controller and then apply
the controller to the laboratory plant. The laboratorylsca
We want to bring both(y,y’) to the origin and set) = plant is rather small and likely to be affected by disturtenc
CTI,C, while R = 0.01. P solves the Lyapunov equation such as opening of lab doors, air conditioning, other lamps
P = ATPA+ Q, i.e. we assume that for > N, u, = 0.  switched on/off etc., hence integral action seems neagessar

subject to model equations

(See [8)). for controlling the plant
Full information case:We here use Theorem 1 as in The PID controller is synthesized using Theorem 2, but
section IlI-A, but with before finding the controller some more preliminaries are
av — |:027nu]\/:| e [0 C } 23 needed. We need to
N nulN,ng 1) Augment the model with a disturbance model.

After doing the calculations we find the feedback law 2) Modify the objective function to penalize input change
rather than absolute value of the inputs. This is nec-

up = — [3.59 3.58] {y’f} . (24) essary in order let the outputs reach their setpoints

Y when integrating disturbances occur. (We want to use
It is not surprising that the controller puts almost equal  the inputs to counteract disturbances at steady state,

gains on the process output and the derivative, since we hence we should not require the inputs to return to the
use@Q = CTIC as a weight on the states in the objective nominal point of operation.)
function.

. . We start by augmenting the model with integrating dis-
Reduced-order controller cask the full information case turbances. The formulation, see (27), includes both input

V\;etaot a (ionf[ro_lll_(:]r Of. ort?}el, I.€. we hg\d one dlfferc;entlaélon dand output disturbances. In addition we add integrators for
ot the output. This 1S the same order as a reduced-or &rjmming up the outputs. These correspond to the integrators
Luenberger observer, which is of order, — n, [13]. A

in the controller. (For the example, the number of integiato

reduced—orctjer CO_'FE.O"er fo; thls_prozcezst|_5 tr? use onlytt f the controllem, equals number of integrating disturbances
process outpugi;. This was done in [2], but is here repeate ns = ng = ny = 1).We also add as an output the output

with focus on the relation to the full information contralle changeys1 — i — (CAzy, + CBuy) — Cag, Wheredy

We here use (8), with was assumed to bé;,; = di. (The derivatives may also
v — |01 v a1 (25) be added by starting from a continuous model on observer
T I, | & 1 0py Ny | canonical form and then discretizing, as in example 1.) We
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then get the following model of the plant and controller: (u)

Tk41 _Aplant Bd 0 Tk B ’ 1 \
dk+1 = 0 1 0 dk + 10 Uk II : \\
Uk+1_ L C Cd I O 0 II : ‘\
y,f_ [ C Cqg O Tk 0 ! ! '
y,ﬁ = 0 0 I de| + 1 0 | ug
ykD_ _C(Aplant — I) 0 0 O CB / (y)
@7) |Plate withT-senso

We now modify the objective function to penalizeu;, £
uk+1—ug. Assume the original objective function was on the
form J(x,u) = xJTVPxN—kZiAQOI ] Qr;+ul Ru;+22] Nu;, P

hence no termAu’ RaAuy. First note that in continuous @ Fan
time,u = Kx = @ = K& in closed loop. In discrete time A A (d)
T =~ xR+ — T and we get that

A A A

A

=K K(mk+1 B xk) =K ((A B I)wk + Buk) (28) Fig. 2. Laboratory thermal plant

The termAu] Ra Auy, becomes

AugRaluy, = zj(A = I)'KTRAK(A — D+ (29) Knew < 1ar(G, Q,it Rit, Ni)
+up BTKTRAK Buy, 4+ 2x4(A — )" K" RA K Buy,. AK — Kpew— K
This formulation is useful because we can use, for example, K — af + (1 — a)Knew
the function’ | gr’ in Matlab directly to get theKiqy end V_Vh'le )
feedback matrix. This matrix is needed for the calculatibn o~ HereG is the state-space representation of the process,
the final weight matrixP. In earlier examples we calculated 0 < a < 1is anumerical damping factor anis the
P from P = ATPA + @, by assuming thaty, = 0 convergence criterion.

