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Abstract— Recently we have established a link between
invariants for quadratic optimization problems and linear-
quadratic (LQ) optimal control [1]. The link is that for LQ
control one invariant is ck = uk − Kxk, which yields zero
loss from optimality when controlled to a constant setpoint
c = cs = 0. In general there exists infinitely many such
invariants to a quadratic programming (QP) problem. In
[2] we show how the link can be used to generate output
feedback control by using current and old measurements. In
this paper we extend this approach by considering in more
detail some interesting examples, and the use of additional (old)
measurements. In particular, we show that if the number of
measurements is less than the number of disturbances (initial
states) plus independent inputs, we can not with this method
find a policy uk = −Kyyk that minimizes the original problem,
because Ky is not optimally constant. However, this method
may be used to find initial values for H2-optimal static output
feedback synthesis.

Index Terms— linear quadratic control, fixed-structure con-
trol

I. INTRODUCTION

Consider a finite horizon LQ problem of the form

min
u0,u1,...,uN−1

J(u, x(0)) = E{xT
NPxN+

+
N−1∑

k=0

[
xT

kQxk + uT
kRuk

]
}

subject to x0 = x(0)

xk+1 = Axk + Buk, k ≥ 0

yk = Cxk + ny
k,

(1)

where xk ∈ R
nx are the states, uk ∈ R

nu are the inputs

and yk ∈ R
ny are the measurements. Further P = P T > 0,

Q ≥ 0, and R > 0 are matrices of appropriate dimensions,

and E{·} is the expectation operator.

It is well-known that if C = I and ny = 0, such that

yk = xk, the solution to (1) is state feedback uk = −Kxk,

where the gain matrix K can be found by solving an iterative

Riccati equation. For the case with white noise assumption

on x0 and y (ny), the optimal solution is uk = −Kx̂k,

where x̂k is a state estimate from a Kalman filter [3], which

in effect gives a dynamic compensator K lqg (from y to u)

of same order nx as the plant.

In this paper we consider the static output feedback

problem, uk = −Kyyk, where Ky is a static gain matrix.

Note that the case with a fixed-order controller of order

less than nx may also be brought back to the static output
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Fig. 1. Notation for self-optimizing control.

feedback problem. A particular controller considered in this

paper is the multi-input multi-output proportional-integral-

derivative controller (MIMO-PID) where we have as many

controlled outputs yc as there are inputs u. The “allowed”

measurements yk in the formulation in (1) are the present

value of the controlled output yc
k (P), the integrated value

∑k
i=0 yc

i (I) and the derivative
∂yc

k

δt (D).

This optimal solution to this problem is unsolved [4] so

one cannot expect to find an analytic or convex numerical

solution. The contribution of this paper is therefore to

propose a convex approach to find a good initial estimate

for Ky , as a starting point for a numerical search.

A. Notation

Notation adopted from self-optimizing control is summa-

rized in figure 1. Typically, u = (u0, u1, . . . , uN−1), d = x0

and y = (x0, u) or y = (y0,
∂y0

∂t , . . . , u), but also other

variables y will be considered.

II. MAIN RESULTS

A. Results from self-optimizing control

1) Nullspace method: From [5] we have the following

theorem:

Theorem 1: (Nullspace theorem = Linear invariants for

quadratic optimization problem) Consider an unconstrained

quadratic optimization problem in the variables u (input

vector of length nu) and d (disturbance vector of length nd)

min
u

J(u, d) =

[
u
d

]T [
Juu Jud

JT
ud Jdd

] [
u
d

]

. (2)

In addition, there are “measurement” variables y = Gyu +
Gy

dd. If there exists ny ≥ nu + nd independent measure-

ments (where “independent” means that the matrix G̃y =
[
Gy Gy

d

]
has full rank), then the optimal solution to (2)

has the property that there exists nc = nu linear variable

combinations (constraints) c = Hy that are invariant to
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the disturbances d. The optimal measurement combination

matrix H is found by selecting H such that

HF = 0, (3)

where F = ∂yopt

∂d is the optimal sensitivity matrix which can

be obtained from

F = −(GyJ−1
uu Jud − Gy

d), (4)

(That is, H is in the left nullspace of F .)

2) Generalization: Exact local method: A generalization

of Theorem 1 is the following:

Theorem 2: (Exact local method = Loss by introducing

linear constraint for noisy quadratic optimization problem

[5]) Consider the unconstrained optimization problem in

Theorem 1, (2), and a set of noisy measurements ym = y +
ny , where y = Gyu+Gy

dd. Assume that nc = nu constraints

c = Hym = cs are added to the problem, which will result

in a non-optimal solution with a loss L = J(u, d)−Jopt(d).
Consider disturbances d and noise ny with magnitudes

d = Wdd
′; ny = Wnyny;

∣
∣
∣
∣

∣
∣
∣
∣

[
d′

ny′

]∣
∣
∣
∣

∣
∣
∣
∣
2

≤ 1.

Then for a given H , the worst-case loss introduced by adding

the constraint c = Hy is Lwc = σ̄2(M)/2, where M is

M ,
[
Md Mn

]

Md = −J1/2
uu (HGy)−1HFWd

Mn = −J1/2
uu (HGy)−1HWny ,

(5)

and σ̄(·) is the maximum singular value. The optimal H
that minimizes the loss can be found by solving the convex

optimization problem

min
H

‖HF̃‖F

subject to HGy = J1/2
uu

(6)

Here F̃ = [FWd Wny ].
The reason for using the Frobenius norm is that minimiza-

tion of this norm also minimizes σ̄(M) [6].

Remark 1: From [5] we have that any optimal H premul-

tiplied by a non-singular matrix nc×nc D, i.e. H1 = DH is

still optimal. One implication of this is that for a square plant,

nc = nu, we can write c = H1y = Hym

1 ym+Iu. To see this,

assume y = (ym, u), so H = [Hym Hu], where Hu is a non-

singular nu × nu matrix. Now, H1 = (Hu)−1[Hym Hu] =
[(Hu)−1Hym I].

Remark 2: More generally, for the case when F̃ F̃ T is

singular, we can solve the convex problem (6) using for

example CVX, a package for specifying and solving convex

programs [7], with the following code:

cvx_begin

variable H(N*nu,ny+nu*N);

minimize norm(H*Ftilde,’fro’)

subject to

H*Gy == sqrtm(Juu);

cvx_end

Remark 3: Noise will not be further discussed in this

paper, but is covered in [8].

B. Some special cases

Some special cases will now be considered where explicit

expressions can be found.

1) Full information: No new results are represented here,

but we show the matrices Gy , Gy
d, Juu, and Jud for LQ-

optimal control.

Assume that noise-free measurements of all the states are

available. It is well known that the LQ problem (1) can be

rewritten on the form in (2) (see for example [9]) by treating

x0 as the disturbance d, and letting u = (u0, u1, . . . , uN−1).
Thus, from Theorem 1 we know that for the LQ problem

there exists infinitely many invariants (but only one of these

involves only present states).

Without loss of generality consider the case when the

model in (1) is stable.

Let y = (x0, u0, u1, . . . , uN−1) = (x0, u). Note that this

includes also future inputs, but we will use the normal “trick”

in MPC of implementing only the present (first) input change

u0. Since we have ny = nd + nu and no noise, we can use

Theorem 1. The open loop model becomes:

y = Gyu + Gy
dd

Gy =

[
0nx×(nuN)

InuN

]

∈ R
(nx+nuN)×(nuN)

Gy
d =

[
InuN

0(nuN)×nx

]

∈ R
(nx+nuN)×nx

(7)

Here Im is an m×m identity matrix and 0m×n is a m× n
matrix of zeros.

The matrices Juu and Jud are the derivatives of the linear

quadratic objective function.For the objective and process

model in (1) we show in [10] that

Juu

2
=






BTPB+R BTATPB ... BT(AN−1)TPB

BTPAB BTPB+R ... BT(AN−2)TPB

...
...

. . .
...

BTPAN−1B BTPAN−2B ... BTPB+R




 (8)

and

Jud

2
=








BT

BT

. . .

BT















P
PA

...