for k > N. With integral action this is wrong, since at ) FindP from (30), for example by dl yap’ in Matlab.
steady state we use the inputs to counteract the integrating®) Use theorem 2 to find the optimal combination between
disturbances. The following final weight can be used to (Y Yoo U un)-
change the problem from infinite to finite horizon: (See Example 2:(Laboratory experiment: Thermal Plant [14])
Appendix B for a derivation.) In this example we want to control the temperatyge= T
by changing the power inlet to a light bullx). A sketch

P = (A - BKiqr)' P(A = BEigr) + (30) of the plant is shown in figure 2. We observe that a fan is

+ KquRKlqr + @ — NKig. blowing air onto the plate with the temperature sensor. We

Let us summarize the method for finding a (MIMO) pipWill use this fan to generate disturbances for the plant. A
controller with quadratic objective function and noisy meamodel of the plant has been found experimentally, is

surements: 0.9771  —0.0210 | 1073 -0.1978
1) Choose weight$Q, R ) for the LQ problem. G(z)= | —0.0319 0.9430 | 1073-0.1955 |. (32)
2) Determine weightsWW,, W,,» from operating data 525.1 —1.982 \

and/or process knowledge.
3) Augment the process model as shown in (27).
4) Solve LQ problem, for example withl gqr’ in Mat-

The sample time in the above model is 1 second. For this
process we choose

lab, iteratively on K, with the following objective: 100
o Q=Cc"lo 1 o|C (33)
J=> 2] (Q+ (A-D)TK'RAK(A - I))x;+ 0 0 1
=0 and
+u] BTKTRAK Bu;+ Ra =1. (34)

T T T
+223,(A — I) K RaK Bug. We further setWWy = I4. For the noise weightV,,,, we

(31) choose
The following iteration scheme was 1 .
d: _
used: Wy = 100 (35)
while ||AK| > 3 do
Qi —Q+(A—I)TKTRAK(A—-1) In,n
Ri — B'TKTRAKB This matrix should be related to the noise-to-disturbance
Ni — (A—I)TK'RAKB ratio. Here the disturbances are the disturbances to ttialini
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and AU = MU where

T W ' ““““ ' ““““ ' ‘ —Ter‘?1peratt3re jopen Ioorbl -1 1
: : M = - . c Rnu(N—l)XnuN. (39)
LS O T 17 T AT ORI
-1 1
8800 0100 0200 0300 0400 0500  06:00 The matrix.J,., is now
37 [min:sec] B'"PB+R B'A'KB ... B"(AN"HTPB
: : ___Temperature closed loo| Juu B"PAB B"PB+R .. B"(AN=3)TPB
36k ST TP with LQ-optimal PID 7 =
TPAN-1B BTPAN-2B .. B'PB4R (40)
Ra
A . . . . . T
8600 0100 0200 0300 0400 0500  06:00 +M 1 M
[min:sec] Ra
N ' — Disturbance (fan) The structure of/,4 is the same as in (14).
i i The open loop modey = GYu + GYd, with d = z, is
for this example
; ; ; ; ; D 03, x(N-1)n,
00:00  01:00 0200 0300 0400 0500 0600 QY= |1 0
[min:sec]
0 I (41)
C
Fig. 3. Experimental data. GZ =

ONn,u X(ng+ng+mns)

Here n, is the number of integrating disturbances and
stateszp. In this example however, we use this matrixiS the number of integrators in the controller. We have that

as a tuning matrix in which we set a high noise-term oftd = s = iy = 1.