PAN−1








A (9)

The sensitivity matrix (optimal change in y when d is

perturbed) becomes:

F =
∂yopt

∂dT
= −(GyJ−1

uu Jud − Gy
d) =

[
Inx

−J−1
uu Jud

]

(10)

We can use Theorem 1 to get the combination matrix H , i.e.

find an H such that HF = 0:

[
H1 H2

]
[

Inx

J−1
uu Jud

]

= H1 − H2(J
−1
uu Jud) = 0 (11)

To ensure a non-trivial solution we can choose H2 = InuN

and get the following optimal combination of x0 and u:

c = Hy = J−1
uu Judx0 + u, (12)
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which can be interpreted as:

Invariant 1: u0 = K0x0

Invariant 2: u1 = K1x0

...

Invariant N : uN−1 = KN−1x0

(13)

From Theorem 1 implementation of (13) give zero loss from

optimality, i.e. they correspond to the optimal input trajectory

u∗
0, u

∗
1, . . . , u

∗
N−1 from the solution of (1). Moreover, since

the states capture all information, we must have that

u1 = K1x0 = K1(A + BK0)
−1

︸ ︷︷ ︸

=K0

x1. (14)

From this we deduce that the solution to (1) can be imple-

mented as uk = K0xk, k = 0, 1, . . . .

In [10] we prove that this gives the same result as con-

ventional linear quadratic control, by conventional meaning

for example equation (3) in Rawlings and Muske [9].

2) Output feedback: In this section we will show how

Theorem 2 can be used for the special (but common) case

when yk = Cxk + 0 · uk, k = 0, 1, . . . , N and we look for

controllers on the form uk = −Kyyk. If C is full column

rank, then we have full information (state feedback), but we

here consider the general case where C has full row rank

(independent measurements), but not full column rank.

Let y = (y0, u) and as before u = (u0, u1, . . . , uN−1).
The disturbance d = x0. The open loop model is now

y =

[
y0

u

]

=

[
0
I

]

︸︷︷︸

Gy

u +

[
C
0

]

︸︷︷︸

Gy
d

d, (15)

and the sensitivity matrix F is

F = −(GyJ−1
uu Jud − Gy

d) =

[
C

−J−1
uu Jud

]

(16)

Since we now have that ny = nỹ + nu < nu + nd, where

nỹ are the number of measurements from the plant, nỹ < nd,

we cannot simply set HF = 0, but we need to solve (6).

Let us analyze this problem. For GyT = [0 I], HGy =

J
1/2
uu is equivalent to H2 = J

1/2
uu , where

Hnc×(nỹ+nu) =
[
H1nc×nỹ

H2nc×nu

]
(17)

With this partitioning we get that

HF̃ = H[FWd Wny ] = [HFWd HWny ], (18)

and for Wny = 0, i.e. the noise-free case,

HF̃ = [HFWd 0]. (19)

We want to minimize the Frobenius-norm of this matrix and

we have that

‖[HFWd 0]‖F = ‖HFWd‖F + ‖0‖F (20)

Assume without loss of generality that Wd = I , and let

J̃ = −J−1
uu Jud. With F T = [CT JT] we have that

HF = H1C + H2J̃
∣
∣
∣
H2=J

1/2
uu

= H1C − J−1/2
uu Jud (21)

We want to minimize ‖H1C − J
−1/2
uu Jud‖, hence we look

for a H1 such that

H1C = J−1/2
uu Jud. (22)

Using the pseudo-inverse, we find that

H1 = J−1/2
uu JudC

†, (23)

and we get that the optimal H is

H = [J−1/2
uu JudC

† J1/2
uu ]. (24)

In the final implementation we can decouple the invariants

in the inputs by

H̃ = J−1/2
uu H = [−J−1

uu JudC
† I]. (25)

This means that the open-loop optimal “output feedback” is

uk = − J−1
uu Jud

︸ ︷︷ ︸

Kstate feedback

C†yk = −Kyyk, (26)

that is, for an optimal state feedback K, the optimal “output

feedback” is KC†.

This means that for this case we have

“Invariant” 1: u0 = K0C
†y0

“Invariant” 2: u1 = K1C
†y0

...

“Invariant” N : uN−1 = KN−1C
†y0

(27)

We have called these variable combinations “invariants” in

quotation marks because they are not invariant to the solution

of the original problem, but rather the variable combinations

that minimize the (open-loop) loss. Indeed, the non-negative

loss is

‖HF‖ = ‖J−1/2
uu JudC

†C − J−1/2
uu Jud‖

= ‖J−1/2
uu Jud(C

†C − I)‖

≤ ‖J−1/2
uu Jud‖‖C

†C − I‖

(28)

For output feedback we have in the least squares sense

u1 = K1C
†C(A + BK0C

†C)−1C†

︸ ︷︷ ︸

K1

y1. (29)

Unfortunately, in general K1 6= K0 and hence the open loop

solution (27) cannot be implemented as a constant feedback

uk = K0C
†yk, as was the case for state feedback, see (14).

III. MAIN ALGORITHM

We now propose an algorithm for finding output feedback

controllers. This is a two-step procedure where we first find

initial values using Theorem 2. These initial values corre-

spond to a controller that in the open-loop sense is closest

to the optimal state feedback LQ controller. Thereafter we

improve this controller by solving a closed-loop optimization

problem where the controller parameters are the degrees of

freedom.

In the previous section we showed that if y =
(Cx0, u0, . . . , uN−1) Theorem 1 gives u0 = −Kyy0 =
Kstate feedbackC†y0. The algorithm presented here is more
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Fig. 2. Interconnection structure for closed-loop optimization of K.

general in the sense that it handles “measurements” such

as y = (y0, y1, . . . , yM , u0, . . . , uN−1). (In the latter case a

casual controller is uM = −Ky[yT
0 . . . yT

M ]T.)

Algorithm 1 Low-order controller synthesis

1: Define a finite-horizon quadratic objective J(u, x) =
xT

NPxN +
∑N−1

i=0 xT
i Qxiu

T
i Rui + 2xT

i Nui.

2: Calculate Juu and Jud as in (8), (9).

3: Define candidate variables y = Gyu + Gy
dx0, u =

(u0, u1, . . . , uN−1).
4: Decide weights Wd and W y

n (Default: Wd = I , W y
n = 0)

5: Find H̃ by solving the convex optimization problem (6)

6: Optional: Improve control by closed-loop optimization.

(Section III-A.)

A. Relationship between LQ-control and H2 optimal control

It is well-known that the LQG problem may be cast into

the H2 framework and that a class of H2 optimal controllers

may be implemented in an LQG-scheme with a Kalman

estimator and a constant feedback gain from the estimated

states [11]. In this paper we propose to improve the solution

from the open-loop control by minimizing the H2 norm

min
K

‖Fl(P,K)‖2. (30)

In this context minK means minimizing over the parameters

in K. The lower-fractional transform Fl(P,K) = P11 +
P12(I − P22K)−1P21 for a P =

[
P11 P12

P21 P22

]
[12]. The

interconnection structure we use for P is shown in figure

2.

The last row of Algorithm 1 consists of solving (30) with

initial values as H̃ on step 5 in algorithm 1, which is the

solution to (6).

IV. EXAMPLES

In this section two examples will be considered. First we

discuss P-control of a second order plant, then MIMO-PID

control of a model of a distillation column.

Example 1: (P-control of second order plant) Consider the

plant g(s) = 2
s2+3s+2 . The plant is sampled with Ts = 0.1

to get

xk+1 =

[
0.7326 −0.1722
0.0861 0.9909

]

xk +

[
0.1722
0.0091

]

uk

yk =
[
0 1

]
xk

(31)
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Time
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k

 

 

x
0
 = [0;1]

1: uk = −Ky
0 yk

2: uk = −Kyyk

3: uk = −Ky
1,0yk −Ky

2,0yk−1

4: uk = −Ky
1 yk −Ky

2 yk−1

5: uk = −Klqrxk

Fig. 3. Simulation results for disturbances in initial conditions, example
1.

The objective is to derive two LQ-optimal controllers for

this process, one P-controller on the form uk = −Kyyk and

a PD-controller uk = −(Ky
1 yk + Ky

2 yk−1).

In the synthesis of the controllers we use algorithm 1.

The open loop objective to be minimized is J̃(u, x) =
∑∞

i=0 xT
i Qxi + uT

i Rui with Q = [ 0 0
0 1 ] and R = 1.

The infinite horizon objective can be approximated by the

following objective:

J(u, x) = xT
NPxN +

N−1∑

i=0

xT
i Qxi + uT

i Rui, (32)

with P = [ 0.8333 2.4917
2.4917 9.6667 ] and N = 10. (P is a solution to the

discrete Lyapunov equation P = ATPA+Q.) The objective

is now on the form of step 1 in the algorithm.