the differential (the third output) and let the other terms /e can now calculaté’, and solve the convex optimiza-
have same weight as the disturbance weight matrix. Thiion problem that finds the minimum dfH £ subject to
is because we do not want too much derivative action , bdl{G? = Jui’. As indicated above/l can be written as
at the same time we want to demonstrate the mathematiddl= [H~ H*"] and another matrix that minimizes the norm
framework for deriving a PID controller. (Of course, if we dois H' = (H*)""H = [(H*)~'HY~ I]. By considering the
not want a D-term in the controller, we should have excludefirst row of this matrix we find that

the differential as a possible “measurement” before using k
Theorem 2 to find the controller.) uy, + 5.04yy, + 0,532% +0.11(yx —yr_1) = 0. (42)
For the disturbance model we choose i=0
This variable combination that gives the minimum loss when
By=[1 1], Cs=0. (36)  we impose a PID-structure for the controller to the original
problem. In feedback form:
Notice that .
- {I_ At — Bd:| R up = — 5.04y;, 0.53;% 0.11(yx — ye—1)  (43)
Cplant Cq v P ——— D
|
which indicates that offset-free control at Steady statkh Note that in the 0rigina| prob]em formulation we obtain
be possible [15], [16]. yr+1 — yi for the derivative, but since this is non-causal
As input horizion we sefV = 20 in this example. we have shifted the derivative one step back in the imple-
Using the above method, we first find thd,, = mentation.
103 [3.1590 —0.1174 0.0010 0.0013], and that Figure 3 shows a plot of the temperature loop in open
and closed loop, where in closed loop we implemented
6.8224 —0.2768 0.0029  0.0035 the LQ-optimal PID controller. No filter on the derivative
P—10° —0.0993 0.0547 —0.0011  0.0000 part was used. One observes that under closed loop the
- 0.0010 —0.0010 0.1811  —0.0000{ - temperature is kept at its set-point at°85 even with the
0.0045 —0.0000 0.0000 0.0000 integrating disturbances from the fan, whilst in open loop

(38) the temperature drifts away when the plant is subjected to

Since we now have penalty on the input changehe same disturbances. In closed loop is seems like the noise
Aul Rauy, the J,, matrix in (13) needs to be changedis slightly amplified, this is probably due to the derivative
slightly. This can be done by lettifg = (ug, u1,...,uxy—1) term in the controller. This can be fixed by placing a filter
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in front of the derivative term. Here we want to demonstrate[7]
the design of the controller rather than tuning, so we will

not pursue this issue further. (8]

Discussion

Above we used pure integrators in the derivation, and®l
we used a penalty od\u] RAwy, rather thanu] Ruy in
the objective function. The reasoning was that since wgoj
want integral action we want to use the input to counteract
the integrating disturbances, therefore it is not reasenab,
to require that the inputs return to the nominal point. We
saw that by usingt = Kz we could fit the penalty of
the input-change into the normal objective functidn= [12]
Yoo TiQa + ufRuy, + 2] Nuy, but in order to get
the optimal controller we had to iterate, since the weight§3]
(Q, R, N) are functions of the controller itself.

Another obvious approach is to not use pure integratorgy;
but rather add disturbances with very large time constants.
This way we do not have to iterate on the controller. In thi?15]
setting we can also add a weight efRu, since the states
eventually will be driven back to the origin. The main gain
from the method above seems to be that we can reduce A8
input horizon N, and hence the number of the degrees of
freedom, compared to the approach of adding disturbances
with large time constants, as in order to capture the behavio
of the process a larger input horizavi is needed.

VI. CONCLUSION

In this work we have presented a convex approach to
the design of fixed order linear quadratic controllers. In
particular, we have shown how to derive PD and PID con-
trollers for a linear plant with a quadratic control objgeti
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APPENDIX

A. Proof of gain reduction for LQ control
AssumeW,; = I and

al
W= [ ]

Here o is the measurement noise afds additive noise to

From Theorem 2 we have derived expressions for fixedne inputs. (We will show thas does not affect the solution.)

order controller both for the case of noisy and noise-frepgfine 7 —

measurements.