P-control: For the P-controller, the variables to combine

are y1 = (y0, u0, . . . , uN−1). The matrices Juu and Jud are

the same as those reported in equations (8) and (9). Since

we do not consider noise Wd = I and Wny = 0. We

can now find H̃ either by solving the convex problem in

(6), or we can simply use the explicit formula in (23), i.e.

H1 = J−1
uu JudC

†. As shown in section II-B.2 (see equation

27) we now get N = 10 “invariants” to the solution to the

original optimization problem in (32). The first one of these

invariants is reported as controller 1 in table I. We observe

that ‖HF̃‖ > 0, which is expected from Theorem 1, as

ny < nu + nd in this case (ny = 1 + 10, nu = 10, nd = 2).

Using this P-controller (uk = −0.404yk) as the initial

estimate, the H2-optimal closed-loop controller K in Figure

2 is obtained numerically. Note from row 2 in Table I that the

H2-norm is only reduced slightly (from 0.2993 to 0.2981),

although K changes from -0.404 to -0.313.

PD-control: For the synthesis of a PD controller we

again use algorithm 1. The variables to combine are now

y2 = (y0, y1, u0, . . . , uN−1). The objective function and the

matrices Juu and Jud remain the same. The open-loop model
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TABLE I

CONTROLLERS FOR EXAMPLE 1.

Controller ‖HF̃‖F ‖Fl(P, K)‖2

1: uk = −0.404yk 0.390 0.2993 First invariant using Theorem 2 for y1 = (y0, u0, . . . , uN−1)
2: uk = −0.313yk − 0.2981 Closed-loop optimal P-controller

3: uk = −(1.49yk − 1.11yk−1) 0 0.3176 Second invariant using Theorem 2 for y2 = (y0, y1, u0, . . . , uN−1)
4: uk = −(0.416yk − 0.109yk−1) − 0.2979 Closed-loop optimal controller PD-controller

5: uk = −[0.131 0.396]xk 0 0.2972 LQR

y = Gyu + Gy
dx0 is now:

y2 =





y0

y1

u



 =







0 0
CB 0
I 0
0 I







u +





C
CA
0



 x0. (33)

For this particular variable combination (23) cannot be used,

as the variables occur on different instances in time. We

therefore solve the optimization problem (6) using cvx, as

shown in remark 2. The solution is again on the form of (27),

for which the second invariant is reported as controller 3 in

table I. The solution (all the invariants) gives ‖HF̃‖ = 0,

which is expected from Theorem 1, as ny = nu + nd and

no noise is present. Further numerical optimization reduces

the H2 norm from 0.3176 to 0.2979.

It can be verified that the variable combination is indeed

optimal after one step with the following calculations:

u0 = −Kx0, u1 = −Ky
1 y1 − Ky

2 y0

⇒ u1 = − (Ky
1 C + Ky

2 C(A − BK)−1)
︸ ︷︷ ︸

=K

x1, (34)

where K is the LQR controller. For implementation some

sub-optimality must be expected since we are not starting

the control with LQR, rather we use the PD controller at all

time instances.

Simulations: From the closed-loop norms reported in table

I the controllers are expected to perform similarly in closed

loop. This is confirmed in the closed loop simulations of

disturbances in initial states, see figure 3.

Example 2: (Linear dynamic model of distillation col-

umn.) In this example we consider MIMO-PI and -PID

control of “column A” in [13]. The model is used as an

example for offset-free control in [14]. The model is based

on the following assumptions:

• binary separation,

• 41 stages, including reboiler and total condenser,

• each stage is at equilibrium, with constant relative

volatility α = 1.5,

• linearized liquid flow dynamics,

• negligible vapor holdup,

• constant pressure.

The feed enters on stage 21. u = [ L
V ] and y = [ xD

xB
].

We here consider the LV-configuration, where D and B are

used to control the levels. With level controllers implemented

(P-control with Kc = 10) the rest of the column is stable.

Balanced reduction is used to reduce the number of states

to 16. Then integrated outputs are added to the model,

resulting in a model with 18 states. If we let the outputs of
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∆
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upper: V

LQR
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PID

Fig. 4. Simulation results for example 2. At t = 0 a step-change of 0.1
in F occurs, and at t = 70 zF is changed from 0.5 to 0.6.

the model be P, I, and D, we get a model with the following

structure:
[
ẋ
σ̇

]

=

[
a 0
c 0

] [
x
σ

]

+

[
b
d

]

u





yP

yI

yD



 =





c 0
0 I
ca 0





[
x
σ

]

+





d
0
cb



 u

. (35)

This model is sampled with Ts = 1 to get a discrete time

model. Again we set up an infinite time objective function,

with Q = CT
[

0
I

0

]

C, and R = 0.1·I , and for intermediate

calculations we approximate this by a finite horizon objective

with N = 150 and P = Q.

We now look for controllers on the form

uk = −
(
KP yP

k + KIyI
k + KDyD

k

)
(36)

and we assume measurements of the compositions with a

sample time of 1 minute is available.

Table II shows “first-move” PI (= first move invariant

realized as feedback), closed loop PI and PID controllers,
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TABLE II

CONTROLLERS FOR EXAMPLE 2.

Description Control equation ‖HF̃‖F ‖Fl(P, K)‖

“First-move” PI uk = −

([
5.316 0.25664

−3.1953 −3.3371

]

yP
k

+

[
2.6897 −0.5975

−0.13498 −2.5939

]

yI
k

)

4.28 3.99

Closed-loop optimal PI uk = −

([
16.0156 −5.17125
0.541199 −9.57775

]

yP
k

+

[
2.7148 −0.715
0.33949 −2.7672

]

yI
k

)

− 3.65

“First-move” PID uk = −

([
9.9305 −0.96741
−5.2025 −3.5369

]

yP
k

+

[
2.6891 −0.62581

−0.13969 −2.6454

]

yI
k

. . . 3.44 3.78

· · · +

[
1.0724 −0.22799

−0.53974 −0.43514

]

yD
k

)

Closed-loop optimal PID uk = −

([
17.5043 −8.22394
3.48592 −17.7333

]

yP
k

+

[
2.743 −1.3167

0.15148 −4.3547

]

yI
k

. . . − 3.63

· · · +

[
−1.78427 −6.07614
−9.79446 −13.3285

]

yD
k

)

LQR uk = −

[
−0.0022 0.0002 −0.0004 −0.0007 0.0016 −0.0097
0.0008 0.0015 −0.0016 −0.0037 0.0079 −0.0074

]

xk(1 : 6) . . . − 3.61

· · · −

[
−0.0036 0.0048 0.0116 −0.0011 −0.0213 0.0305
−0.0066 0.0262 0.0610 0.0044 0.0093 −0.0148

]

xk(7 : 12) . . .

· · · −

[
0.0149 0.0521 0.1349 0.1034 2.6897 −0.5975
0.0233 −0.0372 −0.1607 0.0895 −0.1350 −2.5939

]

xk(13 : 18)

TABLE III

ITERATION COUNT USING FMINUNC (MATLAB
c© R2008A) WITH

DIFFERENT INITIALIZATIONS

Algorithm 1 K0 = 0 SIMC-tuned PI controllers

PI 44 − 71
PID 91 − 123

and the LQR controller for reference. In addition to the

initialziation proposed in this paper we tried to initialize

the numerical search with K0 = 0 and two SIMC-tuned

[15] PI controllers with τc = 10 minutes, leading to

K0
SIMC =

[
14.63 0 0.37 0 0 0

0 −10.91 0 −0.27 0 0

]
. As reported in table

III did K0 = 0 not converge, whereas intializing with two

SIMC-tuned PI controllers converged in both cases (both for

PI and PID design), though with some more iterations than

the method proposed in this paper.

Figure 4 shows simulation results where we at t = 0
introduce a step in the feed rate and at t = 70 a step in

the feed composition. ’PI’ and ’PID’ refers to the closed-

loop optimal controllers. As one observes is the MIMO-PID

controller quite close in performance to the LQR controller.

V. CONCLUSIONS

In this paper we have discussed synthesis of H2-optimal

static output feedback, and in particular the MIMO-PID. We

have shown that initial conditions for closed loop optimiza-

tion can be found by solving a convex program, and that

the resulting closed loop optimization problem converges for

some interesting cases.
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