W
In example we 2 gave all steps necessary to derive a PID

controller for a given linear plant, and we tested the cdigtro
on a laboratory temperature loop. The framework is general
in the sense that it can be applied directly to MIMO systems

~Jt Jua. We have that' T = FW W] FT +

uu

T,. By the above assumptions we get that

to get MIMO PID controller. In a forthcoming contribution pye to the assumptions div,, we get

we will indeed give guidelines for setting up a MIMO PID
controller using the ideas presented here.
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(3]

(5]

This matrix has to be inverted. This can be done using
Lemma A.2 (Inverse of a partitioned matrix) in [12], with
Apn = (1+a®)I, Ay = JT, Agy = J, Ayy = JJT +
ﬂ2I. Further we haveX = Aoy — A21AI11A12 = .-
(%JJT + 521). We observe that the inverse &f exists.

Using the Lemma, we get that the inversefof T is:
(FFT)_l _ [l + g XN e X
1 X—IJ X—l
(46)

T 1+aZ

We now need to evaluate”' (FEFT)~1GY. For the current
problem formulation we have th&?" = [0,,. xny Ing xny s
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and after doing the multiplication we get that Now consider P = >co XWX =

T AETy—1 1 T (e ! ! W+ XTWX + X2WX? o+ .. = W o+

GV(FF)T'GV =X = (Gy (FF) Gy) =X XT(W+XTWX+X2TWX2+...)X=W+XTPX.
and we get that

Further,
FEm) oy = [T X 48 J ~S ol 1 Ru; + 2z] N
< ) = P (48) (u,x) = ZO (2] Qi + uj Ru; + 2z Nu,]
i—
and finally we get that N-1 (57)
. . -1 < []Qz; + u] Ru; + 2] Nu;) +
~ ~ T ~ NT 1/2 1 K3 1
H = (FFT) Gy (Gy (FF ) Gy> JH2 (49) i
+ :L’-I];,P‘TN,
L (T )T I . . . .
= | Ta? Muu ) (50) whereP is the solution to the discrete Lyapunov equation
Jul?
or P =Q+ KgyRKq — NKigr(A — BKiqr)" P(A— BKig).
I B N2 V- 1/2 (58)
H= {l-ﬁ-a? s o Jud S } (1) We have equality in (57) if, for the original problem, the

We now scalefl matrix by Ji./? to decouple the inputs SOMtON iSu = —Kigray for k > N.

and to get an expression for the controller gains:
(Jiz/ﬁ)ilH [1+a2 Juul‘] I] 9 (52)

and we observe that optimally we should reduce the con-
troller gains byl/(1+ o?) when there is noise on the states
on the formal. To see this, remember that= (z, «), and
hence we get’s on the form
c=Hy= . +1 5ot Jua + U, (53)

which is on exactly the same form as (17).

Remark 5: From the above derivation one notes that noise
entering on the inputs does not affect the optimal solution.
This may also be seen from the norm &fy:

[Hyl| = || (ur + Kzp) +n* + Kn®||
< | Kwi + uell + [Kn®|| + [[n*|]
We observe that there is a trade-off by using to keep
|K 2y + ug|| small, but avoiding amplification of Kn”||.
However,n* does not affect this trade-off. Remember that

for the noise-free case with full information, the optimal
setpoint forc = Hy = u — Kz = 0.

(54)

B. Change from infinite to finite horizon problem with cross-

term
Assume we have the following objective
[oe]
J(u,z) = Z [xiTQxi + u] Ru; + QxINui] . (55)

=0
This infinite horizon optimization problem can be changed
to finite horizon by assuming, = —Kigxy for k > N.
Then, fork > N zy1; = (A — BKig)'zn anduyy; =
—Kigr(A — BKigr)'zn. This implies that

Z I:'T-ler’L + u, Ru; + Qxl,TNui] _

=N

- (56)
=a3{) (A - BEy)' Q-+ K RKigr
=0
— NKiq)(A — BKig) }an
